검색결과
게시물 키워드"한국과학기술연구원"에 대한 1258개의 검색결과를 찾았습니다.
사람의 코를 더 닮은 인공후각 시냅스 전자소자 개발
- 단일 전자소자로 추가 센서, 메모리 없이 외부 기체 자극을 감지, 기억 - 기존 가스 센서의 한계 극복해 전자 코 및 휴머노이드 분야 활용 기대 최근 인공지능과 휴머노이드가 대두되면서 인간처럼 다양한 감각을 감지하기 위한 전자소자 연구가 활발하다. 인공후각도 그 가운데 하나인데, 산업 현장에서 가스 유출을 감지하고, 세균과 바이러스 같은 유해 요소를 단시간에 찾아내는 데 쓰일 수 있다. 하지만 물리적인 자극을 감지하는 시각, 청각, 촉각에 비해, 화학적인 자극을 감지해야 하는 후각은 정보처리 과정이 까다로워 지금까지 발전이 더뎠다. 한국과학기술연구원(KIST, 원장 윤석진)은 첨단소재기술연구본부 강종윤 본부장, 전자재료연구센터 윤정호 박사팀이 뉴로모픽 반도체 전자소자인 멤리스터 소자를 이용해 인간의 후각 신경 시스템과 유사하게 외부 기체 자극을 손쉽게 전기적인 신호로 변환하고 처리하는 전자소자를 개발했다고 밝혔다. 연구팀이 개발한 전자소자는 단일소자에서 외부 기체 자극을 전기적인 신호로 변환하고 이력을 저장할 수도 있다. 인간의 후각 시냅스는 외부 자극에 대한 정보를 변형해 다음 뉴런에게 전달한다. 이때 시냅스가 자극을 변형하는 정도를 ‘가중치’라 한다. 이를 모방하기 위해서는 외부 기체 자극에 대한 정보를 아날로그 방식으로 제어할 수 있어야 하는데, 지금까지 인공후각 분야에서 주로 연구하고 있는 산화물 반도체형 가스 센서로는 불가능했다. KIST 연구진은 멤리스터 소자에 산소 공공이 발생함에 따라 전기저항이 낮아지는 현상을 통해 인간의 후각 시냅스를 모사했다. 후각 시냅스가 외부 기체의 종류(산화, 환원성 기체)에 따라 반응이 달라지는 것을 이용해 산소 공공의 개수를 미세하게 조절함으로써 점진적으로 소자의 전도도를 변환시켜 인공후각 시냅스의 아날로그 특성을 모방한 것이다. 연구진은 개발한 인공후각 시냅스 소자를 어레이(array) 형태로 구성했을 때 가스 누출 지점으로부터의 거리에 따라 감응 특성이 달라지는 것을 통해 가스 누출의 특정 패턴을 감지하는 신경망 시뮬레이션을 수행했다. 개발된 뉴로모픽 인공후각 시냅스 소자는 최대 92.76%의 추론 정확도를 확보해 우수한 성능을 입증했다. 또한 동일한 구조를 가지는 인공후각 시냅스 소자와 위험 정도 조절기(risk-level controller)를 직렬로 연결해, 가스의 노출 농도를 모니터링하고 위험한 정도를 넘으면 알려주는 알람 시스템을 개발했다. 기존 반도체식 가스 센서는 자체적으로 위험 가스 노출 이력을 저장할 수 없어 메모리를 추가해야 하기 떄문에 시스템이 복잡하고 추가 전력 소비도 필요하다. 반면 KIST 연구진이 개발한 소자는 자체적으로 위험 가스의 노출 시간에 따른 절대량을 기억할 수 있기 때문에 상시 모니터링이 가능할 뿐만 아니라 에너지 효율도 높은 장점이 있다 KIST 강종윤 박사는 “이번에 개발한 인공후각 시냅스 소자는 산소 공공의 개수를 미세하게 조절하는 새로운 메커니즘으로 단일소자를 이용해 외부 기체 자극을 탐지할 뿐만 아니라 이를 기억할 수도 있어 기존 가스 센서의 한계를 극복하고, 향후 인공후각 분야를 선도할 수 있는 연구성과”라고 밝혔다. 함께 연구를 주도한 윤정호 박사는 “인간의 날숨이나 피부에서 분출되는 화학물질에서 질병 유무를 진단할 수 있는 헬스케어용 센서 등, 실시간으로 인체의 생체신호 데이터를 처리하는 in-sensor 컴퓨팅 연구에 기여할 것”이라고 기대했다. 본 연구는 과학기술정보통신부(장관 이종호) 지원으로 KIST 주요사업과 한국연구재단 우수신진연구사업, 차세대지능형반도체기술개발사업으로 수행되었으며, 연구 결과는 재료과학 분야 국제 학술지 ‘Advanced Materials’ (IF : 32.086, JCR 분야 상위 2.17%) 온라인판에 게재되었고, 표지논문(inside back cover)으로 최신호에 출판되었다. [그림 1] 인공 후각을 모사한 전자소자 기술 [그림 2] 외부 기체 종류에 따른 아날로그 후각 시냅스 특성을 나타내는 전자소자 ○ 논문명: An Artificial Olfactory System Based on a Chemi-Memristive Device ○ 학술지: Advanced Materials ○ 게재일: 2023. 4. 28. ○ DOI: https://doi.org/10.1002/adma.202302219 ○ 논문저자 - 전석엽 학생연구원(제1저자/KIST 첨단소재기술연구본부장실) - 송영근 박사후연구원(제1저자/KIST 전자재료연구센터) - 김지은 학생연구원(공저자/KIST 전자재료연구센터) - 권재욱(공저자/KIST 전자재료연구센터) - 소근호 학생연구원(공저자/KIST 전자재료연구센터) - 권주영 위촉연구원(공저자/KIST 전자재료연구센터) - 강종윤 책임연구원(교신저자/KIST 첨단소재기술연구본부장) - 윤정호 선임연구원(교신저자/KIST 전자재료연구센터)
사람의 코를 더 닮은 인공후각 시냅스 전자소자 개발
- 단일 전자소자로 추가 센서, 메모리 없이 외부 기체 자극을 감지, 기억 - 기존 가스 센서의 한계 극복해 전자 코 및 휴머노이드 분야 활용 기대 최근 인공지능과 휴머노이드가 대두되면서 인간처럼 다양한 감각을 감지하기 위한 전자소자 연구가 활발하다. 인공후각도 그 가운데 하나인데, 산업 현장에서 가스 유출을 감지하고, 세균과 바이러스 같은 유해 요소를 단시간에 찾아내는 데 쓰일 수 있다. 하지만 물리적인 자극을 감지하는 시각, 청각, 촉각에 비해, 화학적인 자극을 감지해야 하는 후각은 정보처리 과정이 까다로워 지금까지 발전이 더뎠다. 한국과학기술연구원(KIST, 원장 윤석진)은 첨단소재기술연구본부 강종윤 본부장, 전자재료연구센터 윤정호 박사팀이 뉴로모픽 반도체 전자소자인 멤리스터 소자를 이용해 인간의 후각 신경 시스템과 유사하게 외부 기체 자극을 손쉽게 전기적인 신호로 변환하고 처리하는 전자소자를 개발했다고 밝혔다. 연구팀이 개발한 전자소자는 단일소자에서 외부 기체 자극을 전기적인 신호로 변환하고 이력을 저장할 수도 있다. 인간의 후각 시냅스는 외부 자극에 대한 정보를 변형해 다음 뉴런에게 전달한다. 