검색결과
게시물 키워드""에 대한 9082개의 검색결과를 찾았습니다.
베트남 국회의장단 KIST 방문(2013.07.22)
응웬 신 흥(Nguyen Sinh Hung) 베트남 국회의장 및 의장단 15명이 22일 우리 원 본원을 방문하였다. 응웬 신 흥(Nguyen Sinh Hung) 베트남 국회의장, 대외관계위원회 위원장, 국회 사무총장 등 베트남 국회 주요 인사 및 베트남 기획투자부 장관, 주한 베트남 대사 등으로 구성된 이번 방문단은 문길주 원장으로부터 우리 원의 연구현황에 대한 소개를 듣고 베트남과학기술연구소(V-KIST)사업 추진 등 우리 원과 베트남 간의 점진적인 협력발전 방안에 대해 관한 논의를 하였다. 우리 원은 국제 R&D 아카데미를 통해 16명의 베트남 학생이 재학 중이며 지금까지 32명의 베트남 석?박사를 배출하였다. 또한, 2012년 3월 Nguyen Tan Dung(응웬 던 중) 베트남 총리가 방문하여 KIST 모델을 기반으로 베트남과학기술연구소(V-KIST) 설립을 요청하였으며 이를 KOICA ODA사업으로 사업 추진하기 위한 준비에 박차를 가하고 있다. V-KIST 사업은 한국 산업경제 발전에 큰 이바지를 한 우리 원의 모델을 토대로, 베트남 현황에 맞고 향후 베트남 경제 발전에 필요한 과학기술 역량을 강화하는데 중점을 두고 있다. 문길주 원장은 “V-KIST를 통해 베트남의 연구역량이 크게 향상될 것이며 과학기술계의 중요한 터닝포인트가 될 것으로 기대되며 이번 방문을 계기로 협력이 더욱 활성화 되어 과학기술계의 ODA사업 추진의 본보기가 될 것”이라고 말했다.
미 하버드의대와 암 생물학 분야 협력(2013.07.03)
우리 원과 미국 하버드의대 부속 다나파버 암 연구소(Dana-Faber Cancer Institute, 원장 Edward J. Benz Jr.)는 암 생물학 분야의 연구개발을 위해 상호 협력키로 하였다. 양 기관은 7월 3일(수) 오전 10시 우리 원 본원에서 상호협력을 위한 협약을 체결하였다. 이번 협력협정은 암 생물학분야에 있어서의 공동협력을 통한 시너지 창출을 목적으로 추진되었으며, 본 협정을 기반으로 양 기관은 암연구 분야 공동연구 및 다나파버 암 연구소 캠퍼스 내 KIST 해외 현지 실험실 설립 등을 추진할 계획이다. 이 외에도 양 기관은 과학기술 정보 및 인력교류 등을 통해 다양한 분야에서 상호 긴밀한 협력관계를 구축해 나갈 예정이다. 1947년 설립된 다나파버 암 연구소는 미국뿐 아니라 전 세계에 혁신적인 암 치료법과 과학적인 연구결과를 보급하는 것을 사명으로 암에 대한 연구를 기반으로 임상과 치료를 복합적으로 수행하고 있다. 580여명의 연구원이 종양학, 분자영상학, 면역학등과 관련된 암연구에 매진하고 있으며 미국 국립 암연구소(NCI)가 지정한 미국 내 40개 복합 암센터 중 하나이다.
민·군 과학기술 융합세미나 개최(2013.06.27)
우리 원과 한국방위산업학회(회장 채우석)는 27일 ‘창조 경제 실현을 위한 민·군 과학기술 융합’에 대한 정책 세미나를 출연연 최초로 연구개발 현장인 우리 원 본원에서 개최했다. 우리 원과 한국방위산업학회 공동 주최로 열리는 이번 행사는 출연연인 KIST와 군 관련 기관의 전문가들이 모여 연구협력 강화 및 네트워크 구축을 목적으로 ‘국방과학기술정책 및 사업 추진방향’과 ‘우리 군의 새로운 시도, 전력지원체계 연구개발’에 대한 다양한 의견을 나누었다. 이날 축사에서 백승주 국방부 차관은 “정부는 방산 기술개발과 수출을 적극적으로 지원할 것이며, 민·관·군의 유기적인 협력과 산·학·연의 노력을 융합시켜, 우리 무기체계의 국산화?첨단화는 물론, 국가경제 발전에도 기여할 수 있도록 최선을 다해 뒷받침하겠다”고 밝혔다. 김용환 KIST 안보기술개발연구단장은 지금까지 추진해온 민·군 기술 협력의 패러다임을 민·관·군의 협동을 통한 현장 협력으로 전환해야 한다고 말했다. 문길주 원장은 “미래 첨단 과학 군 건설을 위해서는 국내 과학기술계에서 개발한 기술을 군용 장비 및 물자 체계개발에 적극적으로 활용하는 등 과학기술계와의 민ㆍ군 협력에 더 큰 관심을 가져야 한다"고 환영사에서 밝혔다. KIST 안보기술개발단은 군이 요구하는 미래 기술들을 미리 파악하여 출연연과 연계하기 위하여 2010년 2월에 설립되었다. 2011년과 2012년에 계룡대에서 개최된 지상군 페스티발 벤처국방마트 전시회에 과학기술계 출연연 최초로 부스를 설치하였고, 2012년 1월 국방부와 전력지원체계 MOU를 체결하여 기술개발 협력과 교류를 확대해 나가고 있다.
