검색결과
게시물 키워드""에 대한 9083개의 검색결과를 찾았습니다.
잘린 신체부위 재생되는 원리 규명, 중추신경 재생 연구 실마리 제공
잘린 신체부위 재생되는 원리규명, 중추신경 재생 연구 실마리 제공 - KIST, 포유류 말초신경 재생 원리 규명 - 중추신경 재생과 연관성 밝혀 응급사고로 손가락이 잘리고, 허벅지에 큰 상처가 나서 다리가 마비되었다. 회복될 수 있을까? 정답은 ‘가능하다’이다. 우리 몸의 감각과 운동자극을 받아들이는 말초신경은 손상 정도와 부위에 따라 회복이 가능하다 . 신경이 다시 재생된다는 뜻이다. 그러나 이러한 신경 재생은 뇌와 척수로 구성된 중추신경에서는 일어나지 않는다. 몸이 두동강이 나도 살아나는 하등동물과 달리, 포유류의 경우 중추신경은 손상이 되면 재생이 불가능하다고 알려져 있다. 슈퍼맨으로 유명한 ‘크리스토퍼 리브’는 중추신경이 손상된 후 끝내 회복하지 못하고 생을 마감하였다. 한국과학기술연구원(KIST, 원장 문길주) 뇌과학연구소 허은미 박사, 미국 존스홉킨스 의과대학 Fengquan Zhou 연구팀이 포유류에서 말초신경계의 재생을 유도하는 기전을 밝혔다. 연구결과는 10월 28일 Nature Communications “PI3K-GSK3 signaling regulates mammalian axon regeneration by inducing the expression of Smad1” 제목으로 게재되었다. 공동 연구팀은 말초신경이 손상되면 PI3K 인산화 단백질과 GSK3 인산화 단백질의 활성이 변하고, 이러한 과정을 통해 신경재생을 최종적으로 유발하는 Smad1 유전자가 발현됨으로써 신경이 재생된다는 사실을 발견했다. 이는 말초신경을 재생하는 인자들이 일련의 신호전달과정을 통해 서로 연결되어 있으며 어느 한 인자라도 조절이 제대로 되지 않으면 신경 재생에 치명적인 영향을 초래할 수 있다는 의미이다. <그림 1 참고> * PI3K (phosphoinositide 3-kinase): 세포 내 신호전달 과정을 조절하는 효소로, 세포 성장, 증식 및 분화, 이동, 생존 등 여러 기능을 조절함 * GSK3 (glycogen synthase kinase 3): 글루코스 대사를 조절하는 효소로 밝혀졌으나 신경계에서도 신경세포의 발달 및 분화, 세포 사멸 조절 등 여러 가지 중요한 역할을 하는 것으로 밝혀지고 있고, 각종 신경성 질환과도 밀접한 관련이 있음 * Smad 1 : 외부 신호를 인식하여 여러 종류의 유전자 발현을 조절함으로써 세포 성장, 분화, 모양 변화, 생존 등의 과정에서 중요한 역할을 하는 전사조절 인자 본 연구에서 발견한 말초신경 재생과 관련한 3개의 인자 PI3K 인산화 단백질, GSK3 인산화 단백질, Smad1 전사조절인자는 우연히도 그동안의 연구를 통해, 중추 신경 재생과 연관이 있다고 개별적으로 밝혀진 몇 안되는 타겟 인자들이다. 타겟 인자의 발견은 수많은 신호전달 과정에 관련된 유전자 및 단백질을 각각 스크리닝 하는 방법을 통해 알게된 것으로, 신경재생과정에서 이들간의 상관관계는 밝혀진 바가 없다. 이들 인자가 일치한다는 것은, 말초 신경 재생과 중추신경 재생이 서로 관련이 있음을 시사한다. KIST 허은미 박사는 “중추신경 재생은 여전히 힘들고 현재까지는 거의 불가능한 것이 사실이지만, 말초신경계에서 일어나는 신경 재생의 기전을 이해함으로써 중추신경 재생에 접근할 수 있을 것으로 보인다. 관련 기전을 밝힘으로써, 재생을 조절하는 새로운 방법을 제안할 수 있다는데 연구의 의의가 있다”고 말했다. 이번 연구는 같은 연구팀에 의해 최근에 개발된 신경재생 모델 (2011년 Nature Communications 제 2권 543호 게제)을 활용한 후속 연구로, 포유류의 신경계 손상과 재생 기전을 이해하는데 한 발 더 다가섰다고 판단된다. ○ 연구진 KIST 허은미 박사 ○ 그림설명 <그림 1> 말초 신경 재생 기작 말초 신경이 손상되면 PI3K 활성화, GSK3 비활성화, Smad1 발현 순서로 재생이 일어난다. 이 과정에서 한 단계가 누락되면 재생은 일어나지 않는다. <그림 2> PI3K-GSK3-Smad1 신호전달 과정이 신경재생에 미치는 영향 가. 생체 내 신경재생 조절 기전을 규명하기 위해 도입한 마우스 모델. 성체 쥐의 신경에 유전자 발현을 조절할 수 있는 물질을 직접 주입한 후 말초신경에 손상을 주어 유도한 유전자의 변화가 신경재생에 미치는 영향을 추적하는 시스템. 나. PI3K와 Smad1이 신경 재생에 체내에서 미치는 영향, 녹색으로 보이는 부분이 재생한 신경세포의 축삭이다. 대조군 신경이 길게 재생이 된 반면, 신호를 저해한 신경은 재생이 상당히 저해되었다.
