검색결과
게시물 키워드"한국과학기술연구원"에 대한 1258개의 검색결과를 찾았습니다.
돌연사 원인 1위 심근경색, 면역반응 조절로 치료한다.
- 심근경색 부위 염증 완화와 이에 따른 심장 기능 개선 효과 검증 - 사멸세포 유래 나노소포체로 면역반응을 조절하는 새로운 치료법 제시 우리나라 성인 돌연사 원인 1위이자 사망원인 2위 질환인 심근경색은 초기 사망률이 30%이며, 의료기관에 후송돼 치료하는 경우에도 5~10% 정도가 사망하는 치명적인 질환이다. 2017년 99,647명에서 2021년 126,342명으로 5년 새 26.8% 늘어나는 등 국내 심근경색 환자 수는 가파른 증가추세를 보이고 있는데, 지금까지 약물요법, 경피적 동맥성형술과 동맥우회술이 치료법으로 알려져 있으나, 이에 반응하지 않는 중증에는 적용이 어려웠다. 한국과학기술연구원(KIST, 원장 윤석진) 생체재료연구센터 정윤기 책임연구원과 이주로 박사 연구팀은 가톨릭대학교 의과대학 박훈준 교수, 박봉우 박사와 함께 세포사멸이 유도된 섬유아세포로부터 유래된 나노소포체를 활용해 면역반응을 조절하는 방식의 새로운 심근경색 치료법을 개발했다고 밝혔다. 심근경색은 심장에 혈액을 공급해 주는 혈관인 관상동맥이 좁아지거나 막히게 돼 심장근육에 충분한 혈액 공급이 이루어지지 못하게 되고, 이에 따라 심근에 영양 및 산소 결핍이 생겨 심장 기능 부진을 일으키는 허혈성 심장질환이다. 시장조사기관인 테크나비오(Technavio)에 따르면 전세계 심근경색 치료제 시장 규모는 2026년까지 연평균 4.7%의 성장률을 기록하며 20억 2,000만 달러에 이를 것으로 전망된다. 최근에는 엑소좀(exosome) 등의 줄기세포 유래 나노소포체(nanovesicles)를 이용해 염증반응을 조절하는 심근경색 치료제 연구가 수행되고 있으나, 줄기세포는 대량생산이 어려워 치료제의 경제성을 확보하는 데 한계가 있었다. 연구팀은 세포 내 생화학적 변화에 의해 자살하는 사멸세포(Apoptotic Cell)를 원료로 하는 나노의약품을 통해 심장근육의 염증반응을 감소시킴으로써 중증 심근경색 치료의 가능성을 확인했다. 이러한 반응은 허혈성 심근경색 질환 부위에 특이적인 펩타이드와 대식세포 섭식에 특이적인 물질을 섬유아세포 표면에 부착함으로써 가능했는데, 이를 위해 연구팀은 표면이 개량된 섬유아세포의 세포사멸을 유도하여 항염증적인 특성을 가지면서도 심근경색 부위에 있는 대식세포에 특이적으로 전달될 수 있는 나노소포체를 개발했다. 동물실험에서는 쥐에게 정맥주사된 나노소포체가 심근경색 부위로 효과적으로 전달되고, 대식세포에만 특이적으로 다량 유입된 것을 확인했다. 그 결과, 좌심실의 수축력을 나타내는 지표인 '좌심실 박출률(LVEF)'이 4주 동안 대조군에 비해서 1.5배 이상 증가하여 심박출량 개선 효과가 있음을 확인했다. 또한, 심근경색 부위에서 염증 완화 효과와 함께 심근경색 부위의 섬유화를 감소시키고 심장 내 혈관 보존율과 심근세포의 생존율이 높아지는 등 심장 기능이 향상됐다. KIST 정윤기 박사는 “세포자살이 유도된 세포로부터 생산한 나노소포체를 이용해 심근경색 질환 치료에 적용한 최초 연구이며, 줄기세포가 아닌 일반 세포를 이용하기 때문에 대량생산이 가능한 장점을 갖고 있다”라며, “향후 가톨릭대 의과대학, 바이오기업과 공동연구를 통해 임상시험 등 치료의 유효성과 안전성 검증 연구를 진행할 계획"이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 이종호) 지원으로 한국연구재단 나노 및 소재기술개발사업(2021M3H4A1A04092878)과 세종과학펠로우십사업(2021R1C1C2010587)의 지원을 통해 수행되었으며, 연구 결과는 재료 분야 국제학술지 ‘Advanced Functional Materials’ (IF:19.0, JCR 분야 상위 4.7%) 6월호에 게재됐다. * Targeted Delivery of Apoptotic Cell-Derived Nanovesicles prevents Cardiac Remodeling and Attenuates Cardiac Function Exacerbation [그림 1] ApoNV-DC의 제작 과정과 이의 심근경색 치료 메커니즘 [그림 2] 심근경색 부위에서 ApoNV의 항섬유화 효과 [그림 3] ApoNV-DC의 정맥주사 4주 이후 심기능 향상 효과. 심장 비대 감소 및 심박출량 등의 심기능 지표 향상 ○ 논문명: Targeted Delivery of Apoptotic Cell-Derived Nanovesicles prevents Cardiac Remodeling and Attenuates Cardiac Function Exacerbation ○ 학술지:Advanced Functional Materials ○ 게재일: 2023.06.02. ○ DOI: https://doi.org/10.1002/adfm.202210864 ○ 논문저자 - 이주로 박사후연구원(제1저자/하버드 의과대학), - 박훈준 교수(제1저자/카톨릭대학교 의과대학) - 정윤기 책임연구원(교신저자/KIST 생체재료연구센터) - 박봉우 박사(교신저자/카톨릭대학교 의과대학)
돌연사 원인 1위 심근경색, 면역반응 조절로 치료한다.