이때 시냅스가 자극을 변형하는 정도를 ‘가중치’라 한다. 이를 모방하기 위해서는 외부 기체 자극에 대한 정보를 아날로그 방식으로 제어할 수 있어야 하는데, 지금까지 인공후각 분야에서 주로 연구하고 있는 산화물 반도체형 가스 센서로는 불가능했다. KIST 연구진은 멤리스터 소자에 산소 공공이 발생함에 따라 전기저항이 낮아지는 현상을 통해 인간의 후각 시냅스를 모사했다. 후각 시냅스가 외부 기체의 종류(산화, 환원성 기체)에 따라 반응이 달라지는 것을 이용해 산소 공공의 개수를 미세하게 조절함으로써 점진적으로 소자의 전도도를 변환시켜 인공후각 시냅스의 아날로그 특성을 모방한 것이다. 연구진은 개발한 인공후각 시냅스 소자를 어레이(array) 형태로 구성했을 때 가스 누출 지점으로부터의 거리에 따라 감응 특성이 달라지는 것을 통해 가스 누출의 특정 패턴을 감지하는 신경망 시뮬레이션을 수행했다. 개발된 뉴로모픽 인공후각 시냅스 소자는 최대 92.76%의 추론 정확도를 확보해 우수한 성능을 입증했다. 또한 동일한 구조를 가지는 인공후각 시냅스 소자와 위험 정도 조절기(risk-level controller)를 직렬로 연결해, 가스의 노출 농도를 모니터링하고 위험한 정도를 넘으면 알려주는 알람 시스템을 개발했다. 기존 반도체식 가스 센서는 자체적으로 위험 가스 노출 이력을 저장할 수 없어 메모리를 추가해야 하기 떄문에 시스템이 복잡하고 추가 전력 소비도 필요하다. 반면 KIST 연구진이 개발한 소자는 자체적으로 위험 가스의 노출 시간에 따른 절대량을 기억할 수 있기 때문에 상시 모니터링이 가능할 뿐만 아니라 에너지 효율도 높은 장점이 있다 KIST 강종윤 박사는 “이번에 개발한 인공후각 시냅스 소자는 산소 공공의 개수를 미세하게 조절하는 새로운 메커니즘으로 단일소자를 이용해 외부 기체 자극을 탐지할 뿐만 아니라 이를 기억할 수도 있어 기존 가스 센서의 한계를 극복하고, 향후 인공후각 분야를 선도할 수 있는 연구성과”라고 밝혔다. 함께 연구를 주도한 윤정호 박사는 “인간의 날숨이나 피부에서 분출되는 화학물질에서 질병 유무를 진단할 수 있는 헬스케어용 센서 등, 실시간으로 인체의 생체신호 데이터를 처리하는 in-sensor 컴퓨팅 연구에 기여할 것”이라고 기대했다. 본 연구는 과학기술정보통신부(장관 이종호) 지원으로 KIST 주요사업과 한국연구재단 우수신진연구사업, 차세대지능형반도체기술개발사업으로 수행되었으며, 연구 결과는 재료과학 분야 국제 학술지 ‘Advanced Materials’ (IF : 32.086, JCR 분야 상위 2.17%) 온라인판에 게재되었고, 표지논문(inside back cover)으로 최신호에 출판되었다. [그림 1] 인공 후각을 모사한 전자소자 기술 [그림 2] 외부 기체 종류에 따른 아날로그 후각 시냅스 특성을 나타내는 전자소자 ○ 논문명: An Artificial Olfactory System Based on a Chemi-Memristive Device ○ 학술지: Advanced Materials ○ 게재일: 2023. 4. 28. ○ DOI: https://doi.org/10.1002/adma.202302219 ○ 논문저자 - 전석엽 학생연구원(제1저자/KIST 첨단소재기술연구본부장실) - 송영근 박사후연구원(제1저자/KIST 전자재료연구센터) - 김지은 학생연구원(공저자/KIST 전자재료연구센터) - 권재욱(공저자/KIST 전자재료연구센터) - 소근호 학생연구원(공저자/KIST 전자재료연구센터) - 권주영 위촉연구원(공저자/KIST 전자재료연구센터) - 강종윤 책임연구원(교신저자/KIST 첨단소재기술연구본부장) - 윤정호 선임연구원(교신저자/KIST 전자재료연구센터)
사람의 코를 더 닮은 인공후각 시냅스 전자소자 개발
- 단일 전자소자로 추가 센서, 메모리 없이 외부 기체 자극을 감지, 기억 - 기존 가스 센서의 한계 극복해 전자 코 및 휴머노이드 분야 활용 기대 최근 인공지능과 휴머노이드가 대두되면서 인간처럼 다양한 감각을 감지하기 위한 전자소자 연구가 활발하다. 인공후각도 그 가운데 하나인데, 산업 현장에서 가스 유출을 감지하고, 세균과 바이러스 같은 유해 요소를 단시간에 찾아내는 데 쓰일 수 있다. 하지만 물리적인 자극을 감지하는 시각, 청각, 촉각에 비해, 화학적인 자극을 감지해야 하는 후각은 정보처리 과정이 까다로워 지금까지 발전이 더뎠다. 한국과학기술연구원(KIST, 원장 윤석진)은 첨단소재기술연구본부 강종윤 본부장, 전자재료연구센터 윤정호 박사팀이 뉴로모픽 반도체 전자소자인 멤리스터 소자를 이용해 인간의 후각 신경 시스템과 유사하게 외부 기체 자극을 손쉽게 전기적인 신호로 변환하고 처리하는 전자소자를 개발했다고 밝혔다. 연구팀이 개발한 전자소자는 단일소자에서 외부 기체 자극을 전기적인 신호로 변환하고 이력을 저장할 수도 있다. 인간의 후각 시냅스는 외부 자극에 대한 정보를 변형해 다음 뉴런에게 전달한다. 이때 시냅스가 자극을 변형하는 정도를 ‘가중치’라 한다. 이를 모방하기 위해서는 외부 기체 자극에 대한 정보를 아날로그 방식으로 제어할 수 있어야 하는데, 지금까지 인공후각 분야에서 주로 연구하고 있는 산화물 반도체형 가스 센서로는 불가능했다. KIST 연구진은 멤리스터 소자에 산소 공공이 발생함에 따라 전기저항이 낮아지는 현상을 통해 인간의 후각 시냅스를 모사했다. 후각 시냅스가 외부 기체의 종류(산화, 환원성 기체)에 따라 반응이 달라지는 것을 이용해 산소 공공의 개수를 미세하게 조절함으로써 점진적으로 소자의 전도도를 변환시켜 인공후각 시냅스의 아날로그 특성을 모방한 것이다. 연구진은 개발한 인공후각 시냅스 소자를 어레이(array) 형태로 구성했을 때 가스 누출 지점으로부터의 거리에 따라 감응 특성이 달라지는 것을 통해 가스 누출의 특정 패턴을 감지하는 신경망 시뮬레이션을 수행했다. 개발된 뉴로모픽 인공후각 시냅스 소자는 최대 92.76%의 추론 정확도를 확보해 우수한 성능을 입증했다. 또한 동일한 구조를 가지는 인공후각 시냅스 소자와 위험 정도 조절기(risk-level controller)를 직렬로 연결해, 가스의 노출 농도를 모니터링하고 위험한 정도를 넘으면 알려주는 알람 시스템을 개발했다. 