검색결과
게시물 키워드""에 대한 9083개의 검색결과를 찾았습니다.
창의포럼 정진홍 교수의 미래를 여는 힘(2014.01.22)
감성적인 문체로 많은 독자들을 확보하고 있는 정진홍 교수의 강연을 정리한다는 것은 여간 부담스러운 일이 아니다. 옥동자를 출산하듯 산고에 산고를 거듭한 정제된 글쓰기를 한 후에도, 본인이 감동해서 눈물을 쏟을 때까지 퇴고를 하는 그의 글쓰기와는 비교도 안 되는 나의 노동이 허접스러울 따름이다. 창조는 에지(edge)에서 나온다 정진홍 교수는 본인을 콘텐트 크리에이터로 소개했다. 교수와 논설위원이라는 직(織)보다 그가 콘텐트 크리에이터라는 업(業)을 더 중요하게 여기는 이유는 직은 사람을 안주시킨다고 했다. 연구와 강의에 최선을 다하는 교수였지만 자신의 강의노트에 변화가 없다고 느낀 순간 그는 교수라는 직을 버렸다. 교수라는 전도유망한 직을 버린 결정이 인생에서 가장 잘한 결정이었다는 말에서 업에 관한 그의 철학을 이해할 수 있었다. 타고난 자신만의 문양을 찾아서 진정 자기다워지는 것이 업을 추구하는 것이며 위대함은 그 과정에서 나온다. 그는 짐 콜린스가 'GOOD TO GREAT‘에서 언급한 ‘좋은 것은 위대한 것의 적’이라 문구를 인용하며 KIST라는 좋은 직장에 안주하지 말고, 자기 안에 금광을 캐기 위해 최선을 다할 것을 주문했다. 정말 위대한 창조는 편안한 환경이 아닌 에지에서 나오며 그 창조를 위해 내면의 위대함을 깨우고, 자신을 에지로 절실하게 몰아가라고 했다. 미래를 여는 힘, 창의성 정진홍 교수가 말하는 미래는 물리적 시간의 개념이 아닌 어제와 다른 차이를 만드는 창조의 미래다. 빌렘 벤켈소어가 개발한 청어의 내장을 단번에 제거하는 칼은 청어의 보관을 용이하게 만들었고, 청어산업 기반으로 네덜란드는 16세기 유럽의 강자로 떠올랐다. 칼끝을 V자 형태로 바꾼 미세한 차이가 네덜란드의 미래를 연 것이다. 관습적인 춤 패턴을 깨고 새로운 패턴을 개발한 무용가 머스 커냉햄도 어제와 다른 창조의 미래를 만들었다. 정진홍 교수는 미래를 여는 창조를 위해서 창의성이 중요하다며, 실제 사례를 들어 설명했다. 다카하시 마코토의 사고(心考, 思考, 手考, 足考)법은 창의성이 발현되려면 마음, 머리, 손, 발이 다 움직여야 된다고 했다. 발로 생각한다는 족고는 현장에 답이 있다는 의미로 현장을 가서 직접보라고 했다. 특히 정진홍 교수가 소개한 레오나르도 다빈치의 7가지 창의적 사고법 ‘호기심, 실험정신, 감각, 낯섦, 전뇌사고, 양손쓰기, 연관사고’는 청중들의 몰입도를 높이기에 충분했다. 불확실한 미래를 부여잡는 힘, 삼지창 사마천의 사기에는 시대를 호령하다가도 나아갈 때와 물러날 때를 판단하지 못해서 비참하게 죽어간 많은 영웅호걸이 이야기가 담겨져 있다. 변화하는 시대를 읽지 못하고, 주변의 진정어린 충고를 무시하고, 권력이라는 직에 안주했기에 그들은 자객처럼 예고도 없이 오는 미래에 당한 것이다. 정진홍 교수는 예고 없이 도둑처럼 오는 미래를 잡으려면 CHANGE(체인지, 변화), SYNERGY(시너지, 융합), CRAZY(크레이지, 광기)의 삼지창이 있어야 한다고 했다. 인생의 영원한 화두인 변화는 멈출 때와 나아갈 때, 그칠 때를 아는 것이다. 융합은 단순한 섞임이 아니라 생화학적 발효까지 나아갈 수 있는 긴 숙성이 필요하다. 마지막으로 광기는 미친 듯한 몰입이 없으면 절대 도달할 수 없는 불광불급(不狂不及)이다. 도둑처럼, 자객처럼 오는 미래를 잡으려면 깊은 변화의 CHANGE, 거침없는 융합 SYNERGY, 미친 듯이 몰입 하는 CRAZY가 있어야 한다고 했다. 정진홍 교수는 한 일본 학자의 말을 인용하면서 ‘살아있다는 것은 문제에 봉착하는 것’이라 했다. 우리가 연구하는 과학도 바로 그 문제해결을 위한 씨름이다. 정진홍 교수는 논어의 일곱 구절을 인용하며 과학자의 삶의 자세에 대해 이야기 했다. 그 중 ‘절문이근사’(切問而近思, 간절히 묻고 가까이서 생각하라)가 가장 기억에 남는다. 우리 앞에 놓인 문제에 대한 절실한 물음, 그에 관한 구체적인 생각이 문제해결의 기본이라고 했다. 과학이 나의 業인가에 대한 실존적이고 절실한 물음 그것이 미래를 여는 힘일 것이다.
꿈의 그래핀, 플라스틱으로 더 쉽게 만들 수 있다
꿈의 그래핀, 플라스틱으로 더 쉽게 만들 수 있다 - 고분자 용액의 코팅과 열처리만으로 그래핀의 특성을 가진 물질 제조 - 태양 전지, 반도체칩 등 전자소자 대량 생산 가능성 열려 전도성, 유연성, 내구성 등이 다른 물질보다 탁월한 그래핀은 꿈의 신소재로 불릴만큼 각광을 받고 있다. 그러나 생산 공정이 복잡하고 대량생산이 어려워 실생활에 활용하기 어렵다는 단점이 있다. 국내 연구진이 그래핀을 만드는 과정에서 발생하는 인공적 결함은 개선하고, 특성은 그대로인 탄소물질을 개발했다. 개발된 물질은 태양전지, 반도체 칩 등 그래핀이 쓰이는 곳에 사용할 수 있고, 이미 상용화된 공정으로 개발되어 상업화에 한층 가까워졌다. 관련 연구는 연구의 참신성을 인정받아 나노분야의 권위지인 Nanoscale의 표지 논문을 장식했다. 한국과학기술연구원(KIST) 전북분원(분원장 홍경태) 복합소재기술연구소 탄소융합소재연구센터 조한익 박사팀은 전북대 유연인쇄전자공학과 나석인 교수와 한국화학연구원 김병각 박사팀과 함께 면적이 큰 CVD 그래핀이 가진 문제를 해결하고자 플라스틱의 원료인 고분자를 이용하여 그래핀과 유사한 구조와 특성을 가지면서, 투명한 탄소나노시트를 개발했다. 이번 연구 성과는 나노기술 분야의 권위지인 영국왕립화학회지의 나노스케일(Nanoscale)에 "One-step synthesis of carbon nanosheets converted from a polycylic compound and their direct use as transparent electrodes of ITO-free organic solar cells"의 제목으로 게재되었으며, 연구의 우수성 및 참신함을 인정받아 1월 21일자 권두 표지논문으로 선정되었다. <그림 1> 품질이 좋고 면적이 수 십 인치에 달하는 대(大)면적의 그래핀 제작에는 화학적 기상 증착법*이 많이 이용된다. 그러나 이 방법은 금속을 촉매로 사용해야 하기 때문에, 그래핀 제작 후에는 사용한 금속을 제거해야하고, 제작한 그래핀을 태양전지 등 다른 기판으로 옮기는 후공정(전사공정)이 반드시 필요하다. 이 때문에 주름(wrinkle) 및 균열(crack) 등의 결함(defect)이 생겨 품질이 저하된다는 단점이 있다. * 화학적 기상 증착법 (CVD, chemical vapor deposition): 촉매 작용을 하는 금속필름의 기판위에 그래핀을 만드는 기법. ‘소스 가스’(source gas)라 불리는 가스를 기판위에 불어넣어 제작한다. 제작 후 금속을 제거해야하고, 다른 기판위에 그래핀을 이동시켜야 한다. 