- 심근경색 부위 염증 완화와 이에 따른 심장 기능 개선 효과 검증 - 사멸세포 유래 나노소포체로 면역반응을 조절하는 새로운 치료법 제시 우리나라 성인 돌연사 원인 1위이자 사망원인 2위 질환인 심근경색은 초기 사망률이 30%이며, 의료기관에 후송돼 치료하는 경우에도 5~10% 정도가 사망하는 치명적인 질환이다. 2017년 99,647명에서 2021년 126,342명으로 5년 새 26.8% 늘어나는 등 국내 심근경색 환자 수는 가파른 증가추세를 보이고 있는데, 지금까지 약물요법, 경피적 동맥성형술과 동맥우회술이 치료법으로 알려져 있으나, 이에 반응하지 않는 중증에는 적용이 어려웠다. 한국과학기술연구원(KIST, 원장 윤석진) 생체재료연구센터 정윤기 책임연구원과 이주로 박사 연구팀은 가톨릭대학교 의과대학 박훈준 교수, 박봉우 박사와 함께 세포사멸이 유도된 섬유아세포로부터 유래된 나노소포체를 활용해 면역반응을 조절하는 방식의 새로운 심근경색 치료법을 개발했다고 밝혔다. 심근경색은 심장에 혈액을 공급해 주는 혈관인 관상동맥이 좁아지거나 막히게 돼 심장근육에 충분한 혈액 공급이 이루어지지 못하게 되고, 이에 따라 심근에 영양 및 산소 결핍이 생겨 심장 기능 부진을 일으키는 허혈성 심장질환이다. 시장조사기관인 테크나비오(Technavio)에 따르면 전세계 심근경색 치료제 시장 규모는 2026년까지 연평균 4.7%의 성장률을 기록하며 20억 2,000만 달러에 이를 것으로 전망된다. 최근에는 엑소좀(exosome) 등의 줄기세포 유래 나노소포체(nanovesicles)를 이용해 염증반응을 조절하는 심근경색 치료제 연구가 수행되고 있으나, 줄기세포는 대량생산이 어려워 치료제의 경제성을 확보하는 데 한계가 있었다. 연구팀은 세포 내 생화학적 변화에 의해 자살하는 사멸세포(Apoptotic Cell)를 원료로 하는 나노의약품을 통해 심장근육의 염증반응을 감소시킴으로써 중증 심근경색 치료의 가능성을 확인했다. 이러한 반응은 허혈성 심근경색 질환 부위에 특이적인 펩타이드와 대식세포 섭식에 특이적인 물질을 섬유아세포 표면에 부착함으로써 가능했는데, 이를 위해 연구팀은 표면이 개량된 섬유아세포의 세포사멸을 유도하여 항염증적인 특성을 가지면서도 심근경색 부위에 있는 대식세포에 특이적으로 전달될 수 있는 나노소포체를 개발했다. 동물실험에서는 쥐에게 정맥주사된 나노소포체가 심근경색 부위로 효과적으로 전달되고, 대식세포에만 특이적으로 다량 유입된 것을 확인했다. 그 결과, 좌심실의 수축력을 나타내는 지표인 '좌심실 박출률(LVEF)'이 4주 동안 대조군에 비해서 1.5배 이상 증가하여 심박출량 개선 효과가 있음을 확인했다. 또한, 심근경색 부위에서 염증 완화 효과와 함께 심근경색 부위의 섬유화를 감소시키고 심장 내 혈관 보존율과 심근세포의 생존율이 높아지는 등 심장 기능이 향상됐다. KIST 정윤기 박사는 “세포자살이 유도된 세포로부터 생산한 나노소포체를 이용해 심근경색 질환 치료에 적용한 최초 연구이며, 줄기세포가 아닌 일반 세포를 이용하기 때문에 대량생산이 가능한 장점을 갖고 있다”라며, “향후 가톨릭대 의과대학, 바이오기업과 공동연구를 통해 임상시험 등 치료의 유효성과 안전성 검증 연구를 진행할 계획"이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 이종호) 지원으로 한국연구재단 나노 및 소재기술개발사업(2021M3H4A1A04092878)과 세종과학펠로우십사업(2021R1C1C2010587)의 지원을 통해 수행되었으며, 연구 결과는 재료 분야 국제학술지 ‘Advanced Functional Materials’ (IF:19.0, JCR 분야 상위 4.7%) 6월호에 게재됐다. * Targeted Delivery of Apoptotic Cell-Derived Nanovesicles prevents Cardiac Remodeling and Attenuates Cardiac Function Exacerbation [그림 1] ApoNV-DC의 제작 과정과 이의 심근경색 치료 메커니즘 [그림 2] 심근경색 부위에서 ApoNV의 항섬유화 효과 [그림 3] ApoNV-DC의 정맥주사 4주 이후 심기능 향상 효과. 심장 비대 감소 및 심박출량 등의 심기능 지표 향상 ○ 논문명: Targeted Delivery of Apoptotic Cell-Derived Nanovesicles prevents Cardiac Remodeling and Attenuates Cardiac Function Exacerbation ○ 학술지:Advanced Functional Materials ○ 게재일: 2023.06.02. ○ DOI: https://doi.org/10.1002/adfm.202210864 ○ 논문저자 - 이주로 박사후연구원(제1저자/하버드 의과대학), - 박훈준 교수(제1저자/카톨릭대학교 의과대학) - 정윤기 책임연구원(교신저자/KIST 생체재료연구센터) - 박봉우 박사(교신저자/카톨릭대학교 의과대학)
돌연사 원인 1위 심근경색, 면역반응 조절로 치료한다.
- 심근경색 부위 염증 완화와 이에 따른 심장 기능 개선 효과 검증 - 사멸세포 유래 나노소포체로 면역반응을 조절하는 새로운 치료법 제시 우리나라 성인 돌연사 원인 1위이자 사망원인 2위 질환인 심근경색은 초기 사망률이 30%이며, 의료기관에 후송돼 치료하는 경우에도 5~10% 정도가 사망하는 치명적인 질환이다. 2017년 99,647명에서 2021년 126,342명으로 5년 새 26.8% 늘어나는 등 국내 심근경색 환자 수는 가파른 증가추세를 보이고 있는데, 지금까지 약물요법, 경피적 동맥성형술과 동맥우회술이 치료법으로 알려져 있으나, 이에 반응하지 않는 중증에는 적용이 어려웠다. 한국과학기술연구원(KIST, 원장 윤석진) 생체재료연구센터 정윤기 책임연구원과 이주로 박사 연구팀은 가톨릭대학교 의과대학 박훈준 교수, 박봉우 박사와 함께 세포사멸이 유도된 섬유아세포로부터 유래된 나노소포체를 활용해 면역반응을 조절하는 방식의 새로운 심근경색 치료법을 개발했다고 밝혔다. 심근경색은 심장에 혈액을 공급해 주는 혈관인 관상동맥이 좁아지거나 막히게 돼 심장근육에 충분한 혈액 공급이 이루어지지 못하게 되고, 이에 따라 심근에 영양 및 산소 결핍이 생겨 심장 기능 부진을 일으키는 허혈성 심장질환이다. 시장조사기관인 테크나비오(Technavio)에 따르면 전세계 심근경색 치료제 시장 규모는 2026년까지 연평균 4.7%의 성장률을 기록하며 20억 2,000만 달러에 이를 것으로 전망된다. 