기존 반도체식 가스 센서는 자체적으로 위험 가스 노출 이력을 저장할 수 없어 메모리를 추가해야 하기 떄문에 시스템이 복잡하고 추가 전력 소비도 필요하다. 반면 KIST 연구진이 개발한 소자는 자체적으로 위험 가스의 노출 시간에 따른 절대량을 기억할 수 있기 때문에 상시 모니터링이 가능할 뿐만 아니라 에너지 효율도 높은 장점이 있다 KIST 강종윤 박사는 “이번에 개발한 인공후각 시냅스 소자는 산소 공공의 개수를 미세하게 조절하는 새로운 메커니즘으로 단일소자를 이용해 외부 기체 자극을 탐지할 뿐만 아니라 이를 기억할 수도 있어 기존 가스 센서의 한계를 극복하고, 향후 인공후각 분야를 선도할 수 있는 연구성과”라고 밝혔다. 함께 연구를 주도한 윤정호 박사는 “인간의 날숨이나 피부에서 분출되는 화학물질에서 질병 유무를 진단할 수 있는 헬스케어용 센서 등, 실시간으로 인체의 생체신호 데이터를 처리하는 in-sensor 컴퓨팅 연구에 기여할 것”이라고 기대했다. 본 연구는 과학기술정보통신부(장관 이종호) 지원으로 KIST 주요사업과 한국연구재단 우수신진연구사업, 차세대지능형반도체기술개발사업으로 수행되었으며, 연구 결과는 재료과학 분야 국제 학술지 ‘Advanced Materials’ (IF : 32.086, JCR 분야 상위 2.17%) 온라인판에 게재되었고, 표지논문(inside back cover)으로 최신호에 출판되었다. [그림 1] 인공 후각을 모사한 전자소자 기술 [그림 2] 외부 기체 종류에 따른 아날로그 후각 시냅스 특성을 나타내는 전자소자 ○ 논문명: An Artificial Olfactory System Based on a Chemi-Memristive Device ○ 학술지: Advanced Materials ○ 게재일: 2023. 4. 28. ○ DOI: https://doi.org/10.1002/adma.202302219 ○ 논문저자 - 전석엽 학생연구원(제1저자/KIST 첨단소재기술연구본부장실) - 송영근 박사후연구원(제1저자/KIST 전자재료연구센터) - 김지은 학생연구원(공저자/KIST 전자재료연구센터) - 권재욱(공저자/KIST 전자재료연구센터) - 소근호 학생연구원(공저자/KIST 전자재료연구센터) - 권주영 위촉연구원(공저자/KIST 전자재료연구센터) - 강종윤 책임연구원(교신저자/KIST 첨단소재기술연구본부장) - 윤정호 선임연구원(교신저자/KIST 전자재료연구센터)
사람의 코를 더 닮은 인공후각 시냅스 전자소자 개발
- 단일 전자소자로 추가 센서, 메모리 없이 외부 기체 자극을 감지, 기억 - 기존 가스 센서의 한계 극복해 전자 코 및 휴머노이드 분야 활용 기대 최근 인공지능과 휴머노이드가 대두되면서 인간처럼 다양한 감각을 감지하기 위한 전자소자 연구가 활발하다. 인공후각도 그 가운데 하나인데, 산업 현장에서 가스 유출을 감지하고, 세균과 바이러스 같은 유해 요소를 단시간에 찾아내는 데 쓰일 수 있다. 하지만 물리적인 자극을 감지하는 시각, 청각, 촉각에 비해, 화학적인 자극을 감지해야 하는 후각은 정보처리 과정이 까다로워 지금까지 발전이 더뎠다. 한국과학기술연구원(KIST, 원장 윤석진)은 첨단소재기술연구본부 강종윤 본부장, 전자재료연구센터 윤정호 박사팀이 뉴로모픽 반도체 전자소자인 멤리스터 소자를 이용해 인간의 후각 신경 시스템과 유사하게 외부 기체 자극을 손쉽게 전기적인 신호로 변환하고 처리하는 전자소자를 개발했다고 밝혔다. 연구팀이 개발한 전자소자는 단일소자에서 외부 기체 자극을 전기적인 신호로 변환하고 이력을 저장할 수도 있다. 인간의 후각 시냅스는 외부 자극에 대한 정보를 변형해 다음 뉴런에게 전달한다. 이때 시냅스가 자극을 변형하는 정도를 ‘가중치’라 한다. 이를 모방하기 위해서는 외부 기체 자극에 대한 정보를 아날로그 방식으로 제어할 수 있어야 하는데, 지금까지 인공후각 분야에서 주로 연구하고 있는 산화물 반도체형 가스 센서로는 불가능했다. KIST 연구진은 멤리스터 소자에 산소 공공이 발생함에 따라 전기저항이 낮아지는 현상을 통해 인간의 후각 시냅스를 모사했다. 후각 시냅스가 외부 기체의 종류(산화, 환원성 기체)에 따라 반응이 달라지는 것을 이용해 산소 공공의 개수를 미세하게 조절함으로써 점진적으로 소자의 전도도를 변환시켜 인공후각 시냅스의 아날로그 특성을 모방한 것이다. 연구진은 개발한 인공후각 시냅스 소자를 어레이(array) 형태로 구성했을 때 가스 누출 지점으로부터의 거리에 따라 감응 특성이 달라지는 것을 통해 가스 누출의 특정 패턴을 감지하는 신경망 시뮬레이션을 수행했다. 개발된 뉴로모픽 인공후각 시냅스 소자는 최대 92.76%의 추론 정확도를 확보해 우수한 성능을 입증했다. 또한 동일한 구조를 가지는 인공후각 시냅스 소자와 위험 정도 조절기(risk-level controller)를 직렬로 연결해, 가스의 노출 농도를 모니터링하고 위험한 정도를 넘으면 알려주는 알람 시스템을 개발했다. 기존 반도체식 가스 센서는 자체적으로 위험 가스 노출 이력을 저장할 수 없어 메모리를 추가해야 하기 떄문에 시스템이 복잡하고 추가 전력 소비도 필요하다. 반면 KIST 연구진이 개발한 소자는 자체적으로 위험 가스의 노출 시간에 따른 절대량을 기억할 수 있기 때문에 상시 모니터링이 가능할 뿐만 아니라 에너지 효율도 높은 장점이 있다 KIST 강종윤 박사는 “이번에 개발한 인공후각 시냅스 소자는 산소 공공의 개수를 미세하게 조절하는 새로운 메커니즘으로 단일소자를 이용해 외부 기체 자극을 탐지할 뿐만 아니라 이를 기억할 수도 있어 기존 가스 센서의 한계를 극복하고, 향후 인공후각 분야를 선도할 수 있는 연구성과”라고 밝혔다. 함께 연구를 주도한 윤정호 박사는 “인간의 날숨이나 피부에서 분출되는 화학물질에서 질병 유무를 진단할 수 있는 헬스케어용 센서 등, 실시간으로 인체의 생체신호 데이터를 처리하는 in-sensor 컴퓨팅 연구에 기여할 것”이라고 기대했다. 본 연구는 과학기술정보통신부(장관 이종호) 지원으로 KIST 주요사업과 한국연구재단 우수신진연구사업, 차세대지능형반도체기술개발사업으로 수행되었으며, 연구 결과는 재료과학 분야 국제 학술지 ‘Advanced Materials’ (IF : 32.086, JCR 분야 상위 2.17%) 온라인판에 게재되었고, 표지논문(inside back cover)으로 최신호에 출판되었다. [그림 1] 인공 후각을 모사한 전자소자 기술 [그림 2] 외부 기체 종류에 따른 아날로그 후각 시냅스 특성을 나타내는 전자소자 ○ 논문명: An Artificial Olfactory System Based on a Chemi-Memristive Device ○ 학술지: Advanced Materials ○ 게재일: 2023. 