공동 연구팀은 기판 위에 고분자 용액을 코팅시켜 열처리를 가하는 2단계 공정으로 ‘탄소나노시트’를 개발했다. 기존 그래핀 제작 공정이 8단계였던것을 감안하면 크게 단순해진 것이다. 게다가 별도의 후처리공정 없이 태양전지 등으로 바로 사용이 가능하다<그림 2> 연구팀은 탄소 분자 내에 사다리 구조의 고분자인 PIM-1(Polymer of intrinsic microporosity-1)을 합성해, 고분자 용액을 만들었다. 엷은 초록색을 띈 고분자 용액을 기판인 석영(quarts)위에 회전시켜 골고루 뿌려 코팅한 후, 섭씨 1200도로 열처리를 하면 투명한 탄소나노시트가 만들어진다. 개발된 ‘탄소나노시트’는 단순한 제작공정으로 대량 생산이 가능할 뿐 아니라, 금속 기판을 제거하고, 생성된 그래핀을 다시 이동하는 등 기존 그래핀에서 결함을 유발하는 작업이 제거되어 품질 면에서도 우수한 것으로 나타났다. 효율성 측면에도 그래핀에 뒤지지 않는다. KIST 조한익 박사는 “개발된 공정은 이미 상용화된 탄소섬유의 제조공정을 이차원 탄소소재 합성에 응용한 것으로, 이미 공정이 구축된 방법인 만큼 투명하고 전도성을 갖는 이차원 탄소소재의 상업화에 쉽게 이용될 수 있을 것으로 보인다”고 말했다. 이번 연구는 본 연구팀에 의해 최근에 게재된 폴리아크릴로니트릴을 이용한 탄소나노시트 (2013년 Carbon 55호 및 Applied Physics Letters 102호 게재)에 관한 후속 연구로, 탄소나노시트의 성장 메커니즘을 이해하고 더욱 간단한 제조 공정을 제시했다는 데 의의가 있다. 이번 연구는 KIST의 기관고유연구사업 및 한국연구재단의 연구비 지원으로 수행되었다. ○ 연구진 ○ 그림자료 <그림1> 'Nanoscale'의 2014년 1월 21일자 권두 표지논문이미지, 초록색 고분자 용액이 회전하면서 코팅되는 모습, 이러한 탄소나노시트는 검은 부분으로 표현된 그래핀이 결함은 최소화하고 유사한 특성을 가진 물질이다. <그림 2> PIM-1 고분자를 이용한 투명하고 전도성을 가진 탄소나노시트의 제작방법 및 특성. (a)는 사다리(ladder) 형태의 구조를 가지는 PIM-1 고분자 용액을 투명한 석영(quarts) 기판 위에 코팅한 다음, 고온의 열처리를 통해 탄소나노시트를 제조하고 이 위에 별도의 추가 공정 없이 유기태양전지(OSC, orgarnic solar cell)를 구성하면 태양전지 제작이 가능한다. (b), (c), (d)는 PIM-1 고분자 농도에 기인한 탄소나노시트의 두께, 표면저항 및 투명도를 나타내는 그래프로써, 고분자 용액의 농도 제어를 통해 형성되는 탄소나노시트의 전기적, 광학적 특성들을 손쉽게 제어 가능함을 보여준다. 고분자 용액의 농도((b),(c) x축))가 높아지면 (b)그림에서 보듯 두께는 두꺼워지지만 (c)그림에서 보듯 저항이 줄어들어 전류는 더 잘 흐르게 된다. <그림 3> 개발된 투명 탄소나노시트의 이미지 (15mm)
꿈의 그래핀, 플라스틱으로 더 쉽게 만들 수 있다
꿈의 그래핀, 플라스틱으로 더 쉽게 만들 수 있다 - 고분자 용액의 코팅과 열처리만으로 그래핀의 특성을 가진 물질 제조 - 태양 전지, 반도체칩 등 전자소자 대량 생산 가능성 열려 전도성, 유연성, 내구성 등이 다른 물질보다 탁월한 그래핀은 꿈의 신소재로 불릴만큼 각광을 받고 있다. 그러나 생산 공정이 복잡하고 대량생산이 어려워 실생활에 활용하기 어렵다는 단점이 있다. 국내 연구진이 그래핀을 만드는 과정에서 발생하는 인공적 결함은 개선하고, 특성은 그대로인 탄소물질을 개발했다. 개발된 물질은 태양전지, 반도체 칩 등 그래핀이 쓰이는 곳에 사용할 수 있고, 이미 상용화된 공정으로 개발되어 상업화에 한층 가까워졌다. 관련 연구는 연구의 참신성을 인정받아 나노분야의 권위지인 Nanoscale의 표지 논문을 장식했다. 한국과학기술연구원(KIST) 전북분원(분원장 홍경태) 복합소재기술연구소 탄소융합소재연구센터 조한익 박사팀은 전북대 유연인쇄전자공학과 나석인 교수와 한국화학연구원 김병각 박사팀과 함께 면적이 큰 CVD 그래핀이 가진 문제를 해결하고자 플라스틱의 원료인 고분자를 이용하여 그래핀과 유사한 구조와 특성을 가지면서, 투명한 탄소나노시트를 개발했다. 이번 연구 성과는 나노기술 분야의 권위지인 영국왕립화학회지의 나노스케일(Nanoscale)에 "One-step synthesis of carbon nanosheets converted from a polycylic compound and their direct use as transparent electrodes of ITO-free organic solar cells"의 제목으로 게재되었으며, 연구의 우수성 및 참신함을 인정받아 1월 21일자 권두 표지논문으로 선정되었다. <그림 1> 품질이 좋고 면적이 수 십 인치에 달하는 대(大)면적의 그래핀 제작에는 화학적 기상 증착법*이 많이 이용된다. 그러나 이 방법은 금속을 촉매로 사용해야 하기 때문에, 그래핀 제작 후에는 사용한 금속을 제거해야하고, 제작한 그래핀을 태양전지 등 다른 기판으로 옮기는 후공정(전사공정)이 반드시 필요하다. 이 때문에 주름(wrinkle) 및 균열(crack) 등의 결함(defect)이 생겨 품질이 저하된다는 단점이 있다. * 화학적 기상 증착법 (CVD, chemical vapor deposition): 촉매 작용을 하는 금속필름의 기판위에 그래핀을 만드는 기법. ‘소스 가스’(source gas)라 불리는 가스를 기판위에 불어넣어 제작한다. 제작 후 금속을 제거해야하고, 다른 기판위에 그래핀을 이동시켜야 한다. 공동 연구팀은 기판 위에 고분자 용액을 코팅시켜 열처리를 가하는 2단계 공정으로 ‘탄소나노시트’를 개발했다. 기존 그래핀 제작 공정이 8단계였던것을 감안하면 크게 단순해진 것이다. 게다가 별도의 후처리공정 없이 태양전지 등으로 바로 사용이 가능하다<그림 2> 연구팀은 탄소 분자 내에 사다리 구조의 고분자인 PIM-1(Polymer of intrinsic microporosity-1)을 합성해, 고분자 용액을 만들었다. 엷은 초록색을 띈 고분자 용액을 기판인 석영(quarts)위에 회전시켜 골고루 뿌려 코팅한 후, 섭씨 1200도로 열처리를 하면 투명한 탄소나노시트가 만들어진다. 개발된 ‘탄소나노시트’는 단순한 제작공정으로 대량 생산이 가능할 뿐 아니라, 금속 기판을 제거하고, 생성된 그래핀을 다시 이동하는 등 기존 그래핀에서 결함을 유발하는 작업이 제거되어 품질 면에서도 우수한 것으로 나타났다. 효율성 측면에도 그래핀에 뒤지지 않는다. KIST 조한익 박사는 “개발된 공정은 이미 상용화된 탄소섬유의 제조공정을 이차원 탄소소재 합성에 응용한 것으로, 이미 공정이 구축된 방법인 만큼 투명하고 전도성을 갖는 이차원 탄소소재의 상업화에 쉽게 이용될 수 있을 것으로 보인다”고 말했다. 