최근에는 엑소좀(exosome) 등의 줄기세포 유래 나노소포체(nanovesicles)를 이용해 염증반응을 조절하는 심근경색 치료제 연구가 수행되고 있으나, 줄기세포는 대량생산이 어려워 치료제의 경제성을 확보하는 데 한계가 있었다. 연구팀은 세포 내 생화학적 변화에 의해 자살하는 사멸세포(Apoptotic Cell)를 원료로 하는 나노의약품을 통해 심장근육의 염증반응을 감소시킴으로써 중증 심근경색 치료의 가능성을 확인했다. 이러한 반응은 허혈성 심근경색 질환 부위에 특이적인 펩타이드와 대식세포 섭식에 특이적인 물질을 섬유아세포 표면에 부착함으로써 가능했는데, 이를 위해 연구팀은 표면이 개량된 섬유아세포의 세포사멸을 유도하여 항염증적인 특성을 가지면서도 심근경색 부위에 있는 대식세포에 특이적으로 전달될 수 있는 나노소포체를 개발했다. 동물실험에서는 쥐에게 정맥주사된 나노소포체가 심근경색 부위로 효과적으로 전달되고, 대식세포에만 특이적으로 다량 유입된 것을 확인했다. 그 결과, 좌심실의 수축력을 나타내는 지표인 '좌심실 박출률(LVEF)'이 4주 동안 대조군에 비해서 1.5배 이상 증가하여 심박출량 개선 효과가 있음을 확인했다. 또한, 심근경색 부위에서 염증 완화 효과와 함께 심근경색 부위의 섬유화를 감소시키고 심장 내 혈관 보존율과 심근세포의 생존율이 높아지는 등 심장 기능이 향상됐다. KIST 정윤기 박사는 “세포자살이 유도된 세포로부터 생산한 나노소포체를 이용해 심근경색 질환 치료에 적용한 최초 연구이며, 줄기세포가 아닌 일반 세포를 이용하기 때문에 대량생산이 가능한 장점을 갖고 있다”라며, “향후 가톨릭대 의과대학, 바이오기업과 공동연구를 통해 임상시험 등 치료의 유효성과 안전성 검증 연구를 진행할 계획"이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 이종호) 지원으로 한국연구재단 나노 및 소재기술개발사업(2021M3H4A1A04092878)과 세종과학펠로우십사업(2021R1C1C2010587)의 지원을 통해 수행되었으며, 연구 결과는 재료 분야 국제학술지 ‘Advanced Functional Materials’ (IF:19.0, JCR 분야 상위 4.7%) 6월호에 게재됐다. * Targeted Delivery of Apoptotic Cell-Derived Nanovesicles prevents Cardiac Remodeling and Attenuates Cardiac Function Exacerbation [그림 1] ApoNV-DC의 제작 과정과 이의 심근경색 치료 메커니즘 [그림 2] 심근경색 부위에서 ApoNV의 항섬유화 효과 [그림 3] ApoNV-DC의 정맥주사 4주 이후 심기능 향상 효과. 심장 비대 감소 및 심박출량 등의 심기능 지표 향상 ○ 논문명: Targeted Delivery of Apoptotic Cell-Derived Nanovesicles prevents Cardiac Remodeling and Attenuates Cardiac Function Exacerbation ○ 학술지:Advanced Functional Materials ○ 게재일: 2023.06.02. ○ DOI: https://doi.org/10.1002/adfm.202210864 ○ 논문저자 - 이주로 박사후연구원(제1저자/하버드 의과대학), - 박훈준 교수(제1저자/카톨릭대학교 의과대학) - 정윤기 책임연구원(교신저자/KIST 생체재료연구센터) - 박봉우 박사(교신저자/카톨릭대학교 의과대학)
돌연사 원인 1위 심근경색, 면역반응 조절로 치료한다.
- 심근경색 부위 염증 완화와 이에 따른 심장 기능 개선 효과 검증 - 사멸세포 유래 나노소포체로 면역반응을 조절하는 새로운 치료법 제시 우리나라 성인 돌연사 원인 1위이자 사망원인 2위 질환인 심근경색은 초기 사망률이 30%이며, 의료기관에 후송돼 치료하는 경우에도 5~10% 정도가 사망하는 치명적인 질환이다. 2017년 99,647명에서 2021년 126,342명으로 5년 새 26.8% 늘어나는 등 국내 심근경색 환자 수는 가파른 증가추세를 보이고 있는데, 지금까지 약물요법, 경피적 동맥성형술과 동맥우회술이 치료법으로 알려져 있으나, 이에 반응하지 않는 중증에는 적용이 어려웠다. 한국과학기술연구원(KIST, 원장 윤석진) 생체재료연구센터 정윤기 책임연구원과 이주로 박사 연구팀은 가톨릭대학교 의과대학 박훈준 교수, 박봉우 박사와 함께 세포사멸이 유도된 섬유아세포로부터 유래된 나노소포체를 활용해 면역반응을 조절하는 방식의 새로운 심근경색 치료법을 개발했다고 밝혔다. 심근경색은 심장에 혈액을 공급해 주는 혈관인 관상동맥이 좁아지거나 막히게 돼 심장근육에 충분한 혈액 공급이 이루어지지 못하게 되고, 이에 따라 심근에 영양 및 산소 결핍이 생겨 심장 기능 부진을 일으키는 허혈성 심장질환이다. 시장조사기관인 테크나비오(Technavio)에 따르면 전세계 심근경색 치료제 시장 규모는 2026년까지 연평균 4.7%의 성장률을 기록하며 20억 2,000만 달러에 이를 것으로 전망된다. 최근에는 엑소좀(exosome) 등의 줄기세포 유래 나노소포체(nanovesicles)를 이용해 염증반응을 조절하는 심근경색 치료제 연구가 수행되고 있으나, 줄기세포는 대량생산이 어려워 치료제의 경제성을 확보하는 데 한계가 있었다. 연구팀은 세포 내 생화학적 변화에 의해 자살하는 사멸세포(Apoptotic Cell)를 원료로 하는 나노의약품을 통해 심장근육의 염증반응을 감소시킴으로써 중증 심근경색 치료의 가능성을 확인했다. 이러한 반응은 허혈성 심근경색 질환 부위에 특이적인 펩타이드와 대식세포 섭식에 특이적인 물질을 섬유아세포 표면에 부착함으로써 가능했는데, 이를 위해 연구팀은 표면이 개량된 섬유아세포의 세포사멸을 유도하여 항염증적인 특성을 가지면서도 심근경색 부위에 있는 대식세포에 특이적으로 전달될 수 있는 나노소포체를 개발했다. 동물실험에서는 쥐에게 정맥주사된 나노소포체가 심근경색 부위로 효과적으로 전달되고, 대식세포에만 특이적으로 다량 유입된 것을 확인했다. 그 결과, 좌심실의 수축력을 나타내는 지표인 '좌심실 박출률(LVEF)'이 4주 동안 대조군에 비해서 1.5배 이상 증가하여 심박출량 개선 효과가 있음을 확인했다. 