4. 28. ○ DOI: https://doi.org/10.1002/adma.202302219 ○ 논문저자 - 전석엽 학생연구원(제1저자/KIST 첨단소재기술연구본부장실) - 송영근 박사후연구원(제1저자/KIST 전자재료연구센터) - 김지은 학생연구원(공저자/KIST 전자재료연구센터) - 권재욱(공저자/KIST 전자재료연구센터) - 소근호 학생연구원(공저자/KIST 전자재료연구센터) - 권주영 위촉연구원(공저자/KIST 전자재료연구센터) - 강종윤 책임연구원(교신저자/KIST 첨단소재기술연구본부장) - 윤정호 선임연구원(교신저자/KIST 전자재료연구센터)
사람의 코를 더 닮은 인공후각 시냅스 전자소자 개발
- 단일 전자소자로 추가 센서, 메모리 없이 외부 기체 자극을 감지, 기억 - 기존 가스 센서의 한계 극복해 전자 코 및 휴머노이드 분야 활용 기대 최근 인공지능과 휴머노이드가 대두되면서 인간처럼 다양한 감각을 감지하기 위한 전자소자 연구가 활발하다. 인공후각도 그 가운데 하나인데, 산업 현장에서 가스 유출을 감지하고, 세균과 바이러스 같은 유해 요소를 단시간에 찾아내는 데 쓰일 수 있다. 하지만 물리적인 자극을 감지하는 시각, 청각, 촉각에 비해, 화학적인 자극을 감지해야 하는 후각은 정보처리 과정이 까다로워 지금까지 발전이 더뎠다. 한국과학기술연구원(KIST, 원장 윤석진)은 첨단소재기술연구본부 강종윤 본부장, 전자재료연구센터 윤정호 박사팀이 뉴로모픽 반도체 전자소자인 멤리스터 소자를 이용해 인간의 후각 신경 시스템과 유사하게 외부 기체 자극을 손쉽게 전기적인 신호로 변환하고 처리하는 전자소자를 개발했다고 밝혔다. 연구팀이 개발한 전자소자는 단일소자에서 외부 기체 자극을 전기적인 신호로 변환하고 이력을 저장할 수도 있다. 인간의 후각 시냅스는 외부 자극에 대한 정보를 변형해 다음 뉴런에게 전달한다. 이때 시냅스가 자극을 변형하는 정도를 ‘가중치’라 한다. 이를 모방하기 위해서는 외부 기체 자극에 대한 정보를 아날로그 방식으로 제어할 수 있어야 하는데, 지금까지 인공후각 분야에서 주로 연구하고 있는 산화물 반도체형 가스 센서로는 불가능했다. KIST 연구진은 멤리스터 소자에 산소 공공이 발생함에 따라 전기저항이 낮아지는 현상을 통해 인간의 후각 시냅스를 모사했다. 후각 시냅스가 외부 기체의 종류(산화, 환원성 기체)에 따라 반응이 달라지는 것을 이용해 산소 공공의 개수를 미세하게 조절함으로써 점진적으로 소자의 전도도를 변환시켜 인공후각 시냅스의 아날로그 특성을 모방한 것이다. 연구진은 개발한 인공후각 시냅스 소자를 어레이(array) 형태로 구성했을 때 가스 누출 지점으로부터의 거리에 따라 감응 특성이 달라지는 것을 통해 가스 누출의 특정 패턴을 감지하는 신경망 시뮬레이션을 수행했다. 개발된 뉴로모픽 인공후각 시냅스 소자는 최대 92.76%의 추론 정확도를 확보해 우수한 성능을 입증했다. 또한 동일한 구조를 가지는 인공후각 시냅스 소자와 위험 정도 조절기(risk-level controller)를 직렬로 연결해, 가스의 노출 농도를 모니터링하고 위험한 정도를 넘으면 알려주는 알람 시스템을 개발했다. 기존 반도체식 가스 센서는 자체적으로 위험 가스 노출 이력을 저장할 수 없어 메모리를 추가해야 하기 떄문에 시스템이 복잡하고 추가 전력 소비도 필요하다. 반면 KIST 연구진이 개발한 소자는 자체적으로 위험 가스의 노출 시간에 따른 절대량을 기억할 수 있기 때문에 상시 모니터링이 가능할 뿐만 아니라 에너지 효율도 높은 장점이 있다 KIST 강종윤 박사는 “이번에 개발한 인공후각 시냅스 소자는 산소 공공의 개수를 미세하게 조절하는 새로운 메커니즘으로 단일소자를 이용해 외부 기체 자극을 탐지할 뿐만 아니라 이를 기억할 수도 있어 기존 가스 센서의 한계를 극복하고, 향후 인공후각 분야를 선도할 수 있는 연구성과”라고 밝혔다. 함께 연구를 주도한 윤정호 박사는 “인간의 날숨이나 피부에서 분출되는 화학물질에서 질병 유무를 진단할 수 있는 헬스케어용 센서 등, 실시간으로 인체의 생체신호 데이터를 처리하는 in-sensor 컴퓨팅 연구에 기여할 것”이라고 기대했다. 본 연구는 과학기술정보통신부(장관 이종호) 지원으로 KIST 주요사업과 한국연구재단 우수신진연구사업, 차세대지능형반도체기술개발사업으로 수행되었으며, 연구 결과는 재료과학 분야 국제 학술지 ‘Advanced Materials’ (IF : 32.086, JCR 분야 상위 2.17%) 온라인판에 게재되었고, 표지논문(inside back cover)으로 최신호에 출판되었다. [그림 1] 인공 후각을 모사한 전자소자 기술 [그림 2] 외부 기체 종류에 따른 아날로그 후각 시냅스 특성을 나타내는 전자소자 ○ 논문명: An Artificial Olfactory System Based on a Chemi-Memristive Device ○ 학술지: Advanced Materials ○ 게재일: 2023. 4. 28. ○ DOI: https://doi.org/10.1002/adma.202302219 ○ 논문저자 - 전석엽 학생연구원(제1저자/KIST 첨단소재기술연구본부장실) - 송영근 박사후연구원(제1저자/KIST 전자재료연구센터) - 김지은 학생연구원(공저자/KIST 전자재료연구센터) - 권재욱(공저자/KIST 전자재료연구센터) - 소근호 학생연구원(공저자/KIST 전자재료연구센터) - 권주영 위촉연구원(공저자/KIST 전자재료연구센터) - 강종윤 책임연구원(교신저자/KIST 첨단소재기술연구본부장) - 윤정호 선임연구원(교신저자/KIST 전자재료연구센터)
사람의 코를 더 닮은 인공후각 시냅스 전자소자 개발