잘린 신체부위 재생되는 원리 규명, 중추신경 재생 연구 실마리 제공
잘린 신체부위 재생되는 원리규명, 중추신경 재생 연구 실마리 제공 - KIST, 포유류 말초신경 재생 원리 규명 - 중추신경 재생과 연관성 밝혀 응급사고로 손가락이 잘리고, 허벅지에 큰 상처가 나서 다리가 마비되었다. 회복될 수 있을까? 정답은 ‘가능하다’이다. 우리 몸의 감각과 운동자극을 받아들이는 말초신경은 손상 정도와 부위에 따라 회복이 가능하다 . 신경이 다시 재생된다는 뜻이다. 그러나 이러한 신경 재생은 뇌와 척수로 구성된 중추신경에서는 일어나지 않는다. 몸이 두동강이 나도 살아나는 하등동물과 달리, 포유류의 경우 중추신경은 손상이 되면 재생이 불가능하다고 알려져 있다. 슈퍼맨으로 유명한 ‘크리스토퍼 리브’는 중추신경이 손상된 후 끝내 회복하지 못하고 생을 마감하였다. 한국과학기술연구원(KIST, 원장 문길주) 뇌과학연구소 허은미 박사, 미국 존스홉킨스 의과대학 Fengquan Zhou 연구팀이 포유류에서 말초신경계의 재생을 유도하는 기전을 밝혔다. 연구결과는 10월 28일 Nature Communications “PI3K-GSK3 signaling regulates mammalian axon regeneration by inducing the expression of Smad1” 제목으로 게재되었다. 공동 연구팀은 말초신경이 손상되면 PI3K 인산화 단백질과 GSK3 인산화 단백질의 활성이 변하고, 이러한 과정을 통해 신경재생을 최종적으로 유발하는 Smad1 유전자가 발현됨으로써 신경이 재생된다는 사실을 발견했다. 이는 말초신경을 재생하는 인자들이 일련의 신호전달과정을 통해 서로 연결되어 있으며 어느 한 인자라도 조절이 제대로 되지 않으면 신경 재생에 치명적인 영향을 초래할 수 있다는 의미이다. <그림 1 참고> * PI3K (phosphoinositide 3-kinase): 세포 내 신호전달 과정을 조절하는 효소로, 세포 성장, 증식 및 분화, 이동, 생존 등 여러 기능을 조절함 * GSK3 (glycogen synthase kinase 3): 글루코스 대사를 조절하는 효소로 밝혀졌으나 신경계에서도 신경세포의 발달 및 분화, 세포 사멸 조절 등 여러 가지 중요한 역할을 하는 것으로 밝혀지고 있고, 각종 신경성 질환과도 밀접한 관련이 있음 * Smad 1 : 외부 신호를 인식하여 여러 종류의 유전자 발현을 조절함으로써 세포 성장, 분화, 모양 변화, 생존 등의 과정에서 중요한 역할을 하는 전사조절 인자 본 연구에서 발견한 말초신경 재생과 관련한 3개의 인자 PI3K 인산화 단백질, GSK3 인산화 단백질, Smad1 전사조절인자는 우연히도 그동안의 연구를 통해, 중추 신경 재생과 연관이 있다고 개별적으로 밝혀진 몇 안되는 타겟 인자들이다. 타겟 인자의 발견은 수많은 신호전달 과정에 관련된 유전자 및 단백질을 각각 스크리닝 하는 방법을 통해 알게된 것으로, 신경재생과정에서 이들간의 상관관계는 밝혀진 바가 없다. 이들 인자가 일치한다는 것은, 말초 신경 재생과 중추신경 재생이 서로 관련이 있음을 시사한다. KIST 허은미 박사는 “중추신경 재생은 여전히 힘들고 현재까지는 거의 불가능한 것이 사실이지만, 말초신경계에서 일어나는 신경 재생의 기전을 이해함으로써 중추신경 재생에 접근할 수 있을 것으로 보인다. 관련 기전을 밝힘으로써, 재생을 조절하는 새로운 방법을 제안할 수 있다는데 연구의 의의가 있다”고 말했다. 이번 연구는 같은 연구팀에 의해 최근에 개발된 신경재생 모델 (2011년 Nature Communications 제 2권 543호 게제)을 활용한 후속 연구로, 포유류의 신경계 손상과 재생 기전을 이해하는데 한 발 더 다가섰다고 판단된다. ○ 연구진 KIST 허은미 박사 ○ 그림설명 <그림 1> 말초 신경 재생 기작 말초 신경이 손상되면 PI3K 활성화, GSK3 비활성화, Smad1 발현 순서로 재생이 일어난다. 이 과정에서 한 단계가 누락되면 재생은 일어나지 않는다. <그림 2> PI3K-GSK3-Smad1 신호전달 과정이 신경재생에 미치는 영향 가. 생체 내 신경재생 조절 기전을 규명하기 위해 도입한 마우스 모델. 성체 쥐의 신경에 유전자 발현을 조절할 수 있는 물질을 직접 주입한 후 말초신경에 손상을 주어 유도한 유전자의 변화가 신경재생에 미치는 영향을 추적하는 시스템. 나. PI3K와 Smad1이 신경 재생에 체내에서 미치는 영향, 녹색으로 보이는 부분이 재생한 신경세포의 축삭이다. 대조군 신경이 길게 재생이 된 반면, 신호를 저해한 신경은 재생이 상당히 저해되었다.