또한, 심근경색 부위에서 염증 완화 효과와 함께 심근경색 부위의 섬유화를 감소시키고 심장 내 혈관 보존율과 심근세포의 생존율이 높아지는 등 심장 기능이 향상됐다. KIST 정윤기 박사는 “세포자살이 유도된 세포로부터 생산한 나노소포체를 이용해 심근경색 질환 치료에 적용한 최초 연구이며, 줄기세포가 아닌 일반 세포를 이용하기 때문에 대량생산이 가능한 장점을 갖고 있다”라며, “향후 가톨릭대 의과대학, 바이오기업과 공동연구를 통해 임상시험 등 치료의 유효성과 안전성 검증 연구를 진행할 계획"이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 이종호) 지원으로 한국연구재단 나노 및 소재기술개발사업(2021M3H4A1A04092878)과 세종과학펠로우십사업(2021R1C1C2010587)의 지원을 통해 수행되었으며, 연구 결과는 재료 분야 국제학술지 ‘Advanced Functional Materials’ (IF:19.0, JCR 분야 상위 4.7%) 6월호에 게재됐다. * Targeted Delivery of Apoptotic Cell-Derived Nanovesicles prevents Cardiac Remodeling and Attenuates Cardiac Function Exacerbation [그림 1] ApoNV-DC의 제작 과정과 이의 심근경색 치료 메커니즘 [그림 2] 심근경색 부위에서 ApoNV의 항섬유화 효과 [그림 3] ApoNV-DC의 정맥주사 4주 이후 심기능 향상 효과. 심장 비대 감소 및 심박출량 등의 심기능 지표 향상 ○ 논문명: Targeted Delivery of Apoptotic Cell-Derived Nanovesicles prevents Cardiac Remodeling and Attenuates Cardiac Function Exacerbation ○ 학술지:Advanced Functional Materials ○ 게재일: 2023.06.02. ○ DOI: https://doi.org/10.1002/adfm.202210864 ○ 논문저자 - 이주로 박사후연구원(제1저자/하버드 의과대학), - 박훈준 교수(제1저자/카톨릭대학교 의과대학) - 정윤기 책임연구원(교신저자/KIST 생체재료연구센터) - 박봉우 박사(교신저자/카톨릭대학교 의과대학)
수소 가스 폭발 위험, 색 변화로 사전 감지
- 팔라듐의 수소 감응성을 이용하여 실시간 색상 변화가 가능한 유리창 개발 - 수소 플랜트, 연료전지 가스 연결부 등 협소 설비 내 수소 가스 누출 지점 쉽고 빠르게 확인 친환경 에너지원으로 주목받는 수소 가스는 산소와 만나면 폭발할 위험이 크다. 따라서 수소 경제의 모든 단계에서 가스 누출을 감지하기 위한 센서 기술이 꼭 필요한데, 현재 주로 쓰이는 저항식 및 전기화학식 수소 센서는 큰 부피, 많은 전력 소모, 높은 생산 단가로 인해 수소 플랜트나 잠수함, 연료전지 시스템 등 협소한 설비에는 적용하기 어렵다. 또한 누출된 수소 가스의 정량적인 농도 정보만을 제공하기 때문에 가스가 누출된 지점을 빠르게 확인하는 것은 불가능하다. 한국과학기술연구원(KIST, 원장 윤석진)은 상온‧상압‧고습의 실제 환경에서 수소 가스가 누출된 지점을 색상 변화를 통해 쉽고 빠르게, 육안으로 확인할 수 있는 가스 감응형 변색 기술을 개발했다고 밝혔다. 이번 연구성과는 KIST 센서시스템연구센터 박유신 박사팀과 고려대학교 바이오의공학과 유용상 교수팀의 공동연구를 통해 이뤄졌다. 팔라듐은 수소 흡수 특성이 우수해 수소 감지 센서 소재로 이용된다. 기존 센서는 수소를 흡수한 팔라듐의 전기적, 화학적 특성 변화를 정량적으로 검지하는 방식인 데 반해, KIST-고려대 공동연구팀은 대기 중에 항상 존재하는 산소와 누출된 수소의 자발적인 촉매 반응과 이에 수반되는 물 생성 현상을 이용했다. 그런데 팔라듐 표면에 흡착된 수소와 산소의 촉매 반응으로 생성된 물 분자는 바로 증발하기 때문에 육안으로 관측하기 어렵다는 문제가 있었다. 연구팀은 수소와 산소만 선택적으로 투과할 수 있는 고분자 박막의 위아래를 팔라듐 박막으로 감싸는 금속-고분자-금속 적층형 센서 구조를 개발해 박막 위에 나노미터 두께의 물 층이 형성되도록 했다. 이렇게 형성된 물 층은 센서의 빛 공명과 반사에 영향을 주어 육안으로 관찰되는 색상의 변화를 유도한다. 반대로 수소 가스 누출이 없다면 물이 서서히 증발해 처음 색상으로 돌아온다. 연구팀은 이와 같은 과정을 통해 염료 없이도 나노구조의 규격을 조절해 원하는 색상을 쉽고, 저렴하게 구현할 수 있었다. 이 기술은 유리, 플라스틱 등 투명 기판에도 적용할 수 있을 뿐 아니라 소모 전력 없이 작은 크기로 제작할 수 있어 수소 플랜트, 자동차 연료전지 시스템 등 좁고 복잡한 수소 배관이 지나가는 곳 어디든지 쉽게 부착해 적용할 수 있다. 또한, 수소 가스를 선택적으로 흡수하고 배출하는 고분자 박막을 활용했기 때문에 온도와 습도 등 주변 환경의 변화에 영향을 받지 않고 동작할 수 있어 상용화 가능성이 높다. 고려대학교 유용상 교수는 “가시화 센서가 보급되면 수소 폭발 사고를 예방할 수 있어 수소 플랜트나 연료전지 가스 연결부를 제작하는 기업의 수요가 있을 것으로 기대한다”고 말했다. KIST 박유신 박사는 “이번 연구성과는 기존 저항식 및 전기화학식 수소 센서 기술의 난제인 수소 흡수에 의한 선명한 색상 변화를 구현할 수 있는 새로운 기술”이라며, “후속 연구에서는 더 낮은 수소 농도에서도 빠르게 동작하는 고성능 변색 센서 기술을 확보하는 것이 목표”라고 밝혔다. 본 연구는 KIST 주요사업(K-DARPA 파급혁신형사업), 과학기술정보통신부(장관 이종호)의 한국연구재단 중견연구자지원사업(No. 2021R1A2C2009236)과 고려대학교 교내과제 지원을 받아 수행되었으며, 연구결과는 광학분야 최상위 세계적 학술지 ‘포토닉스(PhotoniX)’ (IF 16.500, JCR 4.5%)에 6월 26일 온라인 게재되었다. * 논문명 Naked-eye observation of water-forming reaction on palladium etalon: transduction of gas-matter reaction into light-matter interaction [그림 1] 수소 감응형 변색 센서 구조 모식도(왼쪽), 센서 소재와 구조에 변화를 주어 수소 흡수 시 다양한 색상을 가지도록 제작한 꽃무늬(오른쪽) [그림 2] 수소와 산소의 흡수 비율에 의존하여 생성되는 물 층(layer)의 두께가 제어되며 이에 따른 색상 변화 거동 [그림 3] 제작한 prototype 윈도우를 이용한 상온, 상압, 고습 환경에서 수소 가스 누출 테스트 시연 사진 ○ 논문명: Naked-eye observation of water-forming reaction on palladium etalon: transduction of gas-matter reaction into light-matter interaction ○ 학술지:포토닉스(PhotoniX) ○ 게재일: 2023.06.26. ○ DOI: https://doi.org/10.1186/s43074-023-00097-1 ○ 논문저자 - 이종수 박사과정(제1저자/KIST 센서시스템연구센터), - 박유신 선임연구원(교신저자/KIST 센서시스템연구센터) - 유용상 교수(교신저자/고려대학교 바이오의공학과)