- 단일 전자소자로 추가 센서, 메모리 없이 외부 기체 자극을 감지, 기억 - 기존 가스 센서의 한계 극복해 전자 코 및 휴머노이드 분야 활용 기대 최근 인공지능과 휴머노이드가 대두되면서 인간처럼 다양한 감각을 감지하기 위한 전자소자 연구가 활발하다. 인공후각도 그 가운데 하나인데, 산업 현장에서 가스 유출을 감지하고, 세균과 바이러스 같은 유해 요소를 단시간에 찾아내는 데 쓰일 수 있다. 하지만 물리적인 자극을 감지하는 시각, 청각, 촉각에 비해, 화학적인 자극을 감지해야 하는 후각은 정보처리 과정이 까다로워 지금까지 발전이 더뎠다. 한국과학기술연구원(KIST, 원장 윤석진)은 첨단소재기술연구본부 강종윤 본부장, 전자재료연구센터 윤정호 박사팀이 뉴로모픽 반도체 전자소자인 멤리스터 소자를 이용해 인간의 후각 신경 시스템과 유사하게 외부 기체 자극을 손쉽게 전기적인 신호로 변환하고 처리하는 전자소자를 개발했다고 밝혔다. 연구팀이 개발한 전자소자는 단일소자에서 외부 기체 자극을 전기적인 신호로 변환하고 이력을 저장할 수도 있다. 인간의 후각 시냅스는 외부 자극에 대한 정보를 변형해 다음 뉴런에게 전달한다. 이때 시냅스가 자극을 변형하는 정도를 ‘가중치’라 한다. 이를 모방하기 위해서는 외부 기체 자극에 대한 정보를 아날로그 방식으로 제어할 수 있어야 하는데, 지금까지 인공후각 분야에서 주로 연구하고 있는 산화물 반도체형 가스 센서로는 불가능했다. KIST 연구진은 멤리스터 소자에 산소 공공이 발생함에 따라 전기저항이 낮아지는 현상을 통해 인간의 후각 시냅스를 모사했다. 후각 시냅스가 외부 기체의 종류(산화, 환원성 기체)에 따라 반응이 달라지는 것을 이용해 산소 공공의 개수를 미세하게 조절함으로써 점진적으로 소자의 전도도를 변환시켜 인공후각 시냅스의 아날로그 특성을 모방한 것이다. 연구진은 개발한 인공후각 시냅스 소자를 어레이(array) 형태로 구성했을 때 가스 누출 지점으로부터의 거리에 따라 감응 특성이 달라지는 것을 통해 가스 누출의 특정 패턴을 감지하는 신경망 시뮬레이션을 수행했다. 개발된 뉴로모픽 인공후각 시냅스 소자는 최대 92.76%의 추론 정확도를 확보해 우수한 성능을 입증했다. 또한 동일한 구조를 가지는 인공후각 시냅스 소자와 위험 정도 조절기(risk-level controller)를 직렬로 연결해, 가스의 노출 농도를 모니터링하고 위험한 정도를 넘으면 알려주는 알람 시스템을 개발했다. 기존 반도체식 가스 센서는 자체적으로 위험 가스 노출 이력을 저장할 수 없어 메모리를 추가해야 하기 떄문에 시스템이 복잡하고 추가 전력 소비도 필요하다. 반면 KIST 연구진이 개발한 소자는 자체적으로 위험 가스의 노출 시간에 따른 절대량을 기억할 수 있기 때문에 상시 모니터링이 가능할 뿐만 아니라 에너지 효율도 높은 장점이 있다 KIST 강종윤 박사는 “이번에 개발한 인공후각 시냅스 소자는 산소 공공의 개수를 미세하게 조절하는 새로운 메커니즘으로 단일소자를 이용해 외부 기체 자극을 탐지할 뿐만 아니라 이를 기억할 수도 있어 기존 가스 센서의 한계를 극복하고, 향후 인공후각 분야를 선도할 수 있는 연구성과”라고 밝혔다. 함께 연구를 주도한 윤정호 박사는 “인간의 날숨이나 피부에서 분출되는 화학물질에서 질병 유무를 진단할 수 있는 헬스케어용 센서 등, 실시간으로 인체의 생체신호 데이터를 처리하는 in-sensor 컴퓨팅 연구에 기여할 것”이라고 기대했다. 본 연구는 과학기술정보통신부(장관 이종호) 지원으로 KIST 주요사업과 한국연구재단 우수신진연구사업, 차세대지능형반도체기술개발사업으로 수행되었으며, 연구 결과는 재료과학 분야 국제 학술지 ‘Advanced Materials’ (IF : 32.086, JCR 분야 상위 2.17%) 온라인판에 게재되었고, 표지논문(inside back cover)으로 최신호에 출판되었다. [그림 1] 인공 후각을 모사한 전자소자 기술 [그림 2] 외부 기체 종류에 따른 아날로그 후각 시냅스 특성을 나타내는 전자소자 ○ 논문명: An Artificial Olfactory System Based on a Chemi-Memristive Device ○ 학술지: Advanced Materials ○ 게재일: 2023. 4. 28. ○ DOI: https://doi.org/10.1002/adma.202302219 ○ 논문저자 - 전석엽 학생연구원(제1저자/KIST 첨단소재기술연구본부장실) - 송영근 박사후연구원(제1저자/KIST 전자재료연구센터) - 김지은 학생연구원(공저자/KIST 전자재료연구센터) - 권재욱(공저자/KIST 전자재료연구센터) - 소근호 학생연구원(공저자/KIST 전자재료연구센터) - 권주영 위촉연구원(공저자/KIST 전자재료연구센터) - 강종윤 책임연구원(교신저자/KIST 첨단소재기술연구본부장) - 윤정호 선임연구원(교신저자/KIST 전자재료연구센터)
사람의 코를 더 닮은 인공후각 시냅스 전자소자 개발
- 단일 전자소자로 추가 센서, 메모리 없이 외부 기체 자극을 감지, 기억 - 기존 가스 센서의 한계 극복해 전자 코 및 휴머노이드 분야 활용 기대 최근 인공지능과 휴머노이드가 대두되면서 인간처럼 다양한 감각을 감지하기 위한 전자소자 연구가 활발하다. 인공후각도 그 가운데 하나인데, 산업 현장에서 가스 유출을 감지하고, 세균과 바이러스 같은 유해 요소를 단시간에 찾아내는 데 쓰일 수 있다. 하지만 물리적인 자극을 감지하는 시각, 청각, 촉각에 비해, 화학적인 자극을 감지해야 하는 후각은 정보처리 과정이 까다로워 지금까지 발전이 더뎠다. 한국과학기술연구원(KIST, 원장 윤석진)은 첨단소재기술연구본부 강종윤 본부장, 전자재료연구센터 윤정호 박사팀이 뉴로모픽 반도체 전자소자인 멤리스터 소자를 이용해 인간의 후각 신경 시스템과 유사하게 외부 기체 자극을 손쉽게 전기적인 신호로 변환하고 처리하는 전자소자를 개발했다고 밝혔다. 연구팀이 개발한 전자소자는 단일소자에서 외부 기체 자극을 전기적인 신호로 변환하고 이력을 저장할 수도 있다. 인간의 후각 시냅스는 외부 자극에 대한 정보를 변형해 다음 뉴런에게 전달한다. 이때 시냅스가 자극을 변형하는 정도를 ‘가중치’라 한다. 이를 모방하기 위해서는 외부 기체 자극에 대한 정보를 아날로그 방식으로 제어할 수 있어야 하는데, 지금까지 인공후각 분야에서 주로 연구하고 있는 산화물 반도체형 가스 센서로는 불가능했다. KIST 연구진은 멤리스터 소자에 산소 공공이 발생함에 따라 전기저항이 낮아지는 현상을 통해 인간의 후각 시냅스를 모사했다. 