연세대와 ‘글로벌창조융합기술센터’ 설립(2013.06.11)
KIST-연세대 ’글로벌창조융합기술센터’가 설립되어 창조경제 실현을 위한 출연연구기관과 대학의 새로운 협력모델이 될 전망이다. 우리 원과 연세대학교는 11일 오전 연세대학교 대학본부에서 에너지ㆍ환경, 바이오, 정보통신기술(ICT) 분야 등 대표적인 융합기술 분야의 공동 연구개발 및 성과보급을 위한 MOU를 체결했다. 행사에는 문길주 원장, 정갑영 연세대 총장등 10여명이 참석했다. 양 기관은 이날 협약을 통해 ■ 에너지ㆍ환경, 바이오, 정보통신기술 등 융합기술 분야의 공동 연구개발, ■ 중소기업 지원 및 창업 활성화를 위한 공동사업 추진, ■ 인력양성 및 교류, 연구시설 공동 활용, ■ 국제 공동연구 및 교육, 글로벌 협력 등 연세대학교 국제캠퍼스의 발전을 위한 사업 등에 협력키로 했다. 또 이를 위해 연세대학교 국제캠퍼스에 ‘글로벌창조융합기술센터’를 설립하여 창조경제 실현을 위한 융합기술 개발에 나서는 등 새로운 학ㆍ연 협력모델을 만들어 나가기로 했다. 우리 원은 이번 연세대와의 협력이 지난달 29일에 발표한 ‘창조경제 선도를 위한 KIST 종합대책’의 연장선에서 융합 기술의 개발을 통해 중소기업 및 창업 활성화에 기여하고 송도지역을 통합형 창조경제 R&D 클러스터로 발전시키는 계기가 될 것이라고 밝혔다. 특히, 우리 원의 기술사업화 조직과 연세대학교 창업지원단, 국제캠퍼스에 설립될 ‘글로벌창조융합기술센터‘가 유기적으로 연계할 경우, 남동공단, 가산디지털단지 등 인근 산업단지에 기술지원과 자문, 창업 활성화 등의 활력을 불어넣을 수 있을 것으로 보인다. 또한 우리 원과 연세대학교가 일자리 창출이 가능한 과학기술과 ICT 융합 분야에서 시너지를 창출함으로써 송도 국제캠퍼스가 국제 융합 R&D 거점으로 발전하는데 기폭제 역할을 할 것으로 기대된다. 문길주 원장은 “연세대 국제캠퍼스의 첨단 인프라와 우수한 인재가 우리 원의 원천기술 및 연구 노하우와 융합되어 지역ㆍ국가의 부가가치를 창조하는 새로운 학ㆍ연 협력모델이 될 것”이라고 밝혔다. 정갑영 연세대 총장은 “창조경제 실현을 위해 함께하는 융합협력자로서 양 기관의 학·연간 연구에 막대한 시너지 창출 효과를 가져올 것으로 기대하고, 이로써 국제캠퍼스가 국제 융합R&D 거점으로 성장할 수 있을 것” 이라고 말했다.
미국 스토니브룩대학과 손잡고 뇌질환 연구 가속화(2013.06.05)
우리 원과 미국 스토니브룩대학교(Stony Brook University(SBU), 총장 Samuel L. Stanley Jr.)는 생명·보건분야의 연구개발을 위해 상호 협력하기로 했다. 양 기관은 6월 4일(화) 미국 스토니브룩 대학교에서 상호협력을 위한 협약을 체결했다고 밝혔다. 본 협약은 우리 원과 스토니브룩대학이 강점을 가지고 있는 신경과학분야의 상호협력을 통한 시너지 창출을 목적으로 추진되었으며, 협약 이후 양 기관간 신경과학을 포함한 생명과학 및 보건과학분야의 장기 공동연구, 스토니브룩대학 캠퍼스 내 KIST 현지 실험실 설립이 구체화 될 예정이다. 이 외에도 양 기관은 교육·훈련, 과학기술 정보 및 인력교류, 기술사업화 등을 통해 다양한 분야에서 실질적인 협력을 구체화해 나갈 예정이다. 또한 신경과학분야 및 임상중개연구의 세계적인 권위자인 스토니브룩 의대의 데니스 최(Dennis W. Choi) 교수가 KIST 뇌과학연구소장을 겸직하기로 해 협력이 더욱 활발히 진행될 예정이다. 데니스 최 교수는 하바드대 박사과정 재학중 진정수면제인 벤조다이에제핀의 약리작용을 최초로 규명하고, 탁월한 연구 업적으로 미국 국가뇌연구재단 및 크리스토퍼리브 재단 등에서 수상을 하는 등 세계적으로 저명한 임상중개 연구의 권위자이다. 스토니브룩대학은 미국 뉴욕주립대학교 시스템에 속해 있는 4개의 주요 대학 중 하나로 1957년 개교이래 세 명의 노벨상 수상자를 배출하였고, 응용과학, 의?약학, 경영, 사회, 교육, 예술 등을 포괄하는 종합대학이다. 스토니브룩대학 의대는 뇌질환에 특화된 기관으로 KIST 뇌과학연구소와는 치매 기전, 진단 및 치료 연구와 긴밀히 협력할 예정이다.