이번 연구는 본 연구팀에 의해 최근에 게재된 폴리아크릴로니트릴을 이용한 탄소나노시트 (2013년 Carbon 55호 및 Applied Physics Letters 102호 게재)에 관한 후속 연구로, 탄소나노시트의 성장 메커니즘을 이해하고 더욱 간단한 제조 공정을 제시했다는 데 의의가 있다. 이번 연구는 KIST의 기관고유연구사업 및 한국연구재단의 연구비 지원으로 수행되었다. ○ 연구진 ○ 그림자료 <그림1> 'Nanoscale'의 2014년 1월 21일자 권두 표지논문이미지, 초록색 고분자 용액이 회전하면서 코팅되는 모습, 이러한 탄소나노시트는 검은 부분으로 표현된 그래핀이 결함은 최소화하고 유사한 특성을 가진 물질이다. <그림 2> PIM-1 고분자를 이용한 투명하고 전도성을 가진 탄소나노시트의 제작방법 및 특성. (a)는 사다리(ladder) 형태의 구조를 가지는 PIM-1 고분자 용액을 투명한 석영(quarts) 기판 위에 코팅한 다음, 고온의 열처리를 통해 탄소나노시트를 제조하고 이 위에 별도의 추가 공정 없이 유기태양전지(OSC, orgarnic solar cell)를 구성하면 태양전지 제작이 가능한다. (b), (c), (d)는 PIM-1 고분자 농도에 기인한 탄소나노시트의 두께, 표면저항 및 투명도를 나타내는 그래프로써, 고분자 용액의 농도 제어를 통해 형성되는 탄소나노시트의 전기적, 광학적 특성들을 손쉽게 제어 가능함을 보여준다. 고분자 용액의 농도((b),(c) x축))가 높아지면 (b)그림에서 보듯 두께는 두꺼워지지만 (c)그림에서 보듯 저항이 줄어들어 전류는 더 잘 흐르게 된다. <그림 3> 개발된 투명 탄소나노시트의 이미지 (15mm)
꿈의 그래핀, 플라스틱으로 더 쉽게 만들 수 있다
꿈의 그래핀, 플라스틱으로 더 쉽게 만들 수 있다 - 고분자 용액의 코팅과 열처리만으로 그래핀의 특성을 가진 물질 제조 - 태양 전지, 반도체칩 등 전자소자 대량 생산 가능성 열려 전도성, 유연성, 내구성 등이 다른 물질보다 탁월한 그래핀은 꿈의 신소재로 불릴만큼 각광을 받고 있다. 그러나 생산 공정이 복잡하고 대량생산이 어려워 실생활에 활용하기 어렵다는 단점이 있다. 국내 연구진이 그래핀을 만드는 과정에서 발생하는 인공적 결함은 개선하고, 특성은 그대로인 탄소물질을 개발했다. 개발된 물질은 태양전지, 반도체 칩 등 그래핀이 쓰이는 곳에 사용할 수 있고, 이미 상용화된 공정으로 개발되어 상업화에 한층 가까워졌다. 관련 연구는 연구의 참신성을 인정받아 나노분야의 권위지인 Nanoscale의 표지 논문을 장식했다. 한국과학기술연구원(KIST) 전북분원(분원장 홍경태) 복합소재기술연구소 탄소융합소재연구센터 조한익 박사팀은 전북대 유연인쇄전자공학과 나석인 교수와 한국화학연구원 김병각 박사팀과 함께 면적이 큰 CVD 그래핀이 가진 문제를 해결하고자 플라스틱의 원료인 고분자를 이용하여 그래핀과 유사한 구조와 특성을 가지면서, 투명한 탄소나노시트를 개발했다. 이번 연구 성과는 나노기술 분야의 권위지인 영국왕립화학회지의 나노스케일(Nanoscale)에 "One-step synthesis of carbon nanosheets converted from a polycylic compound and their direct use as transparent electrodes of ITO-free organic solar cells"의 제목으로 게재되었으며, 연구의 우수성 및 참신함을 인정받아 1월 21일자 권두 표지논문으로 선정되었다. <그림 1> 품질이 좋고 면적이 수 십 인치에 달하는 대(大)면적의 그래핀 제작에는 화학적 기상 증착법*이 많이 이용된다. 그러나 이 방법은 금속을 촉매로 사용해야 하기 때문에, 그래핀 제작 후에는 사용한 금속을 제거해야하고, 제작한 그래핀을 태양전지 등 다른 기판으로 옮기는 후공정(전사공정)이 반드시 필요하다. 이 때문에 주름(wrinkle) 및 균열(crack) 등의 결함(defect)이 생겨 품질이 저하된다는 단점이 있다. * 화학적 기상 증착법 (CVD, chemical vapor deposition): 촉매 작용을 하는 금속필름의 기판위에 그래핀을 만드는 기법. ‘소스 가스’(source gas)라 불리는 가스를 기판위에 불어넣어 제작한다. 제작 후 금속을 제거해야하고, 다른 기판위에 그래핀을 이동시켜야 한다. 공동 연구팀은 기판 위에 고분자 용액을 코팅시켜 열처리를 가하는 2단계 공정으로 ‘탄소나노시트’를 개발했다. 기존 그래핀 제작 공정이 8단계였던것을 감안하면 크게 단순해진 것이다. 게다가 별도의 후처리공정 없이 태양전지 등으로 바로 사용이 가능하다<그림 2> 연구팀은 탄소 분자 내에 사다리 구조의 고분자인 PIM-1(Polymer of intrinsic microporosity-1)을 합성해, 고분자 용액을 만들었다. 엷은 초록색을 띈 고분자 용액을 기판인 석영(quarts)위에 회전시켜 골고루 뿌려 코팅한 후, 섭씨 1200도로 열처리를 하면 투명한 탄소나노시트가 만들어진다. 개발된 ‘탄소나노시트’는 단순한 제작공정으로 대량 생산이 가능할 뿐 아니라, 금속 기판을 제거하고, 생성된 그래핀을 다시 이동하는 등 기존 그래핀에서 결함을 유발하는 작업이 제거되어 품질 면에서도 우수한 것으로 나타났다. 효율성 측면에도 그래핀에 뒤지지 않는다. KIST 조한익 박사는 “개발된 공정은 이미 상용화된 탄소섬유의 제조공정을 이차원 탄소소재 합성에 응용한 것으로, 이미 공정이 구축된 방법인 만큼 투명하고 전도성을 갖는 이차원 탄소소재의 상업화에 쉽게 이용될 수 있을 것으로 보인다”고 말했다. 이번 연구는 본 연구팀에 의해 최근에 게재된 폴리아크릴로니트릴을 이용한 탄소나노시트 (2013년 Carbon 55호 및 Applied Physics Letters 102호 게재)에 관한 후속 연구로, 탄소나노시트의 성장 메커니즘을 이해하고 더욱 간단한 제조 공정을 제시했다는 데 의의가 있다. 이번 연구는 KIST의 기관고유연구사업 및 한국연구재단의 연구비 지원으로 수행되었다. ○ 연구진 ○ 그림자료 <그림1> 'Nanoscale'의 2014년 1월 21일자 권두 표지논문이미지, 초록색 고분자 용액이 회전하면서 코팅되는 모습, 이러한 탄소나노시트는 검은 부분으로 표현된 그래핀이 결함은 최소화하고 유사한 특성을 가진 물질이다. <그림 2> PIM-1 고분자를 이용한 투명하고 전도성을 가진 탄소나노시트의 제작방법 및 특성. (a)는 사다리(ladder) 형태의 구조를 가지는 PIM-1 고분자 용액을 투명한 석영(quarts) 기판 위에 코팅한 다음, 고온의 열처리를 통해 탄소나노시트를 제조하고 이 위에 별도의 추가 공정 없이 유기태양전지(OSC, orgarnic solar cell)를 구성하면 태양전지 제작이 가능한다. (b), (c), (d)는 PIM-1 고분자 농도에 기인한 탄소나노시트의 두께, 표면저항 및 투명도를 나타내는 그래프로써, 고분자 용액의 농도 제어를 통해 형성되는 탄소나노시트의 전기적, 광학적 특성들을 손쉽게 제어 가능함을 보여준다. 고분자 용액의 농도((b),(c) x축))가 높아지면 (b)그림에서 보듯 두께는 두꺼워지지만 (c)그림에서 보듯 저항이 줄어들어 전류는 더 잘 흐르게 된다. <그림 3> 개발된 투명 탄소나노시트의 이미지 (15mm)
