검색결과
게시물 키워드""에 대한 9083개의 검색결과를 찾았습니다.
과학대중화를 위한 KIST-YTN 사이언스 업무협약(2014.06.26)
"우리나라 대표 과학 연구소와 언론인 우리 원과 YTN 사이언스가 긴밀히 협력하면 과학기술 발전과 과학의 대중화에 크게 기여할 수 있으리라 생각합니다. KIST는 좋은 연구 성과를 많이 만들고 YTN 사이언스는 그것을 알기 쉽게 국민에게 전달한다면 양 기관이 최상의 협력 모델이 될 것입니다” 우리 원과 YTN 사이언스(본부장 류희림)가 2014년 6월 26일 과학대중화를 위한 업무협약을 체결하였다. 우리나라 과학연구소를 대표하는 우리 원과 국내 유일의 과학전문방송인 YTN 사이언스가 국민들에게 과학을 쉽고, 친근하게 전달하기 위해 ‘과학발전 및 대중화를 위한 협력사업’, ‘연구성과 등 홍보컨텐츠 교류’, ‘과학기술 정보교환’ 등의 분야에서 협력 추진하기로 했다. 26일 진행된 업무협약식에는 이병권 원장, 임태훈 부원장, 하성도 연구기획조정본부장(KIST), 류희림 본부장, 김종술 총괄부국장, 김신영 콘텐츠제작팀장(YTN사이언스) 등 양기관의 주요간부가 모두 참여하여 향후 협약의 실질적 진행에 대한 기대감을 드러냈다. 협약 후 진행된 인터뷰에서 이병권 원장은 “우리나라 대표 과학 연구소와 언론인 KIST(한국과학기술원)와 YTN 사이언스가 긴밀히 협력하면 과학기술 발전과 과학의 대중화에 크게 기여할 수 있으리라 생각합니다. KIST는 좋은 연구 성과를 많이 만들고 YTN 사이언스는 그것을 알기 쉽게 국민에게 전달한다면 양 기관이 최상의 협력 모델이 될 것입니다”라고 말했다.
알츠하이머 병, 기억장애 치료를 위한 신약개발 가능성 열려(2014.06.30)
알츠하이머병 환자의 뇌에서 흔하게 발견되는 반응성 성상교세포가 억제성 신경전달물질인 가바를 생성, 분비하고 이를 통해 기억장애가 발생된다는 사실이 세계 최초로 국내 연구진에 의해 밝혀짐으로써 기억력상실, 치매 등과 같은 난치병의 치료 및 차세대 신약개발의 새로운 장을 열었다. 우리 원 뇌과학연구소 이창준 박사연구팀을 중심으로 KAIST를 비롯한 국내외 연구팀이 참여한 이번 연구는 미래창조과학부(장관 최문기)와 한국연구재단(이사장 정민근)이 추진하는 세계수준의 연구센터(WCI)사업과 뇌과학연구소의 플래그쉽 과제의 일환으로 수행되었으며, 세계적 권위지인 네이쳐메디슨(Nature Medicine) 최신호(6.30일자)에 게재되었다. * 논문명 : GABA from reactive astrocytes impairs memory in mouse models of Alzheimer disease) 본 연구팀은 알츠하이머병 환자의 뇌에서 흔하게 발견되는 반응성 성상교세포 내에서 도파민을 산화시키는 효소로 알려진 마오-B의 작용으로 생성된 억제성 신경전달물질 가바가 베스트로핀이라는 특정한 음이온 채널을 통해 외부로 방출되어 신경세포의 정상적인 신호전달을 방해한다는 사실을 밝혔다. 또한, 이 같은 연구결과를 바탕으로 알츠하이머 생쥐에서 마오-B혹은 베스트로핀의 억제를 통해 반응성 성상교세포내 가바의 생성과 분비를 제한하였고, 신경세포의 발화능력과 시냅스 가소성이 회복됨에 따라 기억력도 회복되는 것을 확인할 수 있었다. 우리 원 이창준 단장과 KAIST 김대수 교수는 “이번 연구를 통해 알츠하이머 발병 시 기억력이 감퇴되는 원인을 규명하였고, 반응성 성상교세포의 가바의 생성과 분비 억제가 기억력을 회복시키는 새로운 치료방법이 될 수 있다는 사실을 제시하였다. 더 나아가, 장기 복용 시에도 약효가 지속되는 신약개발의 토대를 마련했다”고 연구의의를 밝혔다.