수소 가스 폭발 위험, 색 변화로 사전 감지
- 팔라듐의 수소 감응성을 이용하여 실시간 색상 변화가 가능한 유리창 개발 - 수소 플랜트, 연료전지 가스 연결부 등 협소 설비 내 수소 가스 누출 지점 쉽고 빠르게 확인 친환경 에너지원으로 주목받는 수소 가스는 산소와 만나면 폭발할 위험이 크다. 따라서 수소 경제의 모든 단계에서 가스 누출을 감지하기 위한 센서 기술이 꼭 필요한데, 현재 주로 쓰이는 저항식 및 전기화학식 수소 센서는 큰 부피, 많은 전력 소모, 높은 생산 단가로 인해 수소 플랜트나 잠수함, 연료전지 시스템 등 협소한 설비에는 적용하기 어렵다. 또한 누출된 수소 가스의 정량적인 농도 정보만을 제공하기 때문에 가스가 누출된 지점을 빠르게 확인하는 것은 불가능하다. 한국과학기술연구원(KIST, 원장 윤석진)은 상온‧상압‧고습의 실제 환경에서 수소 가스가 누출된 지점을 색상 변화를 통해 쉽고 빠르게, 육안으로 확인할 수 있는 가스 감응형 변색 기술을 개발했다고 밝혔다. 이번 연구성과는 KIST 센서시스템연구센터 박유신 박사팀과 고려대학교 바이오의공학과 유용상 교수팀의 공동연구를 통해 이뤄졌다. 팔라듐은 수소 흡수 특성이 우수해 수소 감지 센서 소재로 이용된다. 기존 센서는 수소를 흡수한 팔라듐의 전기적, 화학적 특성 변화를 정량적으로 검지하는 방식인 데 반해, KIST-고려대 공동연구팀은 대기 중에 항상 존재하는 산소와 누출된 수소의 자발적인 촉매 반응과 이에 수반되는 물 생성 현상을 이용했다. 그런데 팔라듐 표면에 흡착된 수소와 산소의 촉매 반응으로 생성된 물 분자는 바로 증발하기 때문에 육안으로 관측하기 어렵다는 문제가 있었다. 연구팀은 수소와 산소만 선택적으로 투과할 수 있는 고분자 박막의 위아래를 팔라듐 박막으로 감싸는 금속-고분자-금속 적층형 센서 구조를 개발해 박막 위에 나노미터 두께의 물 층이 형성되도록 했다. 이렇게 형성된 물 층은 센서의 빛 공명과 반사에 영향을 주어 육안으로 관찰되는 색상의 변화를 유도한다. 반대로 수소 가스 누출이 없다면 물이 서서히 증발해 처음 색상으로 돌아온다. 연구팀은 이와 같은 과정을 통해 염료 없이도 나노구조의 규격을 조절해 원하는 색상을 쉽고, 저렴하게 구현할 수 있었다. 이 기술은 유리, 플라스틱 등 투명 기판에도 적용할 수 있을 뿐 아니라 소모 전력 없이 작은 크기로 제작할 수 있어 수소 플랜트, 자동차 연료전지 시스템 등 좁고 복잡한 수소 배관이 지나가는 곳 어디든지 쉽게 부착해 적용할 수 있다. 또한, 수소 가스를 선택적으로 흡수하고 배출하는 고분자 박막을 활용했기 때문에 온도와 습도 등 주변 환경의 변화에 영향을 받지 않고 동작할 수 있어 상용화 가능성이 높다. 고려대학교 유용상 교수는 “가시화 센서가 보급되면 수소 폭발 사고를 예방할 수 있어 수소 플랜트나 연료전지 가스 연결부를 제작하는 기업의 수요가 있을 것으로 기대한다”고 말했다. KIST 박유신 박사는 “이번 연구성과는 기존 저항식 및 전기화학식 수소 센서 기술의 난제인 수소 흡수에 의한 선명한 색상 변화를 구현할 수 있는 새로운 기술”이라며, “후속 연구에서는 더 낮은 수소 농도에서도 빠르게 동작하는 고성능 변색 센서 기술을 확보하는 것이 목표”라고 밝혔다. 본 연구는 KIST 주요사업(K-DARPA 파급혁신형사업), 과학기술정보통신부(장관 이종호)의 한국연구재단 중견연구자지원사업(No. 2021R1A2C2009236)과 고려대학교 교내과제 지원을 받아 수행되었으며, 연구결과는 광학분야 최상위 세계적 학술지 ‘포토닉스(PhotoniX)’ (IF 16.500, JCR 4.5%)에 6월 26일 온라인 게재되었다. * 논문명 Naked-eye observation of water-forming reaction on palladium etalon: transduction of gas-matter reaction into light-matter interaction [그림 1] 수소 감응형 변색 센서 구조 모식도(왼쪽), 센서 소재와 구조에 변화를 주어 수소 흡수 시 다양한 색상을 가지도록 제작한 꽃무늬(오른쪽) [그림 2] 수소와 산소의 흡수 비율에 의존하여 생성되는 물 층(layer)의 두께가 제어되며 이에 따른 색상 변화 거동 [그림 3] 제작한 prototype 윈도우를 이용한 상온, 상압, 고습 환경에서 수소 가스 누출 테스트 시연 사진 ○ 논문명: Naked-eye observation of water-forming reaction on palladium etalon: transduction of gas-matter reaction into light-matter interaction ○ 학술지:포토닉스(PhotoniX) ○ 게재일: 2023.06.26. ○ DOI: https://doi.org/10.1186/s43074-023-00097-1 ○ 논문저자 - 이종수 박사과정(제1저자/KIST 센서시스템연구센터), - 박유신 선임연구원(교신저자/KIST 센서시스템연구센터) - 유용상 교수(교신저자/고려대학교 바이오의공학과)
수소 가스 폭발 위험, 색 변화로 사전 감지