꿈의 그래핀, 플라스틱으로 더 쉽게 만들 수 있다
꿈의 그래핀, 플라스틱으로 더 쉽게 만들 수 있다 - 고분자 용액의 코팅과 열처리만으로 그래핀의 특성을 가진 물질 제조 - 태양 전지, 반도체칩 등 전자소자 대량 생산 가능성 열려 전도성, 유연성, 내구성 등이 다른 물질보다 탁월한 그래핀은 꿈의 신소재로 불릴만큼 각광을 받고 있다. 그러나 생산 공정이 복잡하고 대량생산이 어려워 실생활에 활용하기 어렵다는 단점이 있다. 국내 연구진이 그래핀을 만드는 과정에서 발생하는 인공적 결함은 개선하고, 특성은 그대로인 탄소물질을 개발했다. 개발된 물질은 태양전지, 반도체 칩 등 그래핀이 쓰이는 곳에 사용할 수 있고, 이미 상용화된 공정으로 개발되어 상업화에 한층 가까워졌다. 관련 연구는 연구의 참신성을 인정받아 나노분야의 권위지인 Nanoscale의 표지 논문을 장식했다. 한국과학기술연구원(KIST) 전북분원(분원장 홍경태) 복합소재기술연구소 탄소융합소재연구센터 조한익 박사팀은 전북대 유연인쇄전자공학과 나석인 교수와 한국화학연구원 김병각 박사팀과 함께 면적이 큰 CVD 그래핀이 가진 문제를 해결하고자 플라스틱의 원료인 고분자를 이용하여 그래핀과 유사한 구조와 특성을 가지면서, 투명한 탄소나노시트를 개발했다. 이번 연구 성과는 나노기술 분야의 권위지인 영국왕립화학회지의 나노스케일(Nanoscale)에 "One-step synthesis of carbon nanosheets converted from a polycylic compound and their direct use as transparent electrodes of ITO-free organic solar cells"의 제목으로 게재되었으며, 연구의 우수성 및 참신함을 인정받아 1월 21일자 권두 표지논문으로 선정되었다. <그림 1> 품질이 좋고 면적이 수 십 인치에 달하는 대(大)면적의 그래핀 제작에는 화학적 기상 증착법*이 많이 이용된다. 그러나 이 방법은 금속을 촉매로 사용해야 하기 때문에, 그래핀 제작 후에는 사용한 금속을 제거해야하고, 제작한 그래핀을 태양전지 등 다른 기판으로 옮기는 후공정(전사공정)이 반드시 필요하다. 이 때문에 주름(wrinkle) 및 균열(crack) 등의 결함(defect)이 생겨 품질이 저하된다는 단점이 있다. * 화학적 기상 증착법 (CVD, chemical vapor deposition): 촉매 작용을 하는 금속필름의 기판위에 그래핀을 만드는 기법. ‘소스 가스’(source gas)라 불리는 가스를 기판위에 불어넣어 제작한다. 제작 후 금속을 제거해야하고, 다른 기판위에 그래핀을 이동시켜야 한다. 공동 연구팀은 기판 위에 고분자 용액을 코팅시켜 열처리를 가하는 2단계 공정으로 ‘탄소나노시트’를 개발했다. 기존 그래핀 제작 공정이 8단계였던것을 감안하면 크게 단순해진 것이다. 게다가 별도의 후처리공정 없이 태양전지 등으로 바로 사용이 가능하다<그림 2> 연구팀은 탄소 분자 내에 사다리 구조의 고분자인 PIM-1(Polymer of intrinsic microporosity-1)을 합성해, 고분자 용액을 만들었다. 엷은 초록색을 띈 고분자 용액을 기판인 석영(quarts)위에 회전시켜 골고루 뿌려 코팅한 후, 섭씨 1200도로 열처리를 하면 투명한 탄소나노시트가 만들어진다. 개발된 ‘탄소나노시트’는 단순한 제작공정으로 대량 생산이 가능할 뿐 아니라, 금속 기판을 제거하고, 생성된 그래핀을 다시 이동하는 등 기존 그래핀에서 결함을 유발하는 작업이 제거되어 품질 면에서도 우수한 것으로 나타났다. 효율성 측면에도 그래핀에 뒤지지 않는다. KIST 조한익 박사는 “개발된 공정은 이미 상용화된 탄소섬유의 제조공정을 이차원 탄소소재 합성에 응용한 것으로, 이미 공정이 구축된 방법인 만큼 투명하고 전도성을 갖는 이차원 탄소소재의 상업화에 쉽게 이용될 수 있을 것으로 보인다”고 말했다. 이번 연구는 본 연구팀에 의해 최근에 게재된 폴리아크릴로니트릴을 이용한 탄소나노시트 (2013년 Carbon 55호 및 Applied Physics Letters 102호 게재)에 관한 후속 연구로, 탄소나노시트의 성장 메커니즘을 이해하고 더욱 간단한 제조 공정을 제시했다는 데 의의가 있다. 이번 연구는 KIST의 기관고유연구사업 및 한국연구재단의 연구비 지원으로 수행되었다. ○ 연구진 ○ 그림자료 <그림1> 'Nanoscale'의 2014년 1월 21일자 권두 표지논문이미지, 초록색 고분자 용액이 회전하면서 코팅되는 모습, 이러한 탄소나노시트는 검은 부분으로 표현된 그래핀이 결함은 최소화하고 유사한 특성을 가진 물질이다. <그림 2> PIM-1 고분자를 이용한 투명하고 전도성을 가진 탄소나노시트의 제작방법 및 특성. (a)는 사다리(ladder) 형태의 구조를 가지는 PIM-1 고분자 용액을 투명한 석영(quarts) 기판 위에 코팅한 다음, 고온의 열처리를 통해 탄소나노시트를 제조하고 이 위에 별도의 추가 공정 없이 유기태양전지(OSC, orgarnic solar cell)를 구성하면 태양전지 제작이 가능한다. (b), (c), (d)는 PIM-1 고분자 농도에 기인한 탄소나노시트의 두께, 표면저항 및 투명도를 나타내는 그래프로써, 고분자 용액의 농도 제어를 통해 형성되는 탄소나노시트의 전기적, 광학적 특성들을 손쉽게 제어 가능함을 보여준다. 고분자 용액의 농도((b),(c) x축))가 높아지면 (b)그림에서 보듯 두께는 두꺼워지지만 (c)그림에서 보듯 저항이 줄어들어 전류는 더 잘 흐르게 된다. <그림 3> 개발된 투명 탄소나노시트의 이미지 (15mm)
꿈의 그래핀, 플라스틱으로 더 쉽게 만들 수 있다