잘린 신체부위 재생되는 원리 규명, 중추신경 재생 연구 실마리 제공
잘린 신체부위 재생되는 원리규명, 중추신경 재생 연구 실마리 제공 - KIST, 포유류 말초신경 재생 원리 규명 - 중추신경 재생과 연관성 밝혀 응급사고로 손가락이 잘리고, 허벅지에 큰 상처가 나서 다리가 마비되었다. 회복될 수 있을까? 정답은 ‘가능하다’이다. 우리 몸의 감각과 운동자극을 받아들이는 말초신경은 손상 정도와 부위에 따라 회복이 가능하다 . 신경이 다시 재생된다는 뜻이다. 그러나 이러한 신경 재생은 뇌와 척수로 구성된 중추신경에서는 일어나지 않는다. 몸이 두동강이 나도 살아나는 하등동물과 달리, 포유류의 경우 중추신경은 손상이 되면 재생이 불가능하다고 알려져 있다. 슈퍼맨으로 유명한 ‘크리스토퍼 리브’는 중추신경이 손상된 후 끝내 회복하지 못하고 생을 마감하였다. 한국과학기술연구원(KIST, 원장 문길주) 뇌과학연구소 허은미 박사, 미국 존스홉킨스 의과대학 Fengquan Zhou 연구팀이 포유류에서 말초신경계의 재생을 유도하는 기전을 밝혔다. 연구결과는 10월 28일 Nature Communications “PI3K-GSK3 signaling regulates mammalian axon regeneration by inducing the expression of Smad1” 제목으로 게재되었다. 공동 연구팀은 말초신경이 손상되면 PI3K 인산화 단백질과 GSK3 인산화 단백질의 활성이 변하고, 이러한 과정을 통해 신경재생을 최종적으로 유발하는 Smad1 유전자가 발현됨으로써 신경이 재생된다는 사실을 발견했다. 이는 말초신경을 재생하는 인자들이 일련의 신호전달과정을 통해 서로 연결되어 있으며 어느 한 인자라도 조절이 제대로 되지 않으면 신경 재생에 치명적인 영향을 초래할 수 있다는 의미이다. <그림 1 참고> * PI3K (phosphoinositide 3-kinase): 세포 내 신호전달 과정을 조절하는 효소로, 세포 성장, 증식 및 분화, 이동, 생존 등 여러 기능을 조절함 * GSK3 (glycogen synthase kinase 3): 글루코스 대사를 조절하는 효소로 밝혀졌으나 신경계에서도 신경세포의 발달 및 분화, 세포 사멸 조절 등 여러 가지 중요한 역할을 하는 것으로 밝혀지고 있고, 각종 신경성 질환과도 밀접한 관련이 있음 * Smad 1 : 외부 신호를 인식하여 여러 종류의 유전자 발현을 조절함으로써 세포 성장, 분화, 모양 변화, 생존 등의 과정에서 중요한 역할을 하는 전사조절 인자 본 연구에서 발견한 말초신경 재생과 관련한 3개의 인자 PI3K 인산화 단백질, GSK3 인산화 단백질, Smad1 전사조절인자는 우연히도 그동안의 연구를 통해, 중추 신경 재생과 연관이 있다고 개별적으로 밝혀진 몇 안되는 타겟 인자들이다. 타겟 인자의 발견은 수많은 신호전달 과정에 관련된 유전자 및 단백질을 각각 스크리닝 하는 방법을 통해 알게된 것으로, 신경재생과정에서 이들간의 상관관계는 밝혀진 바가 없다. 이들 인자가 일치한다는 것은, 말초 신경 재생과 중추신경 재생이 서로 관련이 있음을 시사한다. KIST 허은미 박사는 “중추신경 재생은 여전히 힘들고 현재까지는 거의 불가능한 것이 사실이지만, 말초신경계에서 일어나는 신경 재생의 기전을 이해함으로써 중추신경 재생에 접근할 수 있을 것으로 보인다. 관련 기전을 밝힘으로써, 재생을 조절하는 새로운 방법을 제안할 수 있다는데 연구의 의의가 있다”고 말했다. 이번 연구는 같은 연구팀에 의해 최근에 개발된 신경재생 모델 (2011년 Nature Communications 제 2권 543호 게제)을 활용한 후속 연구로, 포유류의 신경계 손상과 재생 기전을 이해하는데 한 발 더 다가섰다고 판단된다. ○ 연구진 KIST 허은미 박사 ○ 그림설명 <그림 1> 말초 신경 재생 기작 말초 신경이 손상되면 PI3K 활성화, GSK3 비활성화, Smad1 발현 순서로 재생이 일어난다. 이 과정에서 한 단계가 누락되면 재생은 일어나지 않는다. <그림 2> PI3K-GSK3-Smad1 신호전달 과정이 신경재생에 미치는 영향 가. 생체 내 신경재생 조절 기전을 규명하기 위해 도입한 마우스 모델. 성체 쥐의 신경에 유전자 발현을 조절할 수 있는 물질을 직접 주입한 후 말초신경에 손상을 주어 유도한 유전자의 변화가 신경재생에 미치는 영향을 추적하는 시스템. 나. PI3K와 Smad1이 신경 재생에 체내에서 미치는 영향, 녹색으로 보이는 부분이 재생한 신경세포의 축삭이다. 대조군 신경이 길게 재생이 된 반면, 신호를 저해한 신경은 재생이 상당히 저해되었다.