- 팔라듐의 수소 감응성을 이용하여 실시간 색상 변화가 가능한 유리창 개발 - 수소 플랜트, 연료전지 가스 연결부 등 협소 설비 내 수소 가스 누출 지점 쉽고 빠르게 확인 친환경 에너지원으로 주목받는 수소 가스는 산소와 만나면 폭발할 위험이 크다. 따라서 수소 경제의 모든 단계에서 가스 누출을 감지하기 위한 센서 기술이 꼭 필요한데, 현재 주로 쓰이는 저항식 및 전기화학식 수소 센서는 큰 부피, 많은 전력 소모, 높은 생산 단가로 인해 수소 플랜트나 잠수함, 연료전지 시스템 등 협소한 설비에는 적용하기 어렵다. 또한 누출된 수소 가스의 정량적인 농도 정보만을 제공하기 때문에 가스가 누출된 지점을 빠르게 확인하는 것은 불가능하다. 한국과학기술연구원(KIST, 원장 윤석진)은 상온‧상압‧고습의 실제 환경에서 수소 가스가 누출된 지점을 색상 변화를 통해 쉽고 빠르게, 육안으로 확인할 수 있는 가스 감응형 변색 기술을 개발했다고 밝혔다. 이번 연구성과는 KIST 센서시스템연구센터 박유신 박사팀과 고려대학교 바이오의공학과 유용상 교수팀의 공동연구를 통해 이뤄졌다. 팔라듐은 수소 흡수 특성이 우수해 수소 감지 센서 소재로 이용된다. 기존 센서는 수소를 흡수한 팔라듐의 전기적, 화학적 특성 변화를 정량적으로 검지하는 방식인 데 반해, KIST-고려대 공동연구팀은 대기 중에 항상 존재하는 산소와 누출된 수소의 자발적인 촉매 반응과 이에 수반되는 물 생성 현상을 이용했다. 그런데 팔라듐 표면에 흡착된 수소와 산소의 촉매 반응으로 생성된 물 분자는 바로 증발하기 때문에 육안으로 관측하기 어렵다는 문제가 있었다. 연구팀은 수소와 산소만 선택적으로 투과할 수 있는 고분자 박막의 위아래를 팔라듐 박막으로 감싸는 금속-고분자-금속 적층형 센서 구조를 개발해 박막 위에 나노미터 두께의 물 층이 형성되도록 했다. 이렇게 형성된 물 층은 센서의 빛 공명과 반사에 영향을 주어 육안으로 관찰되는 색상의 변화를 유도한다. 반대로 수소 가스 누출이 없다면 물이 서서히 증발해 처음 색상으로 돌아온다. 연구팀은 이와 같은 과정을 통해 염료 없이도 나노구조의 규격을 조절해 원하는 색상을 쉽고, 저렴하게 구현할 수 있었다. 이 기술은 유리, 플라스틱 등 투명 기판에도 적용할 수 있을 뿐 아니라 소모 전력 없이 작은 크기로 제작할 수 있어 수소 플랜트, 자동차 연료전지 시스템 등 좁고 복잡한 수소 배관이 지나가는 곳 어디든지 쉽게 부착해 적용할 수 있다. 또한, 수소 가스를 선택적으로 흡수하고 배출하는 고분자 박막을 활용했기 때문에 온도와 습도 등 주변 환경의 변화에 영향을 받지 않고 동작할 수 있어 상용화 가능성이 높다. 고려대학교 유용상 교수는 “가시화 센서가 보급되면 수소 폭발 사고를 예방할 수 있어 수소 플랜트나 연료전지 가스 연결부를 제작하는 기업의 수요가 있을 것으로 기대한다”고 말했다. KIST 박유신 박사는 “이번 연구성과는 기존 저항식 및 전기화학식 수소 센서 기술의 난제인 수소 흡수에 의한 선명한 색상 변화를 구현할 수 있는 새로운 기술”이라며, “후속 연구에서는 더 낮은 수소 농도에서도 빠르게 동작하는 고성능 변색 센서 기술을 확보하는 것이 목표”라고 밝혔다. 본 연구는 KIST 주요사업(K-DARPA 파급혁신형사업), 과학기술정보통신부(장관 이종호)의 한국연구재단 중견연구자지원사업(No. 2021R1A2C2009236)과 고려대학교 교내과제 지원을 받아 수행되었으며, 연구결과는 광학분야 최상위 세계적 학술지 ‘포토닉스(PhotoniX)’ (IF 16.500, JCR 4.5%)에 6월 26일 온라인 게재되었다. * 논문명 Naked-eye observation of water-forming reaction on palladium etalon: transduction of gas-matter reaction into light-matter interaction [그림 1] 수소 감응형 변색 센서 구조 모식도(왼쪽), 센서 소재와 구조에 변화를 주어 수소 흡수 시 다양한 색상을 가지도록 제작한 꽃무늬(오른쪽) [그림 2] 수소와 산소의 흡수 비율에 의존하여 생성되는 물 층(layer)의 두께가 제어되며 이에 따른 색상 변화 거동 [그림 3] 제작한 prototype 윈도우를 이용한 상온, 상압, 고습 환경에서 수소 가스 누출 테스트 시연 사진 ○ 논문명: Naked-eye observation of water-forming reaction on palladium etalon: transduction of gas-matter reaction into light-matter interaction ○ 학술지:포토닉스(PhotoniX) ○ 게재일: 2023.06.26. ○ DOI: https://doi.org/10.1186/s43074-023-00097-1 ○ 논문저자 - 이종수 박사과정(제1저자/KIST 센서시스템연구센터), - 박유신 선임연구원(교신저자/KIST 센서시스템연구센터) - 유용상 교수(교신저자/고려대학교 바이오의공학과)
수소 가스 폭발 위험, 색 변화로 사전 감지
- 팔라듐의 수소 감응성을 이용하여 실시간 색상 변화가 가능한 유리창 개발 - 수소 플랜트, 연료전지 가스 연결부 등 협소 설비 내 수소 가스 누출 지점 쉽고 빠르게 확인 친환경 에너지원으로 주목받는 수소 가스는 산소와 만나면 폭발할 위험이 크다. 따라서 수소 경제의 모든 단계에서 가스 누출을 감지하기 위한 센서 기술이 꼭 필요한데, 현재 주로 쓰이는 저항식 및 전기화학식 수소 센서는 큰 부피, 많은 전력 소모, 높은 생산 단가로 인해 수소 플랜트나 잠수함, 연료전지 시스템 등 협소한 설비에는 적용하기 어렵다. 또한 누출된 수소 가스의 정량적인 농도 정보만을 제공하기 때문에 가스가 누출된 지점을 빠르게 확인하는 것은 불가능하다. 한국과학기술연구원(KIST, 원장 윤석진)은 상온‧상압‧고습의 실제 환경에서 수소 가스가 누출된 지점을 색상 변화를 통해 쉽고 빠르게, 육안으로 확인할 수 있는 가스 감응형 변색 기술을 개발했다고 밝혔다. 이번 연구성과는 KIST 센서시스템연구센터 박유신 박사팀과 고려대학교 바이오의공학과 유용상 교수팀의 공동연구를 통해 이뤄졌다. 팔라듐은 수소 흡수 특성이 우수해 수소 감지 센서 소재로 이용된다. 기존 센서는 수소를 흡수한 팔라듐의 전기적, 화학적 특성 변화를 정량적으로 검지하는 방식인 데 반해, KIST-고려대 공동연구팀은 대기 중에 항상 존재하는 산소와 누출된 수소의 자발적인 촉매 반응과 이에 수반되는 물 생성 현상을 이용했다. 그런데 팔라듐 표면에 흡착된 수소와 산소의 촉매 반응으로 생성된 물 분자는 바로 증발하기 때문에 육안으로 관측하기 어렵다는 문제가 있었다. 연구팀은 수소와 산소만 선택적으로 투과할 수 있는 고분자 박막의 위아래를 팔라듐 박막으로 감싸는 금속-고분자-금속 적층형 센서 구조를 개발해 박막 위에 나노미터 두께의 물 층이 형성되도록 했다. 이렇게 형성된 물 층은 센서의 빛 공명과 반사에 영향을 주어 육안으로 관찰되는 색상의 변화를 유도한다. 반대로 수소 가스 누출이 없다면 물이 서서히 증발해 처음 색상으로 돌아온다. 