박테리아와 바이러스에 치명적인 은나노복합체 개발
박테리아와 바이러스에 치명적인 은나노 복합체 개발 - KIST, 영국 왕립화학회가 출판하는 세계적 국제학술지에 표지 논문으로 발표 환경오염 없이, 유해 박테리아와 바이러스에 치명적인 ‘은나노복합체 소재’가 국내 연구진에 의해 개발되어 그린 환경을 구축하고 삶의 질 향상에 기여할 것으로 기대된다. 은 나노입자를 마이크론 크기의 자성복합체 소재 위에 키워서 3차원 구조화함으로써, 유해 박테리아와 바이러스에 치명적이면서 환경으로 유실될 염려가 없는 은나노복합체 소재가 국내 융합연구진에 의해 개발되었다. 한국과학기술연구원(KIST, 원장 문길주) 분자인식연구센터 우경자 박사팀과 서울대학교 보건대학원 고광표 교수팀이 공동으로 수행한 이번 연구는 미래창조과학부와 한국연구재단이 추진하는 나노·소재 기술개발사업 및 KIST 기관고유사업의 일환으로 수행되었으며, 영국 왕립화학회가 출판하는 세계적 국제학술지인 ‘Journal of Materials Chemistry B’ 에 표지(front cover) 제1권 21호의 표지 논문으로 선정되어 5월 8일 온라인 게재되었고 6월 7일 출판 예정이다. (논문명 : Magnetic hybrid colloids decorated with Ag nanoparticles bite away bacteria and chemisorb viruses) SARS와 조류 독감, 집단 식중독 등 각종 바이러스에 의한 발병이 급증하면서 유해 미생물에 대한 관심이 높아지고 있다. 나노소재기술이 발전하면서 나노입자를 유해 미생물 제거에 이용하는 기술에 대한 관심 또한 높아지고 있다. 은 나노입자는 유해 미생물에 대해 아주 우수한 효용을 나타내고 있으나, 환경으로 유실되면 생명체에 독성을 나타낼 수 있는 것으로 인식되고 있다. 은 나노입자는 작을수록 독성이 심하며, 입자 자체로써, 은 이온으로써, 그리고 이들이 발생시키는 활성 산소 종으로써 유해 미생물에 작용하는 것으로 알려져 있다. 따라서 지금까지 은 나노입자를 이용하여 유해 미생물을 제거하는 연구의 대부분은 20 nm 이하의 단위 나노입자에 집중되어 있고 단위 나노입자를 사용하는 한, 환경으로의 유실 문제를 근본적으로 해결할 수 없다. 그리고 표면이 보호된 나노입자는 유해 미생물과 직접 접촉을 할 수 없고, 표면이 보호되지 않은 단위 나노입자는 응집되어 나노 특성을 잃어버리게 되어 효과를 나타낼 수 없다. 이 문제들을 동시에 해결하는 방법이 나노소재를 마이크론소재에 접목시켜 복합소재로 만드는 것이다. 자성을 갖는 마이크론소재에 은 나노입자를 견고하게 결합하면 회수와 분산이 용이해져 환경오염은 줄이고 나노입자 표면이 그대로 노출되어 유해 미생물에 직접 작용할 수 있기 때문이다. 우경자 박사와 고광표 교수 공동 연구팀은 자성이 있는 마이크론 크기의 소재에 핵과 핵을 떠받치는 기둥을 함께 감싸는 견고한 3차원 구조로 고정된 은나노복합체 소재를 개발하고 박테리아와 바이러스 제거 효과 및 그 메커니즘을 밝혀냈다. 연구팀은 공 모양의 자성을 가진 마이크론소재 표면에 많은 수의 팔을 만들고, 팔 끝에 은으로 된 핵(1~3 nm)을 매단 후, 이 핵들을 적정 크기로 뭉쳐서 간격을 재배치하였다. 이후 재배치된 핵 뭉치와 이를 받치고 있는 팔을 함께 감싸도록 은 성분을 도포함으로써 약 30 nm 크기의 은 나노입자가 견고하게 고정된 3차원 구조의 은나노복합체 소재를 완성하였다. 연구팀은 기존의 연구가 20 nm 이하의 은 나노입자에 집중된 것과는 반대로, 바이러스가 최소 약 30 개발한 은나노복합체의 표면에서 은 나노입자가 고정되지 않은 평평한 부분은 은 이온으로 덮이도록 설계하였으며, 이러한 독특한 구조가 항균, 항바이러스 작용에 시너지 효과를 줄 것으로 예측하였다. 이번에 개발된 은나노복합체 소재를 박테리아(E. coli CN13)*와 바이러스(Bacteriophage MS2)* 제거 실험에 적용하여 효용이 뛰어난 것을 확인하였으며, 각각 99.9999%와 99% 이상의 제거율을 기록했다. 다른 종류의 박테리아와 바이러스에도 적용하여 비슷한 결과를 얻었다. 복합체 위에 고정된 은 나노입자가 이빨과 같은 역할을 하여 박테리아와 접촉하면 박테리아를 물어뜯어 박테리아 몸체가 찢어지는 효과를 주는 것을 전자현미경으로 관찰하였다. 