후각 시냅스가 외부 기체의 종류(산화, 환원성 기체)에 따라 반응이 달라지는 것을 이용해 산소 공공의 개수를 미세하게 조절함으로써 점진적으로 소자의 전도도를 변환시켜 인공후각 시냅스의 아날로그 특성을 모방한 것이다. 연구진은 개발한 인공후각 시냅스 소자를 어레이(array) 형태로 구성했을 때 가스 누출 지점으로부터의 거리에 따라 감응 특성이 달라지는 것을 통해 가스 누출의 특정 패턴을 감지하는 신경망 시뮬레이션을 수행했다. 개발된 뉴로모픽 인공후각 시냅스 소자는 최대 92.76%의 추론 정확도를 확보해 우수한 성능을 입증했다. 또한 동일한 구조를 가지는 인공후각 시냅스 소자와 위험 정도 조절기(risk-level controller)를 직렬로 연결해, 가스의 노출 농도를 모니터링하고 위험한 정도를 넘으면 알려주는 알람 시스템을 개발했다. 기존 반도체식 가스 센서는 자체적으로 위험 가스 노출 이력을 저장할 수 없어 메모리를 추가해야 하기 떄문에 시스템이 복잡하고 추가 전력 소비도 필요하다. 반면 KIST 연구진이 개발한 소자는 자체적으로 위험 가스의 노출 시간에 따른 절대량을 기억할 수 있기 때문에 상시 모니터링이 가능할 뿐만 아니라 에너지 효율도 높은 장점이 있다 KIST 강종윤 박사는 “이번에 개발한 인공후각 시냅스 소자는 산소 공공의 개수를 미세하게 조절하는 새로운 메커니즘으로 단일소자를 이용해 외부 기체 자극을 탐지할 뿐만 아니라 이를 기억할 수도 있어 기존 가스 센서의 한계를 극복하고, 향후 인공후각 분야를 선도할 수 있는 연구성과”라고 밝혔다. 함께 연구를 주도한 윤정호 박사는 “인간의 날숨이나 피부에서 분출되는 화학물질에서 질병 유무를 진단할 수 있는 헬스케어용 센서 등, 실시간으로 인체의 생체신호 데이터를 처리하는 in-sensor 컴퓨팅 연구에 기여할 것”이라고 기대했다. 본 연구는 과학기술정보통신부(장관 이종호) 지원으로 KIST 주요사업과 한국연구재단 우수신진연구사업, 차세대지능형반도체기술개발사업으로 수행되었으며, 연구 결과는 재료과학 분야 국제 학술지 ‘Advanced Materials’ (IF : 32.086, JCR 분야 상위 2.17%) 온라인판에 게재되었고, 표지논문(inside back cover)으로 최신호에 출판되었다. [그림 1] 인공 후각을 모사한 전자소자 기술 [그림 2] 외부 기체 종류에 따른 아날로그 후각 시냅스 특성을 나타내는 전자소자 ○ 논문명: An Artificial Olfactory System Based on a Chemi-Memristive Device ○ 학술지: Advanced Materials ○ 게재일: 2023. 4. 28. ○ DOI: https://doi.org/10.1002/adma.202302219 ○ 논문저자 - 전석엽 학생연구원(제1저자/KIST 첨단소재기술연구본부장실) - 송영근 박사후연구원(제1저자/KIST 전자재료연구센터) - 김지은 학생연구원(공저자/KIST 전자재료연구센터) - 권재욱(공저자/KIST 전자재료연구센터) - 소근호 학생연구원(공저자/KIST 전자재료연구센터) - 권주영 위촉연구원(공저자/KIST 전자재료연구센터) - 강종윤 책임연구원(교신저자/KIST 첨단소재기술연구본부장) - 윤정호 선임연구원(교신저자/KIST 전자재료연구센터)
세계적 양자컴퓨팅 기업 CEO가 KIST를 찾은 까닭은?
- KIST, 자나두와 광(光) 기반 양자컴퓨팅 핵심기술 공동연구 킥오프 미팅 개최 - KIST-자나두, 양자컴퓨팅 공동연구 및 인력교류 확대 예정 한국과학기술연구원(KIST, 원장 윤석진)은 9월 11일(월) 서울 성북구 KIST 본원에서 세계적인 양자컴퓨팅 기업인 자나두(Xanadu, CEO Christian Weedbrook)와 양자컴퓨팅 핵심기술 공동개발을 위한 킥오프 미팅을 개최했다고 밝혔다. 2016년 설립된 자나두(Xanadu)는 미국의 Google과 중국의 USTC에 이어 세계에서 3번째로 양자 우위(Quantum Advantage)를 달성한 양자컴퓨팅의 글로벌 선두 기업으로 기업가치는 2022년 기준 약 1.3조 원으로 평가받고 있으며, 160여 명의 전문가가 연구개발을 수행하고 있다. 양자컴퓨팅 하드웨어 외에도 최근 독일 폭스바겐사와 양자 시뮬레이션을 이용한 차세대 배터리 개발 파트너십을 맺는 등 양자컴퓨팅 응용 분야에서도 두각을 나타내고 있다. KIST와 자나두는 2023년 1월 자나두 본사가 위치한 캐나다 토론토에서 업무협약(MOU)을 체결했으며, KIST에서 주관하고 있는 ‘양자오류정정 국제 공동연구센터’에 자나두가 올해 6월부터 파트너 기관으로 공식 참여하면서 본격적인 공동연구에 착수했다. 킥오프 미팅에서 자나두의 크리스천 위드브룩(Christian Weedbrook) 대표는 KIST와의 협력을 통해 광(光) 기반 양자컴퓨팅 하드웨어와 알고리즘 개발 공동연구 및 인력교류에 관한 향후 계획을 직접 밝혔다. KIST 윤석진 원장은 “KIST는 국제협력을 통해서 양자기술 분야의 세계적인 수준의 성과를 내기 위해 노력하고 있으며, 자나두와의 공동연구가 그 대표적인 사례”라고 밝혔다. 자나두의 CEO 크리스천 위드브룩은 “한국의 대표적인 연구기관인 KIST와의 협력을 발판으로 다양한 한국의 기업, 연구소와도 협력을 모색할 계획”이라고 말했다. 한편, 양자오류정정 국제 공동연구센터(Center for Quantum Error Correction)를 이끌고 있는 KIST 이승우 박사는 “지난해 시카고 대학(University of Chicago), 미국 국립표준기술연구소(National Institute of Standards and Technology)에 이어 올해 자나두가 공동연구센터의 파트너로 참여를 결정했다. 이것은 글로벌 선도그룹들이 우리의 독자적인 오류정정 기술력을 인정하고 있기 때문이며, 향후 공동연구를 통해 범용 양자컴퓨팅 기술 개발에 시너지를 낼 것”이라고 기대했다. KIST는 2022년 양자오류정정 국제 공동연구센터를 출범시켰으며, 올해 8월에는 도쿄대 다케다 슌타로 교수, 영국 오르카컴퓨팅 조쉬 넌(Josh Nunn) 최고과학책임자 등 세계적인 광 기반 양자컴퓨팅 기업과 연구자들을 처음으로 한자리에 모아 국제 기술 심포지엄을 개최하는 등 양자컴퓨팅 분야 국제협력을 선도하고 있다.