잘린 신체부위 재생되는 원리 규명, 중추신경 재생 연구 실마리 제공
잘린 신체부위 재생되는 원리규명, 중추신경 재생 연구 실마리 제공 - KIST, 포유류 말초신경 재생 원리 규명 - 중추신경 재생과 연관성 밝혀 응급사고로 손가락이 잘리고, 허벅지에 큰 상처가 나서 다리가 마비되었다. 회복될 수 있을까? 정답은 ‘가능하다’이다. 우리 몸의 감각과 운동자극을 받아들이는 말초신경은 손상 정도와 부위에 따라 회복이 가능하다 . 신경이 다시 재생된다는 뜻이다. 그러나 이러한 신경 재생은 뇌와 척수로 구성된 중추신경에서는 일어나지 않는다. 몸이 두동강이 나도 살아나는 하등동물과 달리, 포유류의 경우 중추신경은 손상이 되면 재생이 불가능하다고 알려져 있다. 슈퍼맨으로 유명한 ‘크리스토퍼 리브’는 중추신경이 손상된 후 끝내 회복하지 못하고 생을 마감하였다. 한국과학기술연구원(KIST, 원장 문길주) 뇌과학연구소 허은미 박사, 미국 존스홉킨스 의과대학 Fengquan Zhou 연구팀이 포유류에서 말초신경계의 재생을 유도하는 기전을 밝혔다. 연구결과는 10월 28일 Nature Communications “PI3K-GSK3 signaling regulates mammalian axon regeneration by inducing the expression of Smad1” 제목으로 게재되었다. 공동 연구팀은 말초신경이 손상되면 PI3K 인산화 단백질과 GSK3 인산화 단백질의 활성이 변하고, 이러한 과정을 통해 신경재생을 최종적으로 유발하는 Smad1 유전자가 발현됨으로써 신경이 재생된다는 사실을 발견했다. 이는 말초신경을 재생하는 인자들이 일련의 신호전달과정을 통해 서로 연결되어 있으며 어느 한 인자라도 조절이 제대로 되지 않으면 신경 재생에 치명적인 영향을 초래할 수 있다는 의미이다. <그림 1 참고> * PI3K (phosphoinositide 3-kinase): 세포 내 신호전달 과정을 조절하는 효소로, 세포 성장, 증식 및 분화, 이동, 생존 등 여러 기능을 조절함 * GSK3 (glycogen synthase kinase 3): 글루코스 대사를 조절하는 효소로 밝혀졌으나 신경계에서도 신경세포의 발달 및 분화, 세포 사멸 조절 등 여러 가지 중요한 역할을 하는 것으로 밝혀지고 있고, 각종 신경성 질환과도 밀접한 관련이 있음 * Smad 1 : 외부 신호를 인식하여 여러 종류의 유전자 발현을 조절함으로써 세포 성장, 분화, 모양 변화, 생존 등의 과정에서 중요한 역할을 하는 전사조절 인자 본 연구에서 발견한 말초신경 재생과 관련한 3개의 인자 PI3K 인산화 단백질, GSK3 인산화 단백질, Smad1 전사조절인자는 우연히도 그동안의 연구를 통해, 중추 신경 재생과 연관이 있다고 개별적으로 밝혀진 몇 안되는 타겟 인자들이다. 타겟 인자의 발견은 수많은 신호전달 과정에 관련된 유전자 및 단백질을 각각 스크리닝 하는 방법을 통해 알게된 것으로, 신경재생과정에서 이들간의 상관관계는 밝혀진 바가 없다. 이들 인자가 일치한다는 것은, 말초 신경 재생과 중추신경 재생이 서로 관련이 있음을 시사한다. KIST 허은미 박사는 “중추신경 재생은 여전히 힘들고 현재까지는 거의 불가능한 것이 사실이지만, 말초신경계에서 일어나는 신경 재생의 기전을 이해함으로써 중추신경 재생에 접근할 수 있을 것으로 보인다. 관련 기전을 밝힘으로써, 재생을 조절하는 새로운 방법을 제안할 수 있다는데 연구의 의의가 있다”고 말했다. 이번 연구는 같은 연구팀에 의해 최근에 개발된 신경재생 모델 (2011년 Nature Communications 제 2권 543호 게제)을 활용한 후속 연구로, 포유류의 신경계 손상과 재생 기전을 이해하는데 한 발 더 다가섰다고 판단된다. ○ 연구진 KIST 허은미 박사 ○ 그림설명 <그림 1> 말초 신경 재생 기작 말초 신경이 손상되면 PI3K 활성화, GSK3 비활성화, Smad1 발현 순서로 재생이 일어난다. 이 과정에서 한 단계가 누락되면 재생은 일어나지 않는다. <그림 2> PI3K-GSK3-Smad1 신호전달 과정이 신경재생에 미치는 영향 가. 생체 내 신경재생 조절 기전을 규명하기 위해 도입한 마우스 모델. 성체 쥐의 신경에 유전자 발현을 조절할 수 있는 물질을 직접 주입한 후 말초신경에 손상을 주어 유도한 유전자의 변화가 신경재생에 미치는 영향을 추적하는 시스템. 나. PI3K와 Smad1이 신경 재생에 체내에서 미치는 영향, 녹색으로 보이는 부분이 재생한 신경세포의 축삭이다. 대조군 신경이 길게 재생이 된 반면, 신호를 저해한 신경은 재생이 상당히 저해되었다.
잘린 신체부위 재생되는 원리 규명, 중추신경 재생 연구 실마리 제공
잘린 신체부위 재생되는 원리규명, 중추신경 재생 연구 실마리 제공 - KIST, 포유류 말초신경 재생 원리 규명 - 중추신경 재생과 연관성 밝혀 응급사고로 손가락이 잘리고, 허벅지에 큰 상처가 나서 다리가 마비되었다. 회복될 수 있을까? 정답은 ‘가능하다’이다. 우리 몸의 감각과 운동자극을 받아들이는 말초신경은 손상 정도와 부위에 따라 회복이 가능하다 . 신경이 다시 재생된다는 뜻이다. 그러나 이러한 신경 재생은 뇌와 척수로 구성된 중추신경에서는 일어나지 않는다. 몸이 두동강이 나도 살아나는 하등동물과 달리, 포유류의 경우 중추신경은 손상이 되면 재생이 불가능하다고 알려져 있다. 슈퍼맨으로 유명한 ‘크리스토퍼 리브’는 중추신경이 손상된 후 끝내 회복하지 못하고 생을 마감하였다. 한국과학기술연구원(KIST, 원장 문길주) 뇌과학연구소 허은미 박사, 미국 존스홉킨스 의과대학 Fengquan Zhou 연구팀이 포유류에서 말초신경계의 재생을 유도하는 기전을 밝혔다. 