바이러스는 복합체 위에 고정된 은 나노입자와 은 이온에 화학적으로 흡착되는 것을 확인하였다. 이러한 현상은 은 나노입자가 박테리아 몸체를 구성하고 지지하는 막 성분 중에서 칼슘 또는 마그네슘 이온을 흡착하고 또, 박테리아나 바이러스 막을 구성하는 시스테인 부분의 싸이올(╺SH) 그룹과 강한 결합을 만들기 때문에 일어나는 현상으로 해석되었다. 이렇게 큰(~30 nm) 나노입자를 이렇게 큰(~㎛) 지지체 위에 고정하여 복합체 콜로이드로 만든 것은 세계 최초의 시도이며, 유해 미생물에 대한 치명적 효과가 주목을 끌어 표지 논문으로 선정되었다. 연구진은 개발한 은나노복합체를 공기정화필터에 코팅하여 청정공기를 공급하는 시스템을 연세대학교과 공동으로 개발 중이며, 실용화를 목표로 하고 있다. KIST 우경자 박사는 “이번 연구를 통해 새로운 구조의 나노복합소재를 개발해 원천기술 확보와 그린환경 구축, 삶의 질 향상의 토대를 마련했다”고 연구의의를 밝혔다. ※ E. coli CN13: 그람-음성 박테리아로 직경×길이가 1㎛×2㎛ 크기의 막대 모양임. ※ Bacteriophage MS2: 식물성 RNA 바이러스의 일종으로 직경 27.5 nm의 구형 모양임. 초기 연구 대상으로 안전성을 고려하여 식물성 바이러스를 이용했으며, 이후 행한 병원성 바이러스에 대해서도 우수한 효능을 얻었음. ○ 연구진 <우경자 박사> ○ 그림설명 <그림1> 논문 1권 21호의 표지 왼쪽 아래에 은나노복합체의 3차원 구조를 나타내고 있으며, 여기저기에 은나노복합체가 박테리아를 물어뜯는 모양을 보여주고 있음. 사용한 은나노복합체는 왼쪽 위와 같이 자석을 이용해 회수할 수 있음. <그림2> 은나노복합체의 합성 과정을 보여주는 모식도 (A)는 평균 7 nm와 15 nm 크기의 입자가 고정된 은나노복합체를 합성하는 과정으로 금 씨드를 사용하고 (B)는 30 nm 크기의 입자가 고정된 은나노복합체를 합성하는 과정으로 은 씨드를 사용함. <그림3>은나노복합체가 박테리아를 물어뜯는 모양을 보여주는 전자현미경 이미지 왼쪽은 박테리아만 있을 때, 중앙과 오른쪽은 박테리아와 은나노복합체를 섞고 각각 15 분과 30 분이 경과한 때의 이미지임.
박테리아와 바이러스에 치명적인 은나노복합체 개발
박테리아와 바이러스에 치명적인 은나노 복합체 개발 - KIST, 영국 왕립화학회가 출판하는 세계적 국제학술지에 표지 논문으로 발표 환경오염 없이, 유해 박테리아와 바이러스에 치명적인 ‘은나노복합체 소재’가 국내 연구진에 의해 개발되어 그린 환경을 구축하고 삶의 질 향상에 기여할 것으로 기대된다. 은 나노입자를 마이크론 크기의 자성복합체 소재 위에 키워서 3차원 구조화함으로써, 유해 박테리아와 바이러스에 치명적이면서 환경으로 유실될 염려가 없는 은나노복합체 소재가 국내 융합연구진에 의해 개발되었다. 한국과학기술연구원(KIST, 원장 문길주) 분자인식연구센터 우경자 박사팀과 서울대학교 보건대학원 고광표 교수팀이 공동으로 수행한 이번 연구는 미래창조과학부와 한국연구재단이 추진하는 나노·소재 기술개발사업 및 KIST 기관고유사업의 일환으로 수행되었으며, 영국 왕립화학회가 출판하는 세계적 국제학술지인 ‘Journal of Materials Chemistry B’ 에 표지(front cover) 제1권 21호의 표지 논문으로 선정되어 5월 8일 온라인 게재되었고 6월 7일 출판 예정이다. (논문명 : Magnetic hybrid colloids decorated with Ag nanoparticles bite away bacteria and chemisorb viruses) SARS와 조류 독감, 집단 식중독 등 각종 바이러스에 의한 발병이 급증하면서 유해 미생물에 대한 관심이 높아지고 있다. 나노소재기술이 발전하면서 나노입자를 유해 미생물 제거에 이용하는 기술에 대한 관심 또한 높아지고 있다. 은 나노입자는 유해 미생물에 대해 아주 우수한 효용을 나타내고 있으나, 환경으로 유실되면 생명체에 독성을 나타낼 수 있는 것으로 인식되고 있다. 은 나노입자는 작을수록 독성이 심하며, 입자 자체로써, 은 이온으로써, 그리고 이들이 발생시키는 활성 산소 종으로써 유해 미생물에 작용하는 것으로 알려져 있다. 따라서 지금까지 은 나노입자를 이용하여 유해 미생물을 제거하는 연구의 대부분은 20 nm 이하의 단위 나노입자에 집중되어 있고 단위 나노입자를 사용하는 한, 환경으로의 유실 문제를 근본적으로 해결할 수 없다. 