꿈의 그래핀, 플라스틱으로 더 쉽게 만들 수 있다 - 고분자 용액의 코팅과 열처리만으로 그래핀의 특성을 가진 물질 제조 - 태양 전지, 반도체칩 등 전자소자 대량 생산 가능성 열려 전도성, 유연성, 내구성 등이 다른 물질보다 탁월한 그래핀은 꿈의 신소재로 불릴만큼 각광을 받고 있다. 그러나 생산 공정이 복잡하고 대량생산이 어려워 실생활에 활용하기 어렵다는 단점이 있다. 국내 연구진이 그래핀을 만드는 과정에서 발생하는 인공적 결함은 개선하고, 특성은 그대로인 탄소물질을 개발했다. 개발된 물질은 태양전지, 반도체 칩 등 그래핀이 쓰이는 곳에 사용할 수 있고, 이미 상용화된 공정으로 개발되어 상업화에 한층 가까워졌다. 관련 연구는 연구의 참신성을 인정받아 나노분야의 권위지인 Nanoscale의 표지 논문을 장식했다. 한국과학기술연구원(KIST) 전북분원(분원장 홍경태) 복합소재기술연구소 탄소융합소재연구센터 조한익 박사팀은 전북대 유연인쇄전자공학과 나석인 교수와 한국화학연구원 김병각 박사팀과 함께 면적이 큰 CVD 그래핀이 가진 문제를 해결하고자 플라스틱의 원료인 고분자를 이용하여 그래핀과 유사한 구조와 특성을 가지면서, 투명한 탄소나노시트를 개발했다. 이번 연구 성과는 나노기술 분야의 권위지인 영국왕립화학회지의 나노스케일(Nanoscale)에 "One-step synthesis of carbon nanosheets converted from a polycylic compound and their direct use as transparent electrodes of ITO-free organic solar cells"의 제목으로 게재되었으며, 연구의 우수성 및 참신함을 인정받아 1월 21일자 권두 표지논문으로 선정되었다. <그림 1> 품질이 좋고 면적이 수 십 인치에 달하는 대(大)면적의 그래핀 제작에는 화학적 기상 증착법*이 많이 이용된다. 그러나 이 방법은 금속을 촉매로 사용해야 하기 때문에, 그래핀 제작 후에는 사용한 금속을 제거해야하고, 제작한 그래핀을 태양전지 등 다른 기판으로 옮기는 후공정(전사공정)이 반드시 필요하다. 이 때문에 주름(wrinkle) 및 균열(crack) 등의 결함(defect)이 생겨 품질이 저하된다는 단점이 있다. * 화학적 기상 증착법 (CVD, chemical vapor deposition): 촉매 작용을 하는 금속필름의 기판위에 그래핀을 만드는 기법. ‘소스 가스’(source gas)라 불리는 가스를 기판위에 불어넣어 제작한다. 제작 후 금속을 제거해야하고, 다른 기판위에 그래핀을 이동시켜야 한다. 공동 연구팀은 기판 위에 고분자 용액을 코팅시켜 열처리를 가하는 2단계 공정으로 ‘탄소나노시트’를 개발했다. 기존 그래핀 제작 공정이 8단계였던것을 감안하면 크게 단순해진 것이다. 게다가 별도의 후처리공정 없이 태양전지 등으로 바로 사용이 가능하다<그림 2> 연구팀은 탄소 분자 내에 사다리 구조의 고분자인 PIM-1(Polymer of intrinsic microporosity-1)을 합성해, 고분자 용액을 만들었다. 엷은 초록색을 띈 고분자 용액을 기판인 석영(quarts)위에 회전시켜 골고루 뿌려 코팅한 후, 섭씨 1200도로 열처리를 하면 투명한 탄소나노시트가 만들어진다. 개발된 ‘탄소나노시트’는 단순한 제작공정으로 대량 생산이 가능할 뿐 아니라, 금속 기판을 제거하고, 생성된 그래핀을 다시 이동하는 등 기존 그래핀에서 결함을 유발하는 작업이 제거되어 품질 면에서도 우수한 것으로 나타났다. 효율성 측면에도 그래핀에 뒤지지 않는다. KIST 조한익 박사는 “개발된 공정은 이미 상용화된 탄소섬유의 제조공정을 이차원 탄소소재 합성에 응용한 것으로, 이미 공정이 구축된 방법인 만큼 투명하고 전도성을 갖는 이차원 탄소소재의 상업화에 쉽게 이용될 수 있을 것으로 보인다”고 말했다. 이번 연구는 본 연구팀에 의해 최근에 게재된 폴리아크릴로니트릴을 이용한 탄소나노시트 (2013년 Carbon 55호 및 Applied Physics Letters 102호 게재)에 관한 후속 연구로, 탄소나노시트의 성장 메커니즘을 이해하고 더욱 간단한 제조 공정을 제시했다는 데 의의가 있다. 이번 연구는 KIST의 기관고유연구사업 및 한국연구재단의 연구비 지원으로 수행되었다. ○ 연구진 ○ 그림자료 <그림1> 'Nanoscale'의 2014년 1월 21일자 권두 표지논문이미지, 초록색 고분자 용액이 회전하면서 코팅되는 모습, 이러한 탄소나노시트는 검은 부분으로 표현된 그래핀이 결함은 최소화하고 유사한 특성을 가진 물질이다. <그림 2> PIM-1 고분자를 이용한 투명하고 전도성을 가진 탄소나노시트의 제작방법 및 특성. (a)는 사다리(ladder) 형태의 구조를 가지는 PIM-1 고분자 용액을 투명한 석영(quarts) 기판 위에 코팅한 다음, 고온의 열처리를 통해 탄소나노시트를 제조하고 이 위에 별도의 추가 공정 없이 유기태양전지(OSC, orgarnic solar cell)를 구성하면 태양전지 제작이 가능한다. (b), (c), (d)는 PIM-1 고분자 농도에 기인한 탄소나노시트의 두께, 표면저항 및 투명도를 나타내는 그래프로써, 고분자 용액의 농도 제어를 통해 형성되는 탄소나노시트의 전기적, 광학적 특성들을 손쉽게 제어 가능함을 보여준다. 고분자 용액의 농도((b),(c) x축))가 높아지면 (b)그림에서 보듯 두께는 두꺼워지지만 (c)그림에서 보듯 저항이 줄어들어 전류는 더 잘 흐르게 된다. <그림 3> 개발된 투명 탄소나노시트의 이미지 (15mm)
꿈의 그래핀, 플라스틱으로 더 쉽게 만들 수 있다
꿈의 그래핀, 플라스틱으로 더 쉽게 만들 수 있다 - 고분자 용액의 코팅과 열처리만으로 그래핀의 특성을 가진 물질 제조 - 태양 전지, 반도체칩 등 전자소자 대량 생산 가능성 열려 전도성, 유연성, 내구성 등이 다른 물질보다 탁월한 그래핀은 꿈의 신소재로 불릴만큼 각광을 받고 있다. 그러나 생산 공정이 복잡하고 대량생산이 어려워 실생활에 활용하기 어렵다는 단점이 있다. 국내 연구진이 그래핀을 만드는 과정에서 발생하는 인공적 결함은 개선하고, 특성은 그대로인 탄소물질을 개발했다. 개발된 물질은 태양전지, 반도체 칩 등 그래핀이 쓰이는 곳에 사용할 수 있고, 이미 상용화된 공정으로 개발되어 상업화에 한층 가까워졌다. 관련 연구는 연구의 참신성을 인정받아 나노분야의 권위지인 Nanoscale의 표지 논문을 장식했다. 한국과학기술연구원(KIST) 전북분원(분원장 홍경태) 복합소재기술연구소 탄소융합소재연구센터 조한익 박사팀은 전북대 유연인쇄전자공학과 나석인 교수와 한국화학연구원 김병각 박사팀과 함께 면적이 큰 CVD 그래핀이 가진 문제를 해결하고자 플라스틱의 원료인 고분자를 이용하여 그래핀과 유사한 구조와 특성을 가지면서, 투명한 탄소나노시트를 개발했다. 이번 연구 성과는 나노기술 분야의 권위지인 영국왕립화학회지의 나노스케일(Nanoscale)에 "One-step synthesis of carbon nanosheets converted from a polycylic compound and their direct use as transparent electrodes of ITO-free organic solar cells"의 제목으로 게재되었으며, 연구의 우수성 및 참신함을 인정받아 1월 21일자 권두 표지논문으로 선정되었다. <그림 1> 품질이 좋고 면적이 수 십 인치에 달하는 대(大)면적의 그래핀 제작에는 화학적 기상 증착법*이 많이 이용된다. 