연구결과는 10월 28일 Nature Communications “PI3K-GSK3 signaling regulates mammalian axon regeneration by inducing the expression of Smad1” 제목으로 게재되었다. 공동 연구팀은 말초신경이 손상되면 PI3K 인산화 단백질과 GSK3 인산화 단백질의 활성이 변하고, 이러한 과정을 통해 신경재생을 최종적으로 유발하는 Smad1 유전자가 발현됨으로써 신경이 재생된다는 사실을 발견했다. 이는 말초신경을 재생하는 인자들이 일련의 신호전달과정을 통해 서로 연결되어 있으며 어느 한 인자라도 조절이 제대로 되지 않으면 신경 재생에 치명적인 영향을 초래할 수 있다는 의미이다. <그림 1 참고> * PI3K (phosphoinositide 3-kinase): 세포 내 신호전달 과정을 조절하는 효소로, 세포 성장, 증식 및 분화, 이동, 생존 등 여러 기능을 조절함 * GSK3 (glycogen synthase kinase 3): 글루코스 대사를 조절하는 효소로 밝혀졌으나 신경계에서도 신경세포의 발달 및 분화, 세포 사멸 조절 등 여러 가지 중요한 역할을 하는 것으로 밝혀지고 있고, 각종 신경성 질환과도 밀접한 관련이 있음 * Smad 1 : 외부 신호를 인식하여 여러 종류의 유전자 발현을 조절함으로써 세포 성장, 분화, 모양 변화, 생존 등의 과정에서 중요한 역할을 하는 전사조절 인자 본 연구에서 발견한 말초신경 재생과 관련한 3개의 인자 PI3K 인산화 단백질, GSK3 인산화 단백질, Smad1 전사조절인자는 우연히도 그동안의 연구를 통해, 중추 신경 재생과 연관이 있다고 개별적으로 밝혀진 몇 안되는 타겟 인자들이다. 타겟 인자의 발견은 수많은 신호전달 과정에 관련된 유전자 및 단백질을 각각 스크리닝 하는 방법을 통해 알게된 것으로, 신경재생과정에서 이들간의 상관관계는 밝혀진 바가 없다. 이들 인자가 일치한다는 것은, 말초 신경 재생과 중추신경 재생이 서로 관련이 있음을 시사한다. KIST 허은미 박사는 “중추신경 재생은 여전히 힘들고 현재까지는 거의 불가능한 것이 사실이지만, 말초신경계에서 일어나는 신경 재생의 기전을 이해함으로써 중추신경 재생에 접근할 수 있을 것으로 보인다. 관련 기전을 밝힘으로써, 재생을 조절하는 새로운 방법을 제안할 수 있다는데 연구의 의의가 있다”고 말했다. 이번 연구는 같은 연구팀에 의해 최근에 개발된 신경재생 모델 (2011년 Nature Communications 제 2권 543호 게제)을 활용한 후속 연구로, 포유류의 신경계 손상과 재생 기전을 이해하는데 한 발 더 다가섰다고 판단된다. ○ 연구진 KIST 허은미 박사 ○ 그림설명 <그림 1> 말초 신경 재생 기작 말초 신경이 손상되면 PI3K 활성화, GSK3 비활성화, Smad1 발현 순서로 재생이 일어난다. 이 과정에서 한 단계가 누락되면 재생은 일어나지 않는다. <그림 2> PI3K-GSK3-Smad1 신호전달 과정이 신경재생에 미치는 영향 가. 생체 내 신경재생 조절 기전을 규명하기 위해 도입한 마우스 모델. 성체 쥐의 신경에 유전자 발현을 조절할 수 있는 물질을 직접 주입한 후 말초신경에 손상을 주어 유도한 유전자의 변화가 신경재생에 미치는 영향을 추적하는 시스템. 나. PI3K와 Smad1이 신경 재생에 체내에서 미치는 영향, 녹색으로 보이는 부분이 재생한 신경세포의 축삭이다. 대조군 신경이 길게 재생이 된 반면, 신호를 저해한 신경은 재생이 상당히 저해되었다.
잘린 신체부위 재생되는 원리 규명, 중추신경 재생 연구 실마리 제공
잘린 신체부위 재생되는 원리규명, 중추신경 재생 연구 실마리 제공 - KIST, 포유류 말초신경 재생 원리 규명 - 중추신경 재생과 연관성 밝혀 응급사고로 손가락이 잘리고, 허벅지에 큰 상처가 나서 다리가 마비되었다. 회복될 수 있을까? 정답은 ‘가능하다’이다. 우리 몸의 감각과 운동자극을 받아들이는 말초신경은 손상 정도와 부위에 따라 회복이 가능하다 . 신경이 다시 재생된다는 뜻이다. 그러나 이러한 신경 재생은 뇌와 척수로 구성된 중추신경에서는 일어나지 않는다. 몸이 두동강이 나도 살아나는 하등동물과 달리, 포유류의 경우 중추신경은 손상이 되면 재생이 불가능하다고 알려져 있다. 슈퍼맨으로 유명한 ‘크리스토퍼 리브’는 중추신경이 손상된 후 끝내 회복하지 못하고 생을 마감하였다. 한국과학기술연구원(KIST, 원장 문길주) 뇌과학연구소 허은미 박사, 미국 존스홉킨스 의과대학 Fengquan Zhou 연구팀이 포유류에서 말초신경계의 재생을 유도하는 기전을 밝혔다. 연구결과는 10월 28일 Nature Communications “PI3K-GSK3 signaling regulates mammalian axon regeneration by inducing the expression of Smad1” 제목으로 게재되었다. 공동 연구팀은 말초신경이 손상되면 PI3K 인산화 단백질과 GSK3 인산화 단백질의 활성이 변하고, 이러한 과정을 통해 신경재생을 최종적으로 유발하는 Smad1 유전자가 발현됨으로써 신경이 재생된다는 사실을 발견했다. 