그리고 표면이 보호된 나노입자는 유해 미생물과 직접 접촉을 할 수 없고, 표면이 보호되지 않은 단위 나노입자는 응집되어 나노 특성을 잃어버리게 되어 효과를 나타낼 수 없다. 이 문제들을 동시에 해결하는 방법이 나노소재를 마이크론소재에 접목시켜 복합소재로 만드는 것이다. 자성을 갖는 마이크론소재에 은 나노입자를 견고하게 결합하면 회수와 분산이 용이해져 환경오염은 줄이고 나노입자 표면이 그대로 노출되어 유해 미생물에 직접 작용할 수 있기 때문이다. 우경자 박사와 고광표 교수 공동 연구팀은 자성이 있는 마이크론 크기의 소재에 핵과 핵을 떠받치는 기둥을 함께 감싸는 견고한 3차원 구조로 고정된 은나노복합체 소재를 개발하고 박테리아와 바이러스 제거 효과 및 그 메커니즘을 밝혀냈다. 연구팀은 공 모양의 자성을 가진 마이크론소재 표면에 많은 수의 팔을 만들고, 팔 끝에 은으로 된 핵(1~3 nm)을 매단 후, 이 핵들을 적정 크기로 뭉쳐서 간격을 재배치하였다. 이후 재배치된 핵 뭉치와 이를 받치고 있는 팔을 함께 감싸도록 은 성분을 도포함으로써 약 30 nm 크기의 은 나노입자가 견고하게 고정된 3차원 구조의 은나노복합체 소재를 완성하였다. 연구팀은 기존의 연구가 20 nm 이하의 은 나노입자에 집중된 것과는 반대로, 바이러스가 최소 약 30 개발한 은나노복합체의 표면에서 은 나노입자가 고정되지 않은 평평한 부분은 은 이온으로 덮이도록 설계하였으며, 이러한 독특한 구조가 항균, 항바이러스 작용에 시너지 효과를 줄 것으로 예측하였다. 이번에 개발된 은나노복합체 소재를 박테리아(E. coli CN13)*와 바이러스(Bacteriophage MS2)* 제거 실험에 적용하여 효용이 뛰어난 것을 확인하였으며, 각각 99.9999%와 99% 이상의 제거율을 기록했다. 다른 종류의 박테리아와 바이러스에도 적용하여 비슷한 결과를 얻었다. 복합체 위에 고정된 은 나노입자가 이빨과 같은 역할을 하여 박테리아와 접촉하면 박테리아를 물어뜯어 박테리아 몸체가 찢어지는 효과를 주는 것을 전자현미경으로 관찰하였다. 바이러스는 복합체 위에 고정된 은 나노입자와 은 이온에 화학적으로 흡착되는 것을 확인하였다. 이러한 현상은 은 나노입자가 박테리아 몸체를 구성하고 지지하는 막 성분 중에서 칼슘 또는 마그네슘 이온을 흡착하고 또, 박테리아나 바이러스 막을 구성하는 시스테인 부분의 싸이올(╺SH) 그룹과 강한 결합을 만들기 때문에 일어나는 현상으로 해석되었다. 이렇게 큰(~30 nm) 나노입자를 이렇게 큰(~㎛) 지지체 위에 고정하여 복합체 콜로이드로 만든 것은 세계 최초의 시도이며, 유해 미생물에 대한 치명적 효과가 주목을 끌어 표지 논문으로 선정되었다. 연구진은 개발한 은나노복합체를 공기정화필터에 코팅하여 청정공기를 공급하는 시스템을 연세대학교과 공동으로 개발 중이며, 실용화를 목표로 하고 있다. KIST 우경자 박사는 “이번 연구를 통해 새로운 구조의 나노복합소재를 개발해 원천기술 확보와 그린환경 구축, 삶의 질 향상의 토대를 마련했다”고 연구의의를 밝혔다. ※ E. coli CN13: 그람-음성 박테리아로 직경×길이가 1㎛×2㎛ 크기의 막대 모양임. ※ Bacteriophage MS2: 식물성 RNA 바이러스의 일종으로 직경 27.5 nm의 구형 모양임. 초기 연구 대상으로 안전성을 고려하여 식물성 바이러스를 이용했으며, 이후 행한 병원성 바이러스에 대해서도 우수한 효능을 얻었음. ○ 연구진 <우경자 박사> ○ 그림설명 <그림1> 논문 1권 21호의 표지 왼쪽 아래에 은나노복합체의 3차원 구조를 나타내고 있으며, 여기저기에 은나노복합체가 박테리아를 물어뜯는 모양을 보여주고 있음. 사용한 은나노복합체는 왼쪽 위와 같이 자석을 이용해 회수할 수 있음. <그림2> 은나노복합체의 합성 과정을 보여주는 모식도 (A)는 평균 7 nm와 15 nm 크기의 입자가 고정된 은나노복합체를 합성하는 과정으로 금 씨드를 사용하고 (B)는 30 nm 크기의 입자가 고정된 은나노복합체를 합성하는 과정으로 은 씨드를 사용함. <그림3>은나노복합체가 박테리아를 물어뜯는 모양을 보여주는 전자현미경 이미지 왼쪽은 박테리아만 있을 때, 중앙과 오른쪽은 박테리아와 은나노복합체를 섞고 각각 15 분과 30 분이 경과한 때의 이미지임.