그린수소 생산비용 획기적으로 낮춘다
- 수전해 과정에서 부식 문제로 외면받았던 탄소의 활용 방법 제안 - 탄소 지지체와 저렴한 촉매 사용하면 우수한 수전해 성능 및 내구성 확보 가능 국제에너지기구인 IEA에 따르면 2050년 전 세계 수소 수요는 5억 3천만 톤으로 2020년 대비 약 6배 증가할 것으로 예상된다. 현재 가장 일반적인 수소 생산 방식은 천연가스와 수증기를 반응시키는 것으로, 생산 과정에서 이산화탄소를 발생 시키기 때문에 그레이 수소라 부르며 전체 수소 생산량의 약 80%를 차지한다. 이와 대비되는 그린 수소는 전기에너지로 물을 분해해 생산하기 때문에 이산화탄소 배출이 없다. 문제는 이리듐 산화물 등과 같은 값비싼 귀금속 촉매이다. 한국과학기술연구원(KIST, 원장 윤석진) 수소·연료전지연구센터 유성종 박사 연구팀은 탄소 지지체를 도입해 우수한 성능 및 내구성을 갖는 음이온 교환막 수전해 장치를 구현함으로써 그린 수소 생산 단가를 대폭 줄이는 데 성공했다고 밝혔다. 탄소 지지체는 높은 전기 전도도와 표면적을 갖고 있어서 다양한 촉매의 지지체로 활용됐으나, 수전해에 필요한 높은 전압과 물이 많은 환경에서는 쉽게 이산화탄소로 산화해 사용이 제한적이었다. 연구팀은 이리듐보다 저렴한 니켈-철-코발트 층상 이중수화물 물질을 소수성 탄소 담지체 위에서 합성해 음이온 교환막 수전해의 산소 발생 반응 촉매를 개발했다. 음이온 교환막 수전해에서 탄소의 부식을 최소화하기 위해 소수성 탄소 지지체와 니켈-철-코발트 층상 이중수화물 촉매가 면대면으로 접합하고 있는 층상 구조를 고안한 결과, 탄소의 부식을 일으키는 물과의 상호작용이 줄어들어 부식 과정에서 발생하는 이산화탄소가 절반 이하로 적게 검출됨을 확인했다. 성능평가 결과, 이번에 개발한 탄소 지지체 기반의 수전해 촉매의 전류밀도가 수전해 작동 전압인 2V 영역에서 10.29A/cm-2를 나타내 상용 촉매인 이리듐 산화물 촉매의 전류밀도 9.38A/cm-2보다 크다는 사실을 확인했으며 약 550시간의 장기 내구성을 동시에 확보했다. 또한, 탄소의 소수성 변화에 따라 성능이 달라짐을 확인해 지지체의 소수성이 수전해 장치의 성능을 결정하는 하나의 주된 요인임을 처음으로 규명했다. KIST 유성종 박사는 “이번 연구 성과는 기존에 부식 문제로 사용이 제한적이었던 탄소 지지체의 수전해 장치 적용 가능성을 확인한 것으로, 그동안 촉매개발에 집중됐던 연구를 다양한 지지체로 확장한다면 수전해 기술이 한 단계 성장할 수 있을 것으로 기대된다”라며, “그린수소 생산을 포함한 다양한 친환경에너지 기술 개발을 위해 힘쓰겠다”고 밝혔다. 본 연구는 과학기술정보통신부(장관 이종호) 지원으로 KIST 주요사업과 나노 및 소재 기술개발사업(2021M3H4A1A02042948, 2021M3H4A3A02086681), 한국에너지기술평가원(원장 권기영) 신재생에너지핵심기술개발사업(20203020030010) 지원으로 수행됐으며, 연구 결과는 환경 에너지 분야 국제학술지 ‘Energy & Environmental Science’ (IF 32.5, JCR 분야 상위 0.4%)에 6월 12일 온라인 게재됐다. [그림 1] 소수성을 띄는 결정성 탄소 위에 담지된 니켈-철-코발트 층상 이중산화물 이미지와 결정성 카본의 이미지 수전해 전극은 왼쪽 위 그림과 같이 막, 촉매층, 기체 확산층으로 구성된다. 막을 통해 OH- 이온이 공급되며 기체 확산층을 통해 수전해 결과 만들어진 산소 기체가 빠져 나간다. 촉매와 반응물이 접촉할 수 있는 면적이 넓고, 반응 생성물이 빠르게 제거될 수 있도록 촉매층을 형성시키는 것이 중요하다. 본 연구는 물과 상호작용이 적은 소수성 탄소를 도입해, 촉매 주변 물의 흐름을 빠르게 만들어주었다. 이 결과 반응물 공급 및 생성물 제거가 효율적으로 이뤄졌으며, 탄소와 물이 만나 부식되는 문제 역시 해결되었다. [그림 2] 니켈-철-코발트 층상 이중산화물 탄소 담지제 시간별 투과전자 현미경 사진, EDS 원소 맵핑 이미지 그림 (좌상)에서는 탄소 지지체가 있을 때 얇은 촉매가 합성되며, 탄소 지지체가 없는 경우 두껍고 뭉친 형태의 촉매가 합성됨을 나타낸다. 그림 (좌우)는 반응 초반 철 클러스터가 초기에 형성되고, 그 위에서 얇은 층상 이중산화물 촉매가 성장해나가는 모습을 보여준다. 탄소와 면대면 접합을 하는 매우 얇은 형태의 촉매가 합성되었음을 투과전자현미경 이미지, EELS 원소 맵핑 이미지 및 각도를 틀어가며 얻은 이미지를 통해 면 구조를 확실하게 확인할 수 있다. [그림 3] 니켈-철-코발트 층상 이중산화물의 전기화학적 활성 평가 및 단위전지 테스트 결과 실제 수전해 성능을 평가한 결과로, 전압에 따라 얻어지는 전류 밀도 값이 클수록 성능이 좋다고 본다. 소수성 탄소에 지지된 촉매의 성능이 상용 이리듐 산화물 촉매 (9.38 A cm-2@2.0V) 및 친수성 탄소 지지촉매 (6.91 A cm-2)와 비교해 우수한 결과 (10.29 A cm-2)를 나타내었다. 또한, 약 550 시간의 우수한 장기 내구성을 나타내었다. 이는 1.8V에서 질량비출력 및 내구성 측면에서 기존 발표된 수전해 촉매들보다 우수한 결과라는 것을 확인할 수 있었다. ○ 논문명: Realizing the Potential of Hydrophobic Crystalline Carbon as a Support for Oxygen Evolution Electrocatalysts ○ 학술지: Energy & Environmental Science ○ 게재일: 2023.06.12. ○ DOI: https://doi.org/10.1039/d3ee00987d ○ 논문저자 - 김명근 박사후연구원(제1저자/KIST 수소·연료전지연구센터) - 이태경 박사과정생 (제1저자/KIST 수소·연료전지연구센터) - 이응준 박사후연구원(제1저자/KIST 수소·연료전지연구센터) - 유성종 책임연구원(교신저자/KIST 수소·연료전지연구센터)