이는 말초신경을 재생하는 인자들이 일련의 신호전달과정을 통해 서로 연결되어 있으며 어느 한 인자라도 조절이 제대로 되지 않으면 신경 재생에 치명적인 영향을 초래할 수 있다는 의미이다. <그림 1 참고> * PI3K (phosphoinositide 3-kinase): 세포 내 신호전달 과정을 조절하는 효소로, 세포 성장, 증식 및 분화, 이동, 생존 등 여러 기능을 조절함 * GSK3 (glycogen synthase kinase 3): 글루코스 대사를 조절하는 효소로 밝혀졌으나 신경계에서도 신경세포의 발달 및 분화, 세포 사멸 조절 등 여러 가지 중요한 역할을 하는 것으로 밝혀지고 있고, 각종 신경성 질환과도 밀접한 관련이 있음 * Smad 1 : 외부 신호를 인식하여 여러 종류의 유전자 발현을 조절함으로써 세포 성장, 분화, 모양 변화, 생존 등의 과정에서 중요한 역할을 하는 전사조절 인자 본 연구에서 발견한 말초신경 재생과 관련한 3개의 인자 PI3K 인산화 단백질, GSK3 인산화 단백질, Smad1 전사조절인자는 우연히도 그동안의 연구를 통해, 중추 신경 재생과 연관이 있다고 개별적으로 밝혀진 몇 안되는 타겟 인자들이다. 타겟 인자의 발견은 수많은 신호전달 과정에 관련된 유전자 및 단백질을 각각 스크리닝 하는 방법을 통해 알게된 것으로, 신경재생과정에서 이들간의 상관관계는 밝혀진 바가 없다. 이들 인자가 일치한다는 것은, 말초 신경 재생과 중추신경 재생이 서로 관련이 있음을 시사한다. KIST 허은미 박사는 “중추신경 재생은 여전히 힘들고 현재까지는 거의 불가능한 것이 사실이지만, 말초신경계에서 일어나는 신경 재생의 기전을 이해함으로써 중추신경 재생에 접근할 수 있을 것으로 보인다. 관련 기전을 밝힘으로써, 재생을 조절하는 새로운 방법을 제안할 수 있다는데 연구의 의의가 있다”고 말했다. 이번 연구는 같은 연구팀에 의해 최근에 개발된 신경재생 모델 (2011년 Nature Communications 제 2권 543호 게제)을 활용한 후속 연구로, 포유류의 신경계 손상과 재생 기전을 이해하는데 한 발 더 다가섰다고 판단된다. ○ 연구진 KIST 허은미 박사 ○ 그림설명 <그림 1> 말초 신경 재생 기작 말초 신경이 손상되면 PI3K 활성화, GSK3 비활성화, Smad1 발현 순서로 재생이 일어난다. 이 과정에서 한 단계가 누락되면 재생은 일어나지 않는다. <그림 2> PI3K-GSK3-Smad1 신호전달 과정이 신경재생에 미치는 영향 가. 생체 내 신경재생 조절 기전을 규명하기 위해 도입한 마우스 모델. 성체 쥐의 신경에 유전자 발현을 조절할 수 있는 물질을 직접 주입한 후 말초신경에 손상을 주어 유도한 유전자의 변화가 신경재생에 미치는 영향을 추적하는 시스템. 나. PI3K와 Smad1이 신경 재생에 체내에서 미치는 영향, 녹색으로 보이는 부분이 재생한 신경세포의 축삭이다. 대조군 신경이 길게 재생이 된 반면, 신호를 저해한 신경은 재생이 상당히 저해되었다.
감성 증진을 위한 사유의 숲 조성(2013.10.17)
우리 원은 10월 17일(목) 서울 하월곡동 본원에서 L4연구동 준공식을 가졌다. L4 연구동은 1966년 개원시 건축되어, 2008년 재건축을 시작한 이래 총 435억원의 사업비가 투입되었다. 에너지와 환경 등 종합 연구를 위한 시설로 지하2층 지상6층 연면적 17,689㎡(5,350평) 규모이며, 본원 재건축 사업으로는 최대 규모이다. 수졸당, 수백당, 웰콤시티 등으로 유명한 승효상 건축가가 설계를 맡은 L4 연구동은 융·복합 연구를 위한 연구실 162실, 실험실 78실 및 다양한 디자인의 회의실 및 휴게실을 갖추고 있다. 또한 지열시스템, 태양광 전지판, 빗물 재활용 시설 등 다양한 친환경 에너지 기술도 적용되었다. L4 연구동은 연구자들의 창의적 연구를 위한 사색 공간으로서 연구동 내 중앙 정원인 ‘중정’을 마련하여 떠오르고 지는 해, 하늘에서 떨어지는 빗방울 등 자연을 건물 안에서도 감상할 수 있도록 하였다. 중정 안에는 임옥상 화백의 작품인 ‘사유의 숲’ 조형물을 설치하여 연구원들이 머리를 식히고 지적 감수성을 증진시킬 수 있도록 노력했다. ‘사유의 숲’은 임옥상 미술연구소 임옥상 화백의 작품으로 연구원들의 연구노트, 연구 성과 등을 수집하여 철조구조물에 새겼다. 그리고 연구에 실제 사용되었던 장비를 오브제를 구조물 안에 삽입하여, 연구소의 과거와 미래를 잇는 사유의 공간으로 조성하였다. L4연구동에는 현재 광전하이브리드연구센터 외 7개 연구센터가 입주하여 연구 활동을 수행하고 있으며, 염료감응태양전지, 수소연료전지자동차 등 미래 에너지와 환경에 대한 연구와 도핑콘트롤 등 특화된 연구가 이루어지고 있다. 우리 원은 L4연구동 준공에 이어, 2014년 재건축을 검토중인 L3 연구동 등 1966년 개원 이래 오랜 세월과, 수많은 연구로 노후된 연구시설을 새롭게 하여, 미래를 여는 연구에 향후 매진할 것을 밝혔다.
기부형 체육대회 ‘사랑나눔 걷기대회’ 개최(2013.10.18)
우리 원은 10월 18일(금) 09시 30분 서울 방이동 올림픽공원에서 가을체육대회의 일환으로 ‘KIST 사랑나눔 걷기대회’를 개최했다. 예년의 체육대회와 달리 우리 원은 올해 가을체육대회를 기부형 체육대회 형식의 ‘KIST 사랑나눔 걷기대회’로 진행하기로 했다. 본 행사는 올림픽 공원에서 5.5km의 산책로를 2,000여명의 임직원들이 함께 걸으며, 참가자별로 1km에 1,000원씩 자율적으로 기부금을 모아 지역사회복지관에 전달할 예정이다. 우리 원은 전 직원 연봉 1% 기부운동, 개발도상국 대상의 과학기술 공적개발원조사업(ODA) 사업, 청소년 및 대학생을 위한 맞춤형 사이언스캠프와 과학탐방, 앰베서더 강연, 찾아가는 과학실험실 나노트럭 프로그램 등 KIST만의 특화된 과학나눔활동을 활발히 전개하고 있다. 문길주 원장은 “이번 걷기대회가 청명한 가을의 정취를 만끽할 수 있고, 건강도 챙길 수 있으며 나눔활동을 통해 보람도 느낄 수 있는 일석삼조의 행사로, 많은 직원들이 즐거운 마음으로 참여할 것”이라고 밝히면서 “이러한 행사가 타 출연기관에도 확산되기를 희망한다”고 말했다.