박테리아와 바이러스에 치명적인 은나노복합체 개발
박테리아와 바이러스에 치명적인 은나노 복합체 개발 - KIST, 영국 왕립화학회가 출판하는 세계적 국제학술지에 표지 논문으로 발표 환경오염 없이, 유해 박테리아와 바이러스에 치명적인 ‘은나노복합체 소재’가 국내 연구진에 의해 개발되어 그린 환경을 구축하고 삶의 질 향상에 기여할 것으로 기대된다. 은 나노입자를 마이크론 크기의 자성복합체 소재 위에 키워서 3차원 구조화함으로써, 유해 박테리아와 바이러스에 치명적이면서 환경으로 유실될 염려가 없는 은나노복합체 소재가 국내 융합연구진에 의해 개발되었다. 한국과학기술연구원(KIST, 원장 문길주) 분자인식연구센터 우경자 박사팀과 서울대학교 보건대학원 고광표 교수팀이 공동으로 수행한 이번 연구는 미래창조과학부와 한국연구재단이 추진하는 나노·소재 기술개발사업 및 KIST 기관고유사업의 일환으로 수행되었으며, 영국 왕립화학회가 출판하는 세계적 국제학술지인 ‘Journal of Materials Chemistry B’ 에 표지(front cover) 제1권 21호의 표지 논문으로 선정되어 5월 8일 온라인 게재되었고 6월 7일 출판 예정이다. (논문명 : Magnetic hybrid colloids decorated with Ag nanoparticles bite away bacteria and chemisorb viruses) SARS와 조류 독감, 집단 식중독 등 각종 바이러스에 의한 발병이 급증하면서 유해 미생물에 대한 관심이 높아지고 있다. 나노소재기술이 발전하면서 나노입자를 유해 미생물 제거에 이용하는 기술에 대한 관심 또한 높아지고 있다. 은 나노입자는 유해 미생물에 대해 아주 우수한 효용을 나타내고 있으나, 환경으로 유실되면 생명체에 독성을 나타낼 수 있는 것으로 인식되고 있다. 은 나노입자는 작을수록 독성이 심하며, 입자 자체로써, 은 이온으로써, 그리고 이들이 발생시키는 활성 산소 종으로써 유해 미생물에 작용하는 것으로 알려져 있다. 따라서 지금까지 은 나노입자를 이용하여 유해 미생물을 제거하는 연구의 대부분은 20 nm 이하의 단위 나노입자에 집중되어 있고 단위 나노입자를 사용하는 한, 환경으로의 유실 문제를 근본적으로 해결할 수 없다. 그리고 표면이 보호된 나노입자는 유해 미생물과 직접 접촉을 할 수 없고, 표면이 보호되지 않은 단위 나노입자는 응집되어 나노 특성을 잃어버리게 되어 효과를 나타낼 수 없다. 이 문제들을 동시에 해결하는 방법이 나노소재를 마이크론소재에 접목시켜 복합소재로 만드는 것이다. 자성을 갖는 마이크론소재에 은 나노입자를 견고하게 결합하면 회수와 분산이 용이해져 환경오염은 줄이고 나노입자 표면이 그대로 노출되어 유해 미생물에 직접 작용할 수 있기 때문이다. 우경자 박사와 고광표 교수 공동 연구팀은 자성이 있는 마이크론 크기의 소재에 핵과 핵을 떠받치는 기둥을 함께 감싸는 견고한 3차원 구조로 고정된 은나노복합체 소재를 개발하고 박테리아와 바이러스 제거 효과 및 그 메커니즘을 밝혀냈다. 연구팀은 공 모양의 자성을 가진 마이크론소재 표면에 많은 수의 팔을 만들고, 팔 끝에 은으로 된 핵(1~3 nm)을 매단 후, 이 핵들을 적정 크기로 뭉쳐서 간격을 재배치하였다. 이후 재배치된 핵 뭉치와 이를 받치고 있는 팔을 함께 감싸도록 은 성분을 도포함으로써 약 30 nm 크기의 은 나노입자가 견고하게 고정된 3차원 구조의 은나노복합체 소재를 완성하였다. 연구팀은 기존의 연구가 20 nm 이하의 은 나노입자에 집중된 것과는 반대로, 바이러스가 최소 약 30 개발한 은나노복합체의 표면에서 은 나노입자가 고정되지 않은 평평한 부분은 은 이온으로 덮이도록 설계하였으며, 이러한 독특한 구조가 항균, 항바이러스 작용에 시너지 효과를 줄 것으로 예측하였다. 이번에 개발된 은나노복합체 소재를 박테리아(E. coli CN13)*와 바이러스(Bacteriophage MS2)* 제거 실험에 적용하여 효용이 뛰어난 것을 확인하였으며, 각각 99.9999%와 99% 이상의 제거율을 기록했다. 다른 종류의 박테리아와 바이러스에도 적용하여 비슷한 결과를 얻었다. 복합체 위에 고정된 은 나노입자가 이빨과 같은 역할을 하여 박테리아와 접촉하면 박테리아를 물어뜯어 박테리아 몸체가 찢어지는 효과를 주는 것을 전자현미경으로 관찰하였다. 