그린수소 생산비용 획기적으로 낮춘다
- 수전해 과정에서 부식 문제로 외면받았던 탄소의 활용 방법 제안 - 탄소 지지체와 저렴한 촉매 사용하면 우수한 수전해 성능 및 내구성 확보 가능 국제에너지기구인 IEA에 따르면 2050년 전 세계 수소 수요는 5억 3천만 톤으로 2020년 대비 약 6배 증가할 것으로 예상된다. 현재 가장 일반적인 수소 생산 방식은 천연가스와 수증기를 반응시키는 것으로, 생산 과정에서 이산화탄소를 발생 시키기 때문에 그레이 수소라 부르며 전체 수소 생산량의 약 80%를 차지한다. 이와 대비되는 그린 수소는 전기에너지로 물을 분해해 생산하기 때문에 이산화탄소 배출이 없다. 문제는 이리듐 산화물 등과 같은 값비싼 귀금속 촉매이다. 한국과학기술연구원(KIST, 원장 윤석진) 수소·연료전지연구센터 유성종 박사 연구팀은 탄소 지지체를 도입해 우수한 성능 및 내구성을 갖는 음이온 교환막 수전해 장치를 구현함으로써 그린 수소 생산 단가를 대폭 줄이는 데 성공했다고 밝혔다. 탄소 지지체는 높은 전기 전도도와 표면적을 갖고 있어서 다양한 촉매의 지지체로 활용됐으나, 수전해에 필요한 높은 전압과 물이 많은 환경에서는 쉽게 이산화탄소로 산화해 사용이 제한적이었다. 연구팀은 이리듐보다 저렴한 니켈-철-코발트 층상 이중수화물 물질을 소수성 탄소 담지체 위에서 합성해 음이온 교환막 수전해의 산소 발생 반응 촉매를 개발했다. 음이온 교환막 수전해에서 탄소의 부식을 최소화하기 위해 소수성 탄소 지지체와 니켈-철-코발트 층상 이중수화물 촉매가 면대면으로 접합하고 있는 층상 구조를 고안한 결과, 탄소의 부식을 일으키는 물과의 상호작용이 줄어들어 부식 과정에서 발생하는 이산화탄소가 절반 이하로 적게 검출됨을 확인했다. 성능평가 결과, 이번에 개발한 탄소 지지체 기반의 수전해 촉매의 전류밀도가 수전해 작동 전압인 2V 영역에서 10.29A/cm-2를 나타내 상용 촉매인 이리듐 산화물 촉매의 전류밀도 9.38A/cm-2보다 크다는 사실을 확인했으며 약 550시간의 장기 내구성을 동시에 확보했다. 또한, 탄소의 소수성 변화에 따라 성능이 달라짐을 확인해 지지체의 소수성이 수전해 장치의 성능을 결정하는 하나의 주된 요인임을 처음으로 규명했다. KIST 유성종 박사는 “이번 연구 성과는 기존에 부식 문제로 사용이 제한적이었던 탄소 지지체의 수전해 장치 적용 가능성을 확인한 것으로, 그동안 촉매개발에 집중됐던 연구를 다양한 지지체로 확장한다면 수전해 기술이 한 단계 성장할 수 있을 것으로 기대된다”라며, “그린수소 생산을 포함한 다양한 친환경에너지 기술 개발을 위해 힘쓰겠다”고 밝혔다. 본 연구는 과학기술정보통신부(장관 이종호) 지원으로 KIST 주요사업과 나노 및 소재 기술개발사업(2021M3H4A1A02042948, 2021M3H4A3A02086681), 한국에너지기술평가원(원장 권기영) 신재생에너지핵심기술개발사업(20203020030010) 지원으로 수행됐으며, 연구 결과는 환경 에너지 분야 국제학술지 ‘Energy & Environmental Science’ (IF 32.5, JCR 분야 상위 0.4%)에 6월 12일 온라인 게재됐다. [그림 1] 소수성을 띄는 결정성 탄소 위에 담지된 니켈-철-코발트 층상 이중산화물 이미지와 결정성 카본의 이미지 수전해 전극은 왼쪽 위 그림과 같이 막, 촉매층, 기체 확산층으로 구성된다. 막을 통해 OH- 이온이 공급되며 기체 확산층을 통해 수전해 결과 만들어진 산소 기체가 빠져 나간다. 촉매와 반응물이 접촉할 수 있는 면적이 넓고, 반응 생성물이 빠르게 제거될 수 있도록 촉매층을 형성시키는 것이 중요하다. 본 연구는 물과 상호작용이 적은 소수성 탄소를 도입해, 촉매 주변 물의 흐름을 빠르게 만들어주었다. 이 결과 반응물 공급 및 생성물 제거가 효율적으로 이뤄졌으며, 탄소와 물이 만나 부식되는 문제 역시 해결되었다. [그림 2] 니켈-철-코발트 층상 이중산화물 탄소 담지제 시간별 투과전자 현미경 사진, EDS 원소 맵핑 이미지 그림 (좌상)에서는 탄소 지지체가 있을 때 얇은 촉매가 합성되며, 탄소 지지체가 없는 경우 두껍고 뭉친 형태의 촉매가 합성됨을 나타낸다. 그림 (좌우)는 반응 초반 철 클러스터가 초기에 형성되고, 그 위에서 얇은 층상 이중산화물 촉매가 성장해나가는 모습을 보여준다. 탄소와 면대면 접합을 하는 매우 얇은 형태의 촉매가 합성되었음을 투과전자현미경 이미지, EELS 원소 맵핑 이미지 및 각도를 틀어가며 얻은 이미지를 통해 면 구조를 확실하게 확인할 수 있다. [그림 3] 니켈-철-코발트 층상 이중산화물의 전기화학적 활성 평가 및 단위전지 테스트 결과 실제 수전해 성능을 평가한 결과로, 전압에 따라 얻어지는 전류 밀도 값이 클수록 성능이 좋다고 본다. 소수성 탄소에 지지된 촉매의 성능이 상용 이리듐 산화물 촉매 (9.38 A cm-2@2.0V) 및 친수성 탄소 지지촉매 (6.91 A cm-2)와 비교해 우수한 결과 (10.29 A cm-2)를 나타내었다. 또한, 약 550 시간의 우수한 장기 내구성을 나타내었다. 이는 1.8V에서 질량비출력 및 내구성 측면에서 기존 발표된 수전해 촉매들보다 우수한 결과라는 것을 확인할 수 있었다. ○ 논문명: Realizing the Potential of Hydrophobic Crystalline Carbon as a Support for Oxygen Evolution Electrocatalysts ○ 학술지: Energy & Environmental Science ○ 게재일: 2023.06.12. ○ DOI: https://doi.org/10.1039/d3ee00987d ○ 논문저자 - 김명근 박사후연구원(제1저자/KIST 수소·연료전지연구센터) - 이태경 박사과정생 (제1저자/KIST 수소·연료전지연구센터) - 이응준 박사후연구원(제1저자/KIST 수소·연료전지연구센터) - 유성종 책임연구원(교신저자/KIST 수소·연료전지연구센터)