연구팀은 이와 같은 과정을 통해 염료 없이도 나노구조의 규격을 조절해 원하는 색상을 쉽고, 저렴하게 구현할 수 있었다. 이 기술은 유리, 플라스틱 등 투명 기판에도 적용할 수 있을 뿐 아니라 소모 전력 없이 작은 크기로 제작할 수 있어 수소 플랜트, 자동차 연료전지 시스템 등 좁고 복잡한 수소 배관이 지나가는 곳 어디든지 쉽게 부착해 적용할 수 있다. 또한, 수소 가스를 선택적으로 흡수하고 배출하는 고분자 박막을 활용했기 때문에 온도와 습도 등 주변 환경의 변화에 영향을 받지 않고 동작할 수 있어 상용화 가능성이 높다. 고려대학교 유용상 교수는 “가시화 센서가 보급되면 수소 폭발 사고를 예방할 수 있어 수소 플랜트나 연료전지 가스 연결부를 제작하는 기업의 수요가 있을 것으로 기대한다”고 말했다. KIST 박유신 박사는 “이번 연구성과는 기존 저항식 및 전기화학식 수소 센서 기술의 난제인 수소 흡수에 의한 선명한 색상 변화를 구현할 수 있는 새로운 기술”이라며, “후속 연구에서는 더 낮은 수소 농도에서도 빠르게 동작하는 고성능 변색 센서 기술을 확보하는 것이 목표”라고 밝혔다. 본 연구는 KIST 주요사업(K-DARPA 파급혁신형사업), 과학기술정보통신부(장관 이종호)의 한국연구재단 중견연구자지원사업(No. 2021R1A2C2009236)과 고려대학교 교내과제 지원을 받아 수행되었으며, 연구결과는 광학분야 최상위 세계적 학술지 ‘포토닉스(PhotoniX)’ (IF 16.500, JCR 4.5%)에 6월 26일 온라인 게재되었다. * 논문명 Naked-eye observation of water-forming reaction on palladium etalon: transduction of gas-matter reaction into light-matter interaction [그림 1] 수소 감응형 변색 센서 구조 모식도(왼쪽), 센서 소재와 구조에 변화를 주어 수소 흡수 시 다양한 색상을 가지도록 제작한 꽃무늬(오른쪽) [그림 2] 수소와 산소의 흡수 비율에 의존하여 생성되는 물 층(layer)의 두께가 제어되며 이에 따른 색상 변화 거동 [그림 3] 제작한 prototype 윈도우를 이용한 상온, 상압, 고습 환경에서 수소 가스 누출 테스트 시연 사진 ○ 논문명: Naked-eye observation of water-forming reaction on palladium etalon: transduction of gas-matter reaction into light-matter interaction ○ 학술지:포토닉스(PhotoniX) ○ 게재일: 2023.06.26. ○ DOI: https://doi.org/10.1186/s43074-023-00097-1 ○ 논문저자 - 이종수 박사과정(제1저자/KIST 센서시스템연구센터), - 박유신 선임연구원(교신저자/KIST 센서시스템연구센터) - 유용상 교수(교신저자/고려대학교 바이오의공학과)
수소 가스 폭발 위험, 색 변화로 사전 감지
- 팔라듐의 수소 감응성을 이용하여 실시간 색상 변화가 가능한 유리창 개발 - 수소 플랜트, 연료전지 가스 연결부 등 협소 설비 내 수소 가스 누출 지점 쉽고 빠르게 확인 친환경 에너지원으로 주목받는 수소 가스는 산소와 만나면 폭발할 위험이 크다. 따라서 수소 경제의 모든 단계에서 가스 누출을 감지하기 위한 센서 기술이 꼭 필요한데, 현재 주로 쓰이는 저항식 및 전기화학식 수소 센서는 큰 부피, 많은 전력 소모, 높은 생산 단가로 인해 수소 플랜트나 잠수함, 연료전지 시스템 등 협소한 설비에는 적용하기 어렵다. 또한 누출된 수소 가스의 정량적인 농도 정보만을 제공하기 때문에 가스가 누출된 지점을 빠르게 확인하는 것은 불가능하다. 한국과학기술연구원(KIST, 원장 윤석진)은 상온‧상압‧고습의 실제 환경에서 수소 가스가 누출된 지점을 색상 변화를 통해 쉽고 빠르게, 육안으로 확인할 수 있는 가스 감응형 변색 기술을 개발했다고 밝혔다. 이번 연구성과는 KIST 센서시스템연구센터 박유신 박사팀과 고려대학교 바이오의공학과 유용상 교수팀의 공동연구를 통해 이뤄졌다. 팔라듐은 수소 흡수 특성이 우수해 수소 감지 센서 소재로 이용된다. 기존 센서는 수소를 흡수한 팔라듐의 전기적, 화학적 특성 변화를 정량적으로 검지하는 방식인 데 반해, KIST-고려대 공동연구팀은 대기 중에 항상 존재하는 산소와 누출된 수소의 자발적인 촉매 반응과 이에 수반되는 물 생성 현상을 이용했다. 그런데 팔라듐 표면에 흡착된 수소와 산소의 촉매 반응으로 생성된 물 분자는 바로 증발하기 때문에 육안으로 관측하기 어렵다는 문제가 있었다. 연구팀은 수소와 산소만 선택적으로 투과할 수 있는 고분자 박막의 위아래를 팔라듐 박막으로 감싸는 금속-고분자-금속 적층형 센서 구조를 개발해 박막 위에 나노미터 두께의 물 층이 형성되도록 했다. 이렇게 형성된 물 층은 센서의 빛 공명과 반사에 영향을 주어 육안으로 관찰되는 색상의 변화를 유도한다. 반대로 수소 가스 누출이 없다면 물이 서서히 증발해 처음 색상으로 돌아온다. 연구팀은 이와 같은 과정을 통해 염료 없이도 나노구조의 규격을 조절해 원하는 색상을 쉽고, 저렴하게 구현할 수 있었다. 이 기술은 유리, 플라스틱 등 투명 기판에도 적용할 수 있을 뿐 아니라 소모 전력 없이 작은 크기로 제작할 수 있어 수소 플랜트, 자동차 연료전지 시스템 등 좁고 복잡한 수소 배관이 지나가는 곳 어디든지 쉽게 부착해 적용할 수 있다. 또한, 수소 가스를 선택적으로 흡수하고 배출하는 고분자 박막을 활용했기 때문에 온도와 습도 등 주변 환경의 변화에 영향을 받지 않고 동작할 수 있어 상용화 가능성이 높다. 고려대학교 유용상 교수는 “가시화 센서가 보급되면 수소 폭발 사고를 예방할 수 있어 수소 플랜트나 연료전지 가스 연결부를 제작하는 기업의 수요가 있을 것으로 기대한다”고 말했다. KIST 박유신 박사는 “이번 연구성과는 기존 저항식 및 전기화학식 수소 센서 기술의 난제인 수소 흡수에 의한 선명한 색상 변화를 구현할 수 있는 새로운 기술”이라며, “후속 연구에서는 더 낮은 수소 농도에서도 빠르게 동작하는 고성능 변색 센서 기술을 확보하는 것이 목표”라고 밝혔다. 