바이러스는 복합체 위에 고정된 은 나노입자와 은 이온에 화학적으로 흡착되는 것을 확인하였다. 이러한 현상은 은 나노입자가 박테리아 몸체를 구성하고 지지하는 막 성분 중에서 칼슘 또는 마그네슘 이온을 흡착하고 또, 박테리아나 바이러스 막을 구성하는 시스테인 부분의 싸이올(╺SH) 그룹과 강한 결합을 만들기 때문에 일어나는 현상으로 해석되었다. 이렇게 큰(~30 nm) 나노입자를 이렇게 큰(~㎛) 지지체 위에 고정하여 복합체 콜로이드로 만든 것은 세계 최초의 시도이며, 유해 미생물에 대한 치명적 효과가 주목을 끌어 표지 논문으로 선정되었다. 연구진은 개발한 은나노복합체를 공기정화필터에 코팅하여 청정공기를 공급하는 시스템을 연세대학교과 공동으로 개발 중이며, 실용화를 목표로 하고 있다. KIST 우경자 박사는 “이번 연구를 통해 새로운 구조의 나노복합소재를 개발해 원천기술 확보와 그린환경 구축, 삶의 질 향상의 토대를 마련했다”고 연구의의를 밝혔다. ※ E. coli CN13: 그람-음성 박테리아로 직경×길이가 1㎛×2㎛ 크기의 막대 모양임. ※ Bacteriophage MS2: 식물성 RNA 바이러스의 일종으로 직경 27.5 nm의 구형 모양임. 초기 연구 대상으로 안전성을 고려하여 식물성 바이러스를 이용했으며, 이후 행한 병원성 바이러스에 대해서도 우수한 효능을 얻었음. ○ 연구진 <우경자 박사> ○ 그림설명 <그림1> 논문 1권 21호의 표지 왼쪽 아래에 은나노복합체의 3차원 구조를 나타내고 있으며, 여기저기에 은나노복합체가 박테리아를 물어뜯는 모양을 보여주고 있음. 사용한 은나노복합체는 왼쪽 위와 같이 자석을 이용해 회수할 수 있음. <그림2> 은나노복합체의 합성 과정을 보여주는 모식도 (A)는 평균 7 nm와 15 nm 크기의 입자가 고정된 은나노복합체를 합성하는 과정으로 금 씨드를 사용하고 (B)는 30 nm 크기의 입자가 고정된 은나노복합체를 합성하는 과정으로 은 씨드를 사용함. <그림3>은나노복합체가 박테리아를 물어뜯는 모양을 보여주는 전자현미경 이미지 왼쪽은 박테리아만 있을 때, 중앙과 오른쪽은 박테리아와 은나노복합체를 섞고 각각 15 분과 30 분이 경과한 때의 이미지임.
박테리아와 바이러스에 치명적인 은나노복합체 개발
박테리아와 바이러스에 치명적인 은나노 복합체 개발 - KIST, 영국 왕립화학회가 출판하는 세계적 국제학술지에 표지 논문으로 발표 환경오염 없이, 유해 박테리아와 바이러스에 치명적인 ‘은나노복합체 소재’가 국내 연구진에 의해 개발되어 그린 환경을 구축하고 삶의 질 향상에 기여할 것으로 기대된다. 은 나노입자를 마이크론 크기의 자성복합체 소재 위에 키워서 3차원 구조화함으로써, 유해 박테리아와 바이러스에 치명적이면서 환경으로 유실될 염려가 없는 은나노복합체 소재가 국내 융합연구진에 의해 개발되었다. 한국과학기술연구원(KIST, 원장 문길주) 분자인식연구센터 우경자 박사팀과 서울대학교 보건대학원 고광표 교수팀이 공동으로 수행한 이번 연구는 미래창조과학부와 한국연구재단이 추진하는 나노·소재 기술개발사업 및 KIST 기관고유사업의 일환으로 수행되었으며, 영국 왕립화학회가 출판하는 세계적 국제학술지인 ‘Journal of Materials Chemistry B’ 에 표지(front cover) 제1권 21호의 표지 논문으로 선정되어 5월 8일 온라인 게재되었고 6월 7일 출판 예정이다. (논문명 : Magnetic hybrid colloids decorated with Ag nanoparticles bite away bacteria and chemisorb viruses) SARS와 조류 독감, 집단 식중독 등 각종 바이러스에 의한 발병이 급증하면서 유해 미생물에 대한 관심이 높아지고 있다. 나노소재기술이 발전하면서 나노입자를 유해 미생물 제거에 이용하는 기술에 대한 관심 또한 높아지고 있다. 은 나노입자는 유해 미생물에 대해 아주 우수한 효용을 나타내고 있으나, 환경으로 유실되면 생명체에 독성을 나타낼 수 있는 것으로 인식되고 있다. 은 나노입자는 작을수록 독성이 심하며, 입자 자체로써, 은 이온으로써, 그리고 이들이 발생시키는 활성 산소 종으로써 유해 미생물에 작용하는 것으로 알려져 있다. 따라서 지금까지 은 나노입자를 이용하여 유해 미생물을 제거하는 연구의 대부분은 20 nm 이하의 단위 나노입자에 집중되어 있고 단위 나노입자를 사용하는 한, 환경으로의 유실 문제를 근본적으로 해결할 수 없다. 