그러나 이 방법은 금속을 촉매로 사용해야 하기 때문에, 그래핀 제작 후에는 사용한 금속을 제거해야하고, 제작한 그래핀을 태양전지 등 다른 기판으로 옮기는 후공정(전사공정)이 반드시 필요하다. 이 때문에 주름(wrinkle) 및 균열(crack) 등의 결함(defect)이 생겨 품질이 저하된다는 단점이 있다. * 화학적 기상 증착법 (CVD, chemical vapor deposition): 촉매 작용을 하는 금속필름의 기판위에 그래핀을 만드는 기법. ‘소스 가스’(source gas)라 불리는 가스를 기판위에 불어넣어 제작한다. 제작 후 금속을 제거해야하고, 다른 기판위에 그래핀을 이동시켜야 한다. 공동 연구팀은 기판 위에 고분자 용액을 코팅시켜 열처리를 가하는 2단계 공정으로 ‘탄소나노시트’를 개발했다. 기존 그래핀 제작 공정이 8단계였던것을 감안하면 크게 단순해진 것이다. 게다가 별도의 후처리공정 없이 태양전지 등으로 바로 사용이 가능하다<그림 2> 연구팀은 탄소 분자 내에 사다리 구조의 고분자인 PIM-1(Polymer of intrinsic microporosity-1)을 합성해, 고분자 용액을 만들었다. 엷은 초록색을 띈 고분자 용액을 기판인 석영(quarts)위에 회전시켜 골고루 뿌려 코팅한 후, 섭씨 1200도로 열처리를 하면 투명한 탄소나노시트가 만들어진다. 개발된 ‘탄소나노시트’는 단순한 제작공정으로 대량 생산이 가능할 뿐 아니라, 금속 기판을 제거하고, 생성된 그래핀을 다시 이동하는 등 기존 그래핀에서 결함을 유발하는 작업이 제거되어 품질 면에서도 우수한 것으로 나타났다. 효율성 측면에도 그래핀에 뒤지지 않는다. KIST 조한익 박사는 “개발된 공정은 이미 상용화된 탄소섬유의 제조공정을 이차원 탄소소재 합성에 응용한 것으로, 이미 공정이 구축된 방법인 만큼 투명하고 전도성을 갖는 이차원 탄소소재의 상업화에 쉽게 이용될 수 있을 것으로 보인다”고 말했다. 이번 연구는 본 연구팀에 의해 최근에 게재된 폴리아크릴로니트릴을 이용한 탄소나노시트 (2013년 Carbon 55호 및 Applied Physics Letters 102호 게재)에 관한 후속 연구로, 탄소나노시트의 성장 메커니즘을 이해하고 더욱 간단한 제조 공정을 제시했다는 데 의의가 있다. 이번 연구는 KIST의 기관고유연구사업 및 한국연구재단의 연구비 지원으로 수행되었다. ○ 연구진 ○ 그림자료 <그림1> 'Nanoscale'의 2014년 1월 21일자 권두 표지논문이미지, 초록색 고분자 용액이 회전하면서 코팅되는 모습, 이러한 탄소나노시트는 검은 부분으로 표현된 그래핀이 결함은 최소화하고 유사한 특성을 가진 물질이다. <그림 2> PIM-1 고분자를 이용한 투명하고 전도성을 가진 탄소나노시트의 제작방법 및 특성. (a)는 사다리(ladder) 형태의 구조를 가지는 PIM-1 고분자 용액을 투명한 석영(quarts) 기판 위에 코팅한 다음, 고온의 열처리를 통해 탄소나노시트를 제조하고 이 위에 별도의 추가 공정 없이 유기태양전지(OSC, orgarnic solar cell)를 구성하면 태양전지 제작이 가능한다. (b), (c), (d)는 PIM-1 고분자 농도에 기인한 탄소나노시트의 두께, 표면저항 및 투명도를 나타내는 그래프로써, 고분자 용액의 농도 제어를 통해 형성되는 탄소나노시트의 전기적, 광학적 특성들을 손쉽게 제어 가능함을 보여준다. 고분자 용액의 농도((b),(c) x축))가 높아지면 (b)그림에서 보듯 두께는 두꺼워지지만 (c)그림에서 보듯 저항이 줄어들어 전류는 더 잘 흐르게 된다. <그림 3> 개발된 투명 탄소나노시트의 이미지 (15mm)
꿈의 그래핀, 플라스틱으로 더 쉽게 만들 수 있다
꿈의 그래핀, 플라스틱으로 더 쉽게 만들 수 있다 - 고분자 용액의 코팅과 열처리만으로 그래핀의 특성을 가진 물질 제조 - 태양 전지, 반도체칩 등 전자소자 대량 생산 가능성 열려 전도성, 유연성, 내구성 등이 다른 물질보다 탁월한 그래핀은 꿈의 신소재로 불릴만큼 각광을 받고 있다. 그러나 생산 공정이 복잡하고 대량생산이 어려워 실생활에 활용하기 어렵다는 단점이 있다. 국내 연구진이 그래핀을 만드는 과정에서 발생하는 인공적 결함은 개선하고, 특성은 그대로인 탄소물질을 개발했다. 개발된 물질은 태양전지, 반도체 칩 등 그래핀이 쓰이는 곳에 사용할 수 있고, 이미 상용화된 공정으로 개발되어 상업화에 한층 가까워졌다. 관련 연구는 연구의 참신성을 인정받아 나노분야의 권위지인 Nanoscale의 표지 논문을 장식했다. 한국과학기술연구원(KIST) 전북분원(분원장 홍경태) 복합소재기술연구소 탄소융합소재연구센터 조한익 박사팀은 전북대 유연인쇄전자공학과 나석인 교수와 한국화학연구원 김병각 박사팀과 함께 면적이 큰 CVD 그래핀이 가진 문제를 해결하고자 플라스틱의 원료인 고분자를 이용하여 그래핀과 유사한 구조와 특성을 가지면서, 투명한 탄소나노시트를 개발했다. 이번 연구 성과는 나노기술 분야의 권위지인 영국왕립화학회지의 나노스케일(Nanoscale)에 "One-step synthesis of carbon nanosheets converted from a polycylic compound and their direct use as transparent electrodes of ITO-free organic solar cells"의 제목으로 게재되었으며, 연구의 우수성 및 참신함을 인정받아 1월 21일자 권두 표지논문으로 선정되었다. <그림 1> 품질이 좋고 면적이 수 십 인치에 달하는 대(大)면적의 그래핀 제작에는 화학적 기상 증착법*이 많이 이용된다. 그러나 이 방법은 금속을 촉매로 사용해야 하기 때문에, 그래핀 제작 후에는 사용한 금속을 제거해야하고, 제작한 그래핀을 태양전지 등 다른 기판으로 옮기는 후공정(전사공정)이 반드시 필요하다. 이 때문에 주름(wrinkle) 및 균열(crack) 등의 결함(defect)이 생겨 품질이 저하된다는 단점이 있다. * 화학적 기상 증착법 (CVD, chemical vapor deposition): 촉매 작용을 하는 금속필름의 기판위에 그래핀을 만드는 기법. ‘소스 가스’(source gas)라 불리는 가스를 기판위에 불어넣어 제작한다. 제작 후 금속을 제거해야하고, 다른 기판위에 그래핀을 이동시켜야 한다. 공동 연구팀은 기판 위에 고분자 용액을 코팅시켜 열처리를 가하는 2단계 공정으로 ‘탄소나노시트’를 개발했다. 기존 그래핀 제작 공정이 8단계였던것을 감안하면 크게 단순해진 것이다. 게다가 별도의 후처리공정 없이 태양전지 등으로 바로 사용이 가능하다<그림 2> 연구팀은 탄소 분자 내에 사다리 구조의 고분자인 PIM-1(Polymer of intrinsic microporosity-1)을 합성해, 고분자 용액을 만들었다. 