유기 태양전지 대량생산 및 수명향상 기술 개발
유기 태양전지 대량생산 및 수명향상 기술 개발 - KIST, 이황화몰리브덴 암석과 소독용 과산화수소를 섞어 고성능/고안정성을 가진 부분산화 이황화몰리브덴 제조 - 공정개선으로 대량 생산 및 유기 전자소자 성능, 수명향상 가능성 열려 차세대 에너지변환장치인 태양전지 개발을 위해서는 높은 성능을 가진 안정적 전자 소자 개발이 필수적이다. 전기적, 기계적 성질이 뛰어나고 반도체 성질까지 보유해 전기 조절성이 뛰어난 이황화몰리브덴은 이런 이유로 차세대 전자소자로서 각광받고 있다. 특히, ‘부분산화 이황화몰리브덴’은 이황화몰리브덴 중에서도 안정성이 뛰어나다. 3차원의 울퉁불퉁한 암석형태로 존재하는 이황화몰리브덴을 전기적 성능을 가진 부분산화 이황화몰리브덴을 만들기 위해서는 2차원의 단일판 형태로 제작해야한다. 국내 연구진이 소독약으로 쓰이는 과산화수소를 사용하여 원자단위의 두께를 갖는 ‘부분산화 이황화몰리브덴’ 제조방법을 획기적으로 개선하여, 성능이 뛰어난 부분산화 이황화몰리브덴 대량생산의 길을 열었다. 한국과학기술연구원(KIST, 원장 이병권) 전북분원(분원장 김준경) 복합소재기술연구소 탄소융합소재연구센터 조한익 박사팀이 쉽고 대량생산이 가능한 판상형 ‘부분산화 이황화몰리브덴’ 제조법을 개발하였다. 연구팀은 판상형 ‘부분산화 이황화몰리브덴’ 제조를 위해 이황화몰리브덴과 약하게 반응할 수 있는 과산화수소와의 단순 혼합 및 교반을 이용하여 용액공정이 가능한 부분산화 이황화몰리브덴 나노시트 제조 및 고농도 분산을 갖는 용액을 성공적으로 제조하였다. 자연에서 암석형태로 발견할 수 있는 이황화몰리브덴*은 다층구조(3차원)를 가지고 있다. 태양전지에 적합한 특성을 갖는 재료를 제조하기 위해서는 이황화몰리브덴을 얇은 판상형으로 제조하고, 그 위에 산화몰리브덴 입자를 올려야하는 복잡한 공정을 거치게 된다. 특히, 기존 제조법은 장시간의 초음파를 암석에 처리하여 제조하기 때문에 대량생산이 어렵고 이황화몰리브덴의 농도가 낮았다. 또한 박리되지 않은 물질은 재분리 과정을 통해 다시 분리해야하는 어려움이 있다. 이 때문에 고농도의 판상형 이황화몰리브덴 제조에 어려움이 있었다. * 이황화몰리브덴 (molybdenum disulfide, MoS2): 이황화몰리브덴은 자연에서 발견되는 암석에서 얻어질 수 있다. 그래핀과 같이 전기적, 기계적 성질이 뛰어나며 실리콘을 대체할 수 있는 차세대 나노소재로서 각광을 받고 있다 연구팀은 3차원 이황화몰리브덴을 과산화수소에 단순 혼합하여 판상형 구조를 갖는 고농도의 액체상태의 ‘부분산화 이황화몰리브덴’ 제조에 성공하였다. 이렇게 제조된 용액을 기판에 스핀 코팅(spin coating)* 하여 판상형 부분산화 이황화몰리브덴 필름을 손쉽게 제조하였다. *스핀 코팅 : 용액을 회전시켜 골고루 기판에 코팅시키는 방법으로 균일한 필름을 제조할수 있는 장점이 있다. 