저온탈질촉매, 세계시장 주도 기대
KIST 개발 저온탈질촉매, 세계시장 주도 기대 - 출연연 물질 특허 개발, 중소기업-대기업 상용화 협력의 본보기 - 원가 절감, 친환경 탈질촉매로 가격·성능·내구성 3가지 경쟁력 확보 대기오염의 주범인 질소산화물. 이 질소산화물 처리를 위해서는 제철소 배연가스 소결로에 촉매를 장착하여 유해물질을 제거하는 기술이 필요하다. 가격을 획기적으로 낮추면서도 효율과 내구성을 높인 촉매기술이 국내 연구진에 의해 개발되어 외국제품에 의존했던 촉매의 국산화에 성공했다. 한국과학기술연구원(KIST, 원장 문길주) 다원물질융합연구소 하헌필 박사팀은 고가의 텅스텐 등 희소금속을 사용하지 않는 대신 가격이 싼 비전이(非轉移)금속 조촉매를 사용하여 친환경적인 탈질촉매(질소산화물 환원촉매)를 개발했다고 밝혔다. * 비전이 금속계 : 주기율표상 15, 16족에 분포하는 금속군으로 일반금속과는 다른 전자구조를 가지는 물질 질소산화물은 연료의 연소과정에서 필연적으로 생성되어 산성비, 온실가스형성 등 대기오염의 주범으로 지목되고 있다. 최근에는 질소산화물의 배출규제가 엄격해지고 배출가스의 처리환경이 까다로워져 탈질촉매 기술 개발이 활발히 이루어지고 있다. 현재 세계적으로 탈질촉매는 주로 타이타니아 위에 바나듐을 첨가하여 활성물질로 사용한다. 철 제조 공정 중 가장 오염물질 배출이 많은 소결로*는 촉매의 작동온도가 250정도의 저온이므로 촉매의 내구성이 쉽게 저하된다. 이러한 환경에서 촉매 내구성 증진을 위해 현재까지는 값비싼 텅스텐이나 몰리브덴과 같은 희소금속을 다량 첨가한 외국산 촉매를 사용하여왔다. 개발된 촉매는 비전이 금속 조촉매를 소량 첨가하고, 가격이 희소금속에 비하여 저렴하여, 최종 촉매가격이 기존 촉매보다 30%이상 원가가 저렴하다. 또한 낮은 온도영역에서 높은 촉매활성이 입증되어 외국의 촉매보다 가격·성능·내구성 면에서 모두 높은 경쟁력을 가진 세계시장을 주도하는 제품이 될 것으로 기대된다. * 제철소 소결로 : 철 제조를 위해서 철광석을 용광로에 주입하기 전에 전처리 (소결) 시켜주는 공정 하헌필 박사팀은 촉매의 작동과정을 모델링하고 물질 구성의 기본 요소인 전자와 원자핵의 양자적 상호작용을 계산하여 물질을 설계하는 양자화학 계산을 통하여 기존에 사용하지 않던 저가의 비전이 금속계에서 저온 촉매성능을 높일 수 있는 조촉매 물질을 발견하고, 물질특허를 획득하였다. 개발된 촉매는 비전이 금속 조촉매를 소량만 첨가하여도 모든 촉매특성이 기존 상용되는 촉매에 비하여 우수하다는 것을 확인하였다. KIST는 이 기술을 강릉산업과학단지 소재 탈질촉매 전문제조회사인 ㈜대영씨엔이(사장 노세윤)에 이전하였고, ㈜대영씨엔이는 이전된 물질특허를 기반으로 POSCO와 함께 중소기업청 구매조건부사업을 통하여 POSCO 소결로 배연가스 처리용 탈질촉매모듈 개발을 목표로 상용화연구를 수행하였다. 상용화한 촉매모듈을 기존 촉매 중 가장 우수한 성능의 상용 촉매모듈과 함께 POSCO의 소결로 배연가스 처리장치내에 장착하여 비교 시험하였고, 개발된 촉매가 6개월간의 가동후에도 저온영역에서 95%이상의 활성을 지속적으로 유지할 뿐만 아니라 내구성이 우수함을 확인하였다. 본 촉매는 POSCO 소결로에 장착하여 올해 말부터 사용할 예정이다. 하헌필 박사는 “이번 촉매개발은 출연연에서 물질특허를 확보하여 중소기업에 이전하고 중소기업은 이를 기반으로 부품소재로의 상용화기술을 개발하여 대기업에서 이를 채택 사용한 사례로, 고가의 외국산 촉매를 대체한다는 데 의미가 크다. 또한 출연연-중소기업-대기업이 선순환 구조를 통하여 상생 협력하여 결과를 낸 좋은 본보기가 되었다”고 말했다. 또한, “본 물질의 설계과정에서 축적된 노하우를 바탕으로 극저온 및 고온영역에서도 작동할 수 있는 환경촉매개발이 진행 중인데 이는 수조원 이상의 시장이 기대되는 이 분야 연구에서 세계적 선도 역할을 할 수 있게 되었다”고 말했다. 이번 연구성과는 KIST 기관고유사업 및 중소기업청 구매조건부사업을 통해 수행되었으며, 한국, 중국, 유럽에 특허 등록 및 출원되었다. ○ 연구진 <(주) 대영씨엔이 노세윤 사장> ○ 그림설명 <그림1> 촉매의 작동과정 유해물질인 질소산화물이 환원제와 함께 촉매가 코팅된 모듈을 통과하면 인체에 무해한 질소 및 물로 변환된다. <그림2> (주) 대영씨엔이에서 제조한 촉매모듈 및 POSCO 광양 소결로 배연장치내