엷은 초록색을 띈 고분자 용액을 기판인 석영(quarts)위에 회전시켜 골고루 뿌려 코팅한 후, 섭씨 1200도로 열처리를 하면 투명한 탄소나노시트가 만들어진다. 개발된 ‘탄소나노시트’는 단순한 제작공정으로 대량 생산이 가능할 뿐 아니라, 금속 기판을 제거하고, 생성된 그래핀을 다시 이동하는 등 기존 그래핀에서 결함을 유발하는 작업이 제거되어 품질 면에서도 우수한 것으로 나타났다. 효율성 측면에도 그래핀에 뒤지지 않는다. KIST 조한익 박사는 “개발된 공정은 이미 상용화된 탄소섬유의 제조공정을 이차원 탄소소재 합성에 응용한 것으로, 이미 공정이 구축된 방법인 만큼 투명하고 전도성을 갖는 이차원 탄소소재의 상업화에 쉽게 이용될 수 있을 것으로 보인다”고 말했다. 이번 연구는 본 연구팀에 의해 최근에 게재된 폴리아크릴로니트릴을 이용한 탄소나노시트 (2013년 Carbon 55호 및 Applied Physics Letters 102호 게재)에 관한 후속 연구로, 탄소나노시트의 성장 메커니즘을 이해하고 더욱 간단한 제조 공정을 제시했다는 데 의의가 있다. 이번 연구는 KIST의 기관고유연구사업 및 한국연구재단의 연구비 지원으로 수행되었다. ○ 연구진 ○ 그림자료 <그림1> 'Nanoscale'의 2014년 1월 21일자 권두 표지논문이미지, 초록색 고분자 용액이 회전하면서 코팅되는 모습, 이러한 탄소나노시트는 검은 부분으로 표현된 그래핀이 결함은 최소화하고 유사한 특성을 가진 물질이다. <그림 2> PIM-1 고분자를 이용한 투명하고 전도성을 가진 탄소나노시트의 제작방법 및 특성. (a)는 사다리(ladder) 형태의 구조를 가지는 PIM-1 고분자 용액을 투명한 석영(quarts) 기판 위에 코팅한 다음, 고온의 열처리를 통해 탄소나노시트를 제조하고 이 위에 별도의 추가 공정 없이 유기태양전지(OSC, orgarnic solar cell)를 구성하면 태양전지 제작이 가능한다. (b), (c), (d)는 PIM-1 고분자 농도에 기인한 탄소나노시트의 두께, 표면저항 및 투명도를 나타내는 그래프로써, 고분자 용액의 농도 제어를 통해 형성되는 탄소나노시트의 전기적, 광학적 특성들을 손쉽게 제어 가능함을 보여준다. 고분자 용액의 농도((b),(c) x축))가 높아지면 (b)그림에서 보듯 두께는 두꺼워지지만 (c)그림에서 보듯 저항이 줄어들어 전류는 더 잘 흐르게 된다. <그림 3> 개발된 투명 탄소나노시트의 이미지 (15mm)
꿈의 그래핀, 플라스틱으로 더 쉽게 만들 수 있다
꿈의 그래핀, 플라스틱으로 더 쉽게 만들 수 있다 - 고분자 용액의 코팅과 열처리만으로 그래핀의 특성을 가진 물질 제조 - 태양 전지, 반도체칩 등 전자소자 대량 생산 가능성 열려 전도성, 유연성, 내구성 등이 다른 물질보다 탁월한 그래핀은 꿈의 신소재로 불릴만큼 각광을 받고 있다. 그러나 생산 공정이 복잡하고 대량생산이 어려워 실생활에 활용하기 어렵다는 단점이 있다. 국내 연구진이 그래핀을 만드는 과정에서 발생하는 인공적 결함은 개선하고, 특성은 그대로인 탄소물질을 개발했다. 개발된 물질은 태양전지, 반도체 칩 등 그래핀이 쓰이는 곳에 사용할 수 있고, 이미 상용화된 공정으로 개발되어 상업화에 한층 가까워졌다. 관련 연구는 연구의 참신성을 인정받아 나노분야의 권위지인 Nanoscale의 표지 논문을 장식했다. 한국과학기술연구원(KIST) 전북분원(분원장 홍경태) 복합소재기술연구소 탄소융합소재연구센터 조한익 박사팀은 전북대 유연인쇄전자공학과 나석인 교수와 한국화학연구원 김병각 박사팀과 함께 면적이 큰 CVD 그래핀이 가진 문제를 해결하고자 플라스틱의 원료인 고분자를 이용하여 그래핀과 유사한 구조와 특성을 가지면서, 투명한 탄소나노시트를 개발했다. 이번 연구 성과는 나노기술 분야의 권위지인 영국왕립화학회지의 나노스케일(Nanoscale)에 "One-step synthesis of carbon nanosheets converted from a polycylic compound and their direct use as transparent electrodes of ITO-free organic solar cells"의 제목으로 게재되었으며, 연구의 우수성 및 참신함을 인정받아 1월 21일자 권두 표지논문으로 선정되었다. <그림 1> 품질이 좋고 면적이 수 십 인치에 달하는 대(大)면적의 그래핀 제작에는 화학적 기상 증착법*이 많이 이용된다. 그러나 이 방법은 금속을 촉매로 사용해야 하기 때문에, 그래핀 제작 후에는 사용한 금속을 제거해야하고, 제작한 그래핀을 태양전지 등 다른 기판으로 옮기는 후공정(전사공정)이 반드시 필요하다. 이 때문에 주름(wrinkle) 및 균열(crack) 등의 결함(defect)이 생겨 품질이 저하된다는 단점이 있다. * 화학적 기상 증착법 (CVD, chemical vapor deposition): 촉매 작용을 하는 금속필름의 기판위에 그래핀을 만드는 기법. ‘소스 가스’(source gas)라 불리는 가스를 기판위에 불어넣어 제작한다. 제작 후 금속을 제거해야하고, 다른 기판위에 그래핀을 이동시켜야 한다. 공동 연구팀은 기판 위에 고분자 용액을 코팅시켜 열처리를 가하는 2단계 공정으로 ‘탄소나노시트’를 개발했다. 기존 그래핀 제작 공정이 8단계였던것을 감안하면 크게 단순해진 것이다. 게다가 별도의 후처리공정 없이 태양전지 등으로 바로 사용이 가능하다<그림 2> 연구팀은 탄소 분자 내에 사다리 구조의 고분자인 PIM-1(Polymer of intrinsic microporosity-1)을 합성해, 고분자 용액을 만들었다. 엷은 초록색을 띈 고분자 용액을 기판인 석영(quarts)위에 회전시켜 골고루 뿌려 코팅한 후, 섭씨 1200도로 열처리를 하면 투명한 탄소나노시트가 만들어진다. 개발된 ‘탄소나노시트’는 단순한 제작공정으로 대량 생산이 가능할 뿐 아니라, 금속 기판을 제거하고, 생성된 그래핀을 다시 이동하는 등 기존 그래핀에서 결함을 유발하는 작업이 제거되어 품질 면에서도 우수한 것으로 나타났다. 효율성 측면에도 그래핀에 뒤지지 않는다. KIST 조한익 박사는 “개발된 공정은 이미 상용화된 탄소섬유의 제조공정을 이차원 탄소소재 합성에 응용한 것으로, 이미 공정이 구축된 방법인 만큼 투명하고 전도성을 갖는 이차원 탄소소재의 상업화에 쉽게 이용될 수 있을 것으로 보인다”고 말했다. 이번 연구는 본 연구팀에 의해 최근에 게재된 폴리아크릴로니트릴을 이용한 탄소나노시트 (2013년 Carbon 55호 및 Applied Physics Letters 102호 게재)에 관한 후속 연구로, 탄소나노시트의 성장 메커니즘을 이해하고 더욱 간단한 제조 공정을 제시했다는 데 의의가 있다. 