개발된 제조법은 손쉬운 방법으로 기존 공정대비 공정을 2단계 줄였을뿐 아니라, 고농도의 우수하고 안정한 ‘부분산화 이황화몰리브덴’을 제조할 수 있게 되어 대량 생산의 길을 열었다. 이러한 소재의 특성을 이용하여 현재 차세대 에너지원으로 각광받고 있는 유기태양전지에 이용한 결과, 기존 태양전지가 4일 정도 후 효율이 0%로 떨어지는 데 비해, 16일이 지나도 20%의 효율만 감소한다는 것을 확인할 수 있었다. 이번 연구 성과는 나노기술 분야의 국제학술지 스몰(small)에 "Exfoliated and partially oxidized MoS2 nanosheets by one-pot reaction for efficient and stable organic solar cells"의 제목으로 게재되었으며, 연구의 우수성 및 참신함을 인정받아 6월 25일자 권두 표지논문으로 선정되었다. <그림 1> KIST 조한익 박사는 “개발된 나노소재 박리방법은 값싼 원료를 이용하며 손쉽고 대량생산이 용이하여, 차후 이차원 나노소재 제조의 상업화에 쉽게 이용할 수 있을 것으로 보인다”고 말했다. 이번 연구는 KIST의 기관고유연구사업으로 수행되었다. ○ 연구진 KIST 조한익 박사 ○ 그림자료 <그림1> 유기태양전지 이용 결과 정공수송층*에 응용한 결과, 현재 널리 사용되고 있는 피닷-피에스에스(PEDOT:PSS)*보다 소자의 수명 및 성능을 향상시킨다는 결과를 얻었다. * 유기태양전지 (organic solar cells): 일반적으로 무기물 태양전지와 달리 유기태양전지는 빛을 받아 전자와 정공을 형성하는 물질이 전도성고분자ㆍ플러렌 단분자 혼합층으로 구성되어 있다. 실리콘 태양전지에 비해 가볍고 굽힘 가능하며 낮은 가격에 소자를 생산할 수 있다는 장점이 있다. * 정공수송층 (hole transport layer): 유기 태양전지의 광 활성층은 빛을 받게 되면 전공과 전자를 형성하는 물질로 이루어져 있으며, 이렇게 형성된 정공과 전자는 각각 양극과 음극으로 재결합 없이 효과적으로 이동하여야 한다. 특히 전자와의 재결합 없이 정공의 효과적인 이동을 돕는 층을 정공 수송층이라고 한다. * 피닷-피에스에스 (PEDOT:PSS): PEDOT:PSS는 유기전자소자에서 가장 널리 사용되는 정공전달물질로서 수용액상에 분산된 상태로 존재한다. 초기 특성은 우수하나 PSS의 높은 산성으로 인하여 매우 낮은 소자 안정성을 보인다. <그림2> 논문이 게재된 Small지 2014. 6. 26일자 권두 표지 이미지. 과산화수소를 이용하여 박리된 2차원 부분산화 이황화몰리브덴 용액(갈색)을 기판위에 코팅하면 전자소자에 적용할 수 있음을 나타낸다.