그리고 표면이 보호된 나노입자는 유해 미생물과 직접 접촉을 할 수 없고, 표면이 보호되지 않은 단위 나노입자는 응집되어 나노 특성을 잃어버리게 되어 효과를 나타낼 수 없다. 이 문제들을 동시에 해결하는 방법이 나노소재를 마이크론소재에 접목시켜 복합소재로 만드는 것이다. 자성을 갖는 마이크론소재에 은 나노입자를 견고하게 결합하면 회수와 분산이 용이해져 환경오염은 줄이고 나노입자 표면이 그대로 노출되어 유해 미생물에 직접 작용할 수 있기 때문이다. 우경자 박사와 고광표 교수 공동 연구팀은 자성이 있는 마이크론 크기의 소재에 핵과 핵을 떠받치는 기둥을 함께 감싸는 견고한 3차원 구조로 고정된 은나노복합체 소재를 개발하고 박테리아와 바이러스 제거 효과 및 그 메커니즘을 밝혀냈다. 연구팀은 공 모양의 자성을 가진 마이크론소재 표면에 많은 수의 팔을 만들고, 팔 끝에 은으로 된 핵(1~3 nm)을 매단 후, 이 핵들을 적정 크기로 뭉쳐서 간격을 재배치하였다. 이후 재배치된 핵 뭉치와 이를 받치고 있는 팔을 함께 감싸도록 은 성분을 도포함으로써 약 30 nm 크기의 은 나노입자가 견고하게 고정된 3차원 구조의 은나노복합체 소재를 완성하였다. 연구팀은 기존의 연구가 20 nm 이하의 은 나노입자에 집중된 것과는 반대로, 바이러스가 최소 약 30 개발한 은나노복합체의 표면에서 은 나노입자가 고정되지 않은 평평한 부분은 은 이온으로 덮이도록 설계하였으며, 이러한 독특한 구조가 항균, 항바이러스 작용에 시너지 효과를 줄 것으로 예측하였다. 이번에 개발된 은나노복합체 소재를 박테리아(E. coli CN13)*와 바이러스(Bacteriophage MS2)* 제거 실험에 적용하여 효용이 뛰어난 것을 확인하였으며, 각각 99.9999%와 99% 이상의 제거율을 기록했다. 다른 종류의 박테리아와 바이러스에도 적용하여 비슷한 결과를 얻었다. 복합체 위에 고정된 은 나노입자가 이빨과 같은 역할을 하여 박테리아와 접촉하면 박테리아를 물어뜯어 박테리아 몸체가 찢어지는 효과를 주는 것을 전자현미경으로 관찰하였다. 바이러스는 복합체 위에 고정된 은 나노입자와 은 이온에 화학적으로 흡착되는 것을 확인하였다. 이러한 현상은 은 나노입자가 박테리아 몸체를 구성하고 지지하는 막 성분 중에서 칼슘 또는 마그네슘 이온을 흡착하고 또, 박테리아나 바이러스 막을 구성하는 시스테인 부분의 싸이올(╺SH) 그룹과 강한 결합을 만들기 때문에 일어나는 현상으로 해석되었다. 이렇게 큰(~30 nm) 나노입자를 이렇게 큰(~㎛) 지지체 위에 고정하여 복합체 콜로이드로 만든 것은 세계 최초의 시도이며, 유해 미생물에 대한 치명적 효과가 주목을 끌어 표지 논문으로 선정되었다. 연구진은 개발한 은나노복합체를 공기정화필터에 코팅하여 청정공기를 공급하는 시스템을 연세대학교과 공동으로 개발 중이며, 실용화를 목표로 하고 있다. KIST 우경자 박사는 “이번 연구를 통해 새로운 구조의 나노복합소재를 개발해 원천기술 확보와 그린환경 구축, 삶의 질 향상의 토대를 마련했다”고 연구의의를 밝혔다. ※ E. coli CN13: 그람-음성 박테리아로 직경×길이가 1㎛×2㎛ 크기의 막대 모양임. ※ Bacteriophage MS2: 식물성 RNA 바이러스의 일종으로 직경 27.5 nm의 구형 모양임. 초기 연구 대상으로 안전성을 고려하여 식물성 바이러스를 이용했으며, 이후 행한 병원성 바이러스에 대해서도 우수한 효능을 얻었음. ○ 연구진 <우경자 박사> ○ 그림설명 <그림1> 논문 1권 21호의 표지 왼쪽 아래에 은나노복합체의 3차원 구조를 나타내고 있으며, 여기저기에 은나노복합체가 박테리아를 물어뜯는 모양을 보여주고 있음. 사용한 은나노복합체는 왼쪽 위와 같이 자석을 이용해 회수할 수 있음. <그림2> 은나노복합체의 합성 과정을 보여주는 모식도 (A)는 평균 7 nm와 15 nm 크기의 입자가 고정된 은나노복합체를 합성하는 과정으로 금 씨드를 사용하고 (B)는 30 nm 크기의 입자가 고정된 은나노복합체를 합성하는 과정으로 은 씨드를 사용함. <그림3>은나노복합체가 박테리아를 물어뜯는 모양을 보여주는 전자현미경 이미지 왼쪽은 박테리아만 있을 때, 중앙과 오른쪽은 박테리아와 은나노복합체를 섞고 각각 15 분과 30 분이 경과한 때의 이미지임.