이번 연구는 KIST의 기관고유연구사업 및 한국연구재단의 연구비 지원으로 수행되었다. ○ 연구진 ○ 그림자료 <그림1> 'Nanoscale'의 2014년 1월 21일자 권두 표지논문이미지, 초록색 고분자 용액이 회전하면서 코팅되는 모습, 이러한 탄소나노시트는 검은 부분으로 표현된 그래핀이 결함은 최소화하고 유사한 특성을 가진 물질이다. <그림 2> PIM-1 고분자를 이용한 투명하고 전도성을 가진 탄소나노시트의 제작방법 및 특성. (a)는 사다리(ladder) 형태의 구조를 가지는 PIM-1 고분자 용액을 투명한 석영(quarts) 기판 위에 코팅한 다음, 고온의 열처리를 통해 탄소나노시트를 제조하고 이 위에 별도의 추가 공정 없이 유기태양전지(OSC, orgarnic solar cell)를 구성하면 태양전지 제작이 가능한다. (b), (c), (d)는 PIM-1 고분자 농도에 기인한 탄소나노시트의 두께, 표면저항 및 투명도를 나타내는 그래프로써, 고분자 용액의 농도 제어를 통해 형성되는 탄소나노시트의 전기적, 광학적 특성들을 손쉽게 제어 가능함을 보여준다. 고분자 용액의 농도((b),(c) x축))가 높아지면 (b)그림에서 보듯 두께는 두꺼워지지만 (c)그림에서 보듯 저항이 줄어들어 전류는 더 잘 흐르게 된다. <그림 3> 개발된 투명 탄소나노시트의 이미지 (15mm)
꿈의 그래핀, 플라스틱으로 더 쉽게 만들 수 있다
꿈의 그래핀, 플라스틱으로 더 쉽게 만들 수 있다 - 고분자 용액의 코팅과 열처리만으로 그래핀의 특성을 가진 물질 제조 - 태양 전지, 반도체칩 등 전자소자 대량 생산 가능성 열려 전도성, 유연성, 내구성 등이 다른 물질보다 탁월한 그래핀은 꿈의 신소재로 불릴만큼 각광을 받고 있다. 그러나 생산 공정이 복잡하고 대량생산이 어려워 실생활에 활용하기 어렵다는 단점이 있다. 국내 연구진이 그래핀을 만드는 과정에서 발생하는 인공적 결함은 개선하고, 특성은 그대로인 탄소물질을 개발했다. 개발된 물질은 태양전지, 반도체 칩 등 그래핀이 쓰이는 곳에 사용할 수 있고, 이미 상용화된 공정으로 개발되어 상업화에 한층 가까워졌다. 관련 연구는 연구의 참신성을 인정받아 나노분야의 권위지인 Nanoscale의 표지 논문을 장식했다. 한국과학기술연구원(KIST) 전북분원(분원장 홍경태) 복합소재기술연구소 탄소융합소재연구센터 조한익 박사팀은 전북대 유연인쇄전자공학과 나석인 교수와 한국화학연구원 김병각 박사팀과 함께 면적이 큰 CVD 그래핀이 가진 문제를 해결하고자 플라스틱의 원료인 고분자를 이용하여 그래핀과 유사한 구조와 특성을 가지면서, 투명한 탄소나노시트를 개발했다. 이번 연구 성과는 나노기술 분야의 권위지인 영국왕립화학회지의 나노스케일(Nanoscale)에 "One-step synthesis of carbon nanosheets converted from a polycylic compound and their direct use as transparent electrodes of ITO-free organic solar cells"의 제목으로 게재되었으며, 연구의 우수성 및 참신함을 인정받아 1월 21일자 권두 표지논문으로 선정되었다. <그림 1> 품질이 좋고 면적이 수 십 인치에 달하는 대(大)면적의 그래핀 제작에는 화학적 기상 증착법*이 많이 이용된다. 그러나 이 방법은 금속을 촉매로 사용해야 하기 때문에, 그래핀 제작 후에는 사용한 금속을 제거해야하고, 제작한 그래핀을 태양전지 등 다른 기판으로 옮기는 후공정(전사공정)이 반드시 필요하다. 이 때문에 주름(wrinkle) 및 균열(crack) 등의 결함(defect)이 생겨 품질이 저하된다는 단점이 있다. * 화학적 기상 증착법 (CVD, chemical vapor deposition): 촉매 작용을 하는 금속필름의 기판위에 그래핀을 만드는 기법. ‘소스 가스’(source gas)라 불리는 가스를 기판위에 불어넣어 제작한다. 제작 후 금속을 제거해야하고, 다른 기판위에 그래핀을 이동시켜야 한다. 공동 연구팀은 기판 위에 고분자 용액을 코팅시켜 열처리를 가하는 2단계 공정으로 ‘탄소나노시트’를 개발했다. 기존 그래핀 제작 공정이 8단계였던것을 감안하면 크게 단순해진 것이다. 게다가 별도의 후처리공정 없이 태양전지 등으로 바로 사용이 가능하다<그림 2> 연구팀은 탄소 분자 내에 사다리 구조의 고분자인 PIM-1(Polymer of intrinsic microporosity-1)을 합성해, 고분자 용액을 만들었다. 엷은 초록색을 띈 고분자 용액을 기판인 석영(quarts)위에 회전시켜 골고루 뿌려 코팅한 후, 섭씨 1200도로 열처리를 하면 투명한 탄소나노시트가 만들어진다. 개발된 ‘탄소나노시트’는 단순한 제작공정으로 대량 생산이 가능할 뿐 아니라, 금속 기판을 제거하고, 생성된 그래핀을 다시 이동하는 등 기존 그래핀에서 결함을 유발하는 작업이 제거되어 품질 면에서도 우수한 것으로 나타났다. 효율성 측면에도 그래핀에 뒤지지 않는다. KIST 조한익 박사는 “개발된 공정은 이미 상용화된 탄소섬유의 제조공정을 이차원 탄소소재 합성에 응용한 것으로, 이미 공정이 구축된 방법인 만큼 투명하고 전도성을 갖는 이차원 탄소소재의 상업화에 쉽게 이용될 수 있을 것으로 보인다”고 말했다. 이번 연구는 본 연구팀에 의해 최근에 게재된 폴리아크릴로니트릴을 이용한 탄소나노시트 (2013년 Carbon 55호 및 Applied Physics Letters 102호 게재)에 관한 후속 연구로, 탄소나노시트의 성장 메커니즘을 이해하고 더욱 간단한 제조 공정을 제시했다는 데 의의가 있다. 이번 연구는 KIST의 기관고유연구사업 및 한국연구재단의 연구비 지원으로 수행되었다. ○ 연구진 ○ 그림자료 <그림1> 'Nanoscale'의 2014년 1월 21일자 권두 표지논문이미지, 초록색 고분자 용액이 회전하면서 코팅되는 모습, 이러한 탄소나노시트는 검은 부분으로 표현된 그래핀이 결함은 최소화하고 유사한 특성을 가진 물질이다. <그림 2> PIM-1 고분자를 이용한 투명하고 전도성을 가진 탄소나노시트의 제작방법 및 특성. (a)는 사다리(ladder) 형태의 구조를 가지는 PIM-1 고분자 용액을 투명한 석영(quarts) 기판 위에 코팅한 다음, 고온의 열처리를 통해 탄소나노시트를 제조하고 이 위에 별도의 추가 공정 없이 유기태양전지(OSC, orgarnic solar cell)를 구성하면 태양전지 제작이 가능한다. (b), (c), (d)는 PIM-1 고분자 농도에 기인한 탄소나노시트의 두께, 표면저항 및 투명도를 나타내는 그래프로써, 고분자 용액의 농도 제어를 통해 형성되는 탄소나노시트의 전기적, 광학적 특성들을 손쉽게 제어 가능함을 보여준다. 고분자 용액의 농도((b),(c) x축))가 높아지면 (b)그림에서 보듯 두께는 두꺼워지지만 (c)그림에서 보듯 저항이 줄어들어 전류는 더 잘 흐르게 된다. <그림 3> 개발된 투명 탄소나노시트의 이미지 (15mm)