저온탈질촉매, 세계시장 주도 기대
KIST 개발 저온탈질촉매, 세계시장 주도 기대 - 출연연 물질 특허 개발, 중소기업-대기업 상용화 협력의 본보기 - 원가 절감, 친환경 탈질촉매로 가격·성능·내구성 3가지 경쟁력 확보 대기오염의 주범인 질소산화물. 이 질소산화물 처리를 위해서는 제철소 배연가스 소결로에 촉매를 장착하여 유해물질을 제거하는 기술이 필요하다. 가격을 획기적으로 낮추면서도 효율과 내구성을 높인 촉매기술이 국내 연구진에 의해 개발되어 외국제품에 의존했던 촉매의 국산화에 성공했다. 한국과학기술연구원(KIST, 원장 문길주) 다원물질융합연구소 하헌필 박사팀은 고가의 텅스텐 등 희소금속을 사용하지 않는 대신 가격이 싼 비전이(非轉移)금속 조촉매를 사용하여 친환경적인 탈질촉매(질소산화물 환원촉매)를 개발했다고 밝혔다. * 비전이 금속계 : 주기율표상 15, 16족에 분포하는 금속군으로 일반금속과는 다른 전자구조를 가지는 물질 질소산화물은 연료의 연소과정에서 필연적으로 생성되어 산성비, 온실가스형성 등 대기오염의 주범으로 지목되고 있다. 최근에는 질소산화물의 배출규제가 엄격해지고 배출가스의 처리환경이 까다로워져 탈질촉매 기술 개발이 활발히 이루어지고 있다. 현재 세계적으로 탈질촉매는 주로 타이타니아 위에 바나듐을 첨가하여 활성물질로 사용한다. 철 제조 공정 중 가장 오염물질 배출이 많은 소결로*는 촉매의 작동온도가 250정도의 저온이므로 촉매의 내구성이 쉽게 저하된다. 이러한 환경에서 촉매 내구성 증진을 위해 현재까지는 값비싼 텅스텐이나 몰리브덴과 같은 희소금속을 다량 첨가한 외국산 촉매를 사용하여왔다. 개발된 촉매는 비전이 금속 조촉매를 소량 첨가하고, 가격이 희소금속에 비하여 저렴하여, 최종 촉매가격이 기존 촉매보다 30%이상 원가가 저렴하다. 또한 낮은 온도영역에서 높은 촉매활성이 입증되어 외국의 촉매보다 가격·성능·내구성 면에서 모두 높은 경쟁력을 가진 세계시장을 주도하는 제품이 될 것으로 기대된다. * 제철소 소결로 : 철 제조를 위해서 철광석을 용광로에 주입하기 전에 전처리 (소결) 시켜주는 공정 하헌필 박사팀은 촉매의 작동과정을 모델링하고 물질 구성의 기본 요소인 전자와 원자핵의 양자적 상호작용을 계산하여 물질을 설계하는 양자화학 계산을 통하여 기존에 사용하지 않던 저가의 비전이 금속계에서 저온 촉매성능을 높일 수 있는 조촉매 물질을 발견하고, 물질특허를 획득하였다. 개발된 촉매는 비전이 금속 조촉매를 소량만 첨가하여도 모든 촉매특성이 기존 상용되는 촉매에 비하여 우수하다는 것을 확인하였다. KIST는 이 기술을 강릉산업과학단지 소재 탈질촉매 전문제조회사인 ㈜대영씨엔이(사장 노세윤)에 이전하였고, ㈜대영씨엔이는 이전된 물질특허를 기반으로 POSCO와 함께 중소기업청 구매조건부사업을 통하여 POSCO 소결로 배연가스 처리용 탈질촉매모듈 개발을 목표로 상용화연구를 수행하였다. 상용화한 촉매모듈을 기존 촉매 중 가장 우수한 성능의 상용 촉매모듈과 함께 POSCO의 소결로 배연가스 처리장치내에 장착하여 비교 시험하였고, 개발된 촉매가 6개월간의 가동후에도 저온영역에서 95%이상의 활성을 지속적으로 유지할 뿐만 아니라 내구성이 우수함을 확인하였다. 본 촉매는 POSCO 소결로에 장착하여 올해 말부터 사용할 예정이다. 하헌필 박사는 “이번 촉매개발은 출연연에서 물질특허를 확보하여 중소기업에 이전하고 중소기업은 이를 기반으로 부품소재로의 상용화기술을 개발하여 대기업에서 이를 채택 사용한 사례로, 고가의 외국산 촉매를 대체한다는 데 의미가 크다. 또한 출연연-중소기업-대기업이 선순환 구조를 통하여 상생 협력하여 결과를 낸 좋은 본보기가 되었다”고 말했다. 또한, “본 물질의 설계과정에서 축적된 노하우를 바탕으로 극저온 및 고온영역에서도 작동할 수 있는 환경촉매개발이 진행 중인데 이는 수조원 이상의 시장이 기대되는 이 분야 연구에서 세계적 선도 역할을 할 수 있게 되었다”고 말했다. 이번 연구성과는 KIST 기관고유사업 및 중소기업청 구매조건부사업을 통해 수행되었으며, 한국, 중국, 유럽에 특허 등록 및 출원되었다. ○ 연구진 <(주) 대영씨엔이 노세윤 사장> ○ 그림설명 <그림1> 촉매의 작동과정 유해물질인 질소산화물이 환원제와 함께 촉매가 코팅된 모듈을 통과하면 인체에 무해한 질소 및 물로 변환된다. <그림2> (주) 대영씨엔이에서 제조한 촉매모듈 및 POSCO 광양 소결로 배연장치내