본 연구는 KIST 주요사업(K-DARPA 파급혁신형사업), 과학기술정보통신부(장관 이종호)의 한국연구재단 중견연구자지원사업(No. 2021R1A2C2009236)과 고려대학교 교내과제 지원을 받아 수행되었으며, 연구결과는 광학분야 최상위 세계적 학술지 ‘포토닉스(PhotoniX)’ (IF 16.500, JCR 4.5%)에 6월 26일 온라인 게재되었다. * 논문명 Naked-eye observation of water-forming reaction on palladium etalon: transduction of gas-matter reaction into light-matter interaction [그림 1] 수소 감응형 변색 센서 구조 모식도(왼쪽), 센서 소재와 구조에 변화를 주어 수소 흡수 시 다양한 색상을 가지도록 제작한 꽃무늬(오른쪽) [그림 2] 수소와 산소의 흡수 비율에 의존하여 생성되는 물 층(layer)의 두께가 제어되며 이에 따른 색상 변화 거동 [그림 3] 제작한 prototype 윈도우를 이용한 상온, 상압, 고습 환경에서 수소 가스 누출 테스트 시연 사진 ○ 논문명: Naked-eye observation of water-forming reaction on palladium etalon: transduction of gas-matter reaction into light-matter interaction ○ 학술지:포토닉스(PhotoniX) ○ 게재일: 2023.06.26. ○ DOI: https://doi.org/10.1186/s43074-023-00097-1 ○ 논문저자 - 이종수 박사과정(제1저자/KIST 센서시스템연구센터), - 박유신 선임연구원(교신저자/KIST 센서시스템연구센터) - 유용상 교수(교신저자/고려대학교 바이오의공학과)
수소 가스 폭발 위험, 색 변화로 사전 감지
- 팔라듐의 수소 감응성을 이용하여 실시간 색상 변화가 가능한 유리창 개발 - 수소 플랜트, 연료전지 가스 연결부 등 협소 설비 내 수소 가스 누출 지점 쉽고 빠르게 확인 친환경 에너지원으로 주목받는 수소 가스는 산소와 만나면 폭발할 위험이 크다. 따라서 수소 경제의 모든 단계에서 가스 누출을 감지하기 위한 센서 기술이 꼭 필요한데, 현재 주로 쓰이는 저항식 및 전기화학식 수소 센서는 큰 부피, 많은 전력 소모, 높은 생산 단가로 인해 수소 플랜트나 잠수함, 연료전지 시스템 등 협소한 설비에는 적용하기 어렵다. 또한 누출된 수소 가스의 정량적인 농도 정보만을 제공하기 때문에 가스가 누출된 지점을 빠르게 확인하는 것은 불가능하다. 한국과학기술연구원(KIST, 원장 윤석진)은 상온‧상압‧고습의 실제 환경에서 수소 가스가 누출된 지점을 색상 변화를 통해 쉽고 빠르게, 육안으로 확인할 수 있는 가스 감응형 변색 기술을 개발했다고 밝혔다. 이번 연구성과는 KIST 센서시스템연구센터 박유신 박사팀과 고려대학교 바이오의공학과 유용상 교수팀의 공동연구를 통해 이뤄졌다. 팔라듐은 수소 흡수 특성이 우수해 수소 감지 센서 소재로 이용된다. 기존 센서는 수소를 흡수한 팔라듐의 전기적, 화학적 특성 변화를 정량적으로 검지하는 방식인 데 반해, KIST-고려대 공동연구팀은 대기 중에 항상 존재하는 산소와 누출된 수소의 자발적인 촉매 반응과 이에 수반되는 물 생성 현상을 이용했다. 그런데 팔라듐 표면에 흡착된 수소와 산소의 촉매 반응으로 생성된 물 분자는 바로 증발하기 때문에 육안으로 관측하기 어렵다는 문제가 있었다. 연구팀은 수소와 산소만 선택적으로 투과할 수 있는 고분자 박막의 위아래를 팔라듐 박막으로 감싸는 금속-고분자-금속 적층형 센서 구조를 개발해 박막 위에 나노미터 두께의 물 층이 형성되도록 했다. 이렇게 형성된 물 층은 센서의 빛 공명과 반사에 영향을 주어 육안으로 관찰되는 색상의 변화를 유도한다. 반대로 수소 가스 누출이 없다면 물이 서서히 증발해 처음 색상으로 돌아온다. 연구팀은 이와 같은 과정을 통해 염료 없이도 나노구조의 규격을 조절해 원하는 색상을 쉽고, 저렴하게 구현할 수 있었다. 이 기술은 유리, 플라스틱 등 투명 기판에도 적용할 수 있을 뿐 아니라 소모 전력 없이 작은 크기로 제작할 수 있어 수소 플랜트, 자동차 연료전지 시스템 등 좁고 복잡한 수소 배관이 지나가는 곳 어디든지 쉽게 부착해 적용할 수 있다. 또한, 수소 가스를 선택적으로 흡수하고 배출하는 고분자 박막을 활용했기 때문에 온도와 습도 등 주변 환경의 변화에 영향을 받지 않고 동작할 수 있어 상용화 가능성이 높다. 고려대학교 유용상 교수는 “가시화 센서가 보급되면 수소 폭발 사고를 예방할 수 있어 수소 플랜트나 연료전지 가스 연결부를 제작하는 기업의 수요가 있을 것으로 기대한다”고 말했다. KIST 박유신 박사는 “이번 연구성과는 기존 저항식 및 전기화학식 수소 센서 기술의 난제인 수소 흡수에 의한 선명한 색상 변화를 구현할 수 있는 새로운 기술”이라며, “후속 연구에서는 더 낮은 수소 농도에서도 빠르게 동작하는 고성능 변색 센서 기술을 확보하는 것이 목표”라고 밝혔다. 본 연구는 KIST 주요사업(K-DARPA 파급혁신형사업), 과학기술정보통신부(장관 이종호)의 한국연구재단 중견연구자지원사업(No. 2021R1A2C2009236)과 고려대학교 교내과제 지원을 받아 수행되었으며, 연구결과는 광학분야 최상위 세계적 학술지 ‘포토닉스(PhotoniX)’ (IF 16.500, JCR 4.5%)에 6월 26일 온라인 게재되었다. * 논문명 Naked-eye observation of water-forming reaction on palladium etalon: transduction of gas-matter reaction into light-matter interaction [그림 1] 수소 감응형 변색 센서 구조 모식도(왼쪽), 센서 소재와 구조에 변화를 주어 수소 흡수 시 다양한 색상을 가지도록 제작한 꽃무늬(오른쪽) [그림 2] 수소와 산소의 흡수 비율에 의존하여 생성되는 물 층(layer)의 두께가 제어되며 이에 따른 색상 변화 거동 [그림 3] 제작한 prototype 윈도우를 이용한 상온, 상압, 고습 환경에서 수소 가스 누출 테스트 시연 사진 ○ 논문명: Naked-eye observation of water-forming reaction on palladium etalon: transduction of gas-matter reaction into light-matter interaction ○ 학술지:포토닉스(PhotoniX) ○ 게재일: 2023.06.26. ○ DOI: https://doi.org/10.1186/s43074-023-00097-1 ○ 논문저자 - 이종수 박사과정(제1저자/KIST 센서시스템연구센터), - 박유신 선임연구원(교신저자/KIST 센서시스템연구센터) - 유용상 교수(교신저자/고려대학교 바이오의공학과)