유기 태양전지 대량생산 및 수명향상 기술 개발
유기 태양전지 대량생산 및 수명향상 기술 개발 - KIST, 이황화몰리브덴 암석과 소독용 과산화수소를 섞어 고성능/고안정성을 가진 부분산화 이황화몰리브덴 제조 - 공정개선으로 대량 생산 및 유기 전자소자 성능, 수명향상 가능성 열려 차세대 에너지변환장치인 태양전지 개발을 위해서는 높은 성능을 가진 안정적 전자 소자 개발이 필수적이다. 전기적, 기계적 성질이 뛰어나고 반도체 성질까지 보유해 전기 조절성이 뛰어난 이황화몰리브덴은 이런 이유로 차세대 전자소자로서 각광받고 있다. 특히, ‘부분산화 이황화몰리브덴’은 이황화몰리브덴 중에서도 안정성이 뛰어나다. 3차원의 울퉁불퉁한 암석형태로 존재하는 이황화몰리브덴을 전기적 성능을 가진 부분산화 이황화몰리브덴을 만들기 위해서는 2차원의 단일판 형태로 제작해야한다. 국내 연구진이 소독약으로 쓰이는 과산화수소를 사용하여 원자단위의 두께를 갖는 ‘부분산화 이황화몰리브덴’ 제조방법을 획기적으로 개선하여, 성능이 뛰어난 부분산화 이황화몰리브덴 대량생산의 길을 열었다. 한국과학기술연구원(KIST, 원장 이병권) 전북분원(분원장 김준경) 복합소재기술연구소 탄소융합소재연구센터 조한익 박사팀이 쉽고 대량생산이 가능한 판상형 ‘부분산화 이황화몰리브덴’ 제조법을 개발하였다. 연구팀은 판상형 ‘부분산화 이황화몰리브덴’ 제조를 위해 이황화몰리브덴과 약하게 반응할 수 있는 과산화수소와의 단순 혼합 및 교반을 이용하여 용액공정이 가능한 부분산화 이황화몰리브덴 나노시트 제조 및 고농도 분산을 갖는 용액을 성공적으로 제조하였다. 자연에서 암석형태로 발견할 수 있는 이황화몰리브덴*은 다층구조(3차원)를 가지고 있다. 태양전지에 적합한 특성을 갖는 재료를 제조하기 위해서는 이황화몰리브덴을 얇은 판상형으로 제조하고, 그 위에 산화몰리브덴 입자를 올려야하는 복잡한 공정을 거치게 된다. 특히, 기존 제조법은 장시간의 초음파를 암석에 처리하여 제조하기 때문에 대량생산이 어렵고 이황화몰리브덴의 농도가 낮았다. 또한 박리되지 않은 물질은 재분리 과정을 통해 다시 분리해야하는 어려움이 있다. 이 때문에 고농도의 판상형 이황화몰리브덴 제조에 어려움이 있었다. * 이황화몰리브덴 (molybdenum disulfide, MoS2): 이황화몰리브덴은 자연에서 발견되는 암석에서 얻어질 수 있다. 그래핀과 같이 전기적, 기계적 성질이 뛰어나며 실리콘을 대체할 수 있는 차세대 나노소재로서 각광을 받고 있다 연구팀은 3차원 이황화몰리브덴을 과산화수소에 단순 혼합하여 판상형 구조를 갖는 고농도의 액체상태의 ‘부분산화 이황화몰리브덴’ 제조에 성공하였다. 이렇게 제조된 용액을 기판에 스핀 코팅(spin coating)* 하여 판상형 부분산화 이황화몰리브덴 필름을 손쉽게 제조하였다. *스핀 코팅 : 용액을 회전시켜 골고루 기판에 코팅시키는 방법으로 균일한 필름을 제조할수 있는 장점이 있다. 개발된 제조법은 손쉬운 방법으로 기존 공정대비 공정을 2단계 줄였을뿐 아니라, 고농도의 우수하고 안정한 ‘부분산화 이황화몰리브덴’을 제조할 수 있게 되어 대량 생산의 길을 열었다. 이러한 소재의 특성을 이용하여 현재 차세대 에너지원으로 각광받고 있는 유기태양전지에 이용한 결과, 기존 태양전지가 4일 정도 후 효율이 0%로 떨어지는 데 비해, 16일이 지나도 20%의 효율만 감소한다는 것을 확인할 수 있었다. 이번 연구 성과는 나노기술 분야의 국제학술지 스몰(small)에 "Exfoliated and partially oxidized MoS2 nanosheets by one-pot reaction for efficient and stable organic solar cells"의 제목으로 게재되었으며, 연구의 우수성 및 참신함을 인정받아 6월 25일자 권두 표지논문으로 선정되었다. <그림 1> KIST 조한익 박사는 “개발된 나노소재 박리방법은 값싼 원료를 이용하며 손쉽고 대량생산이 용이하여, 차후 이차원 나노소재 제조의 상업화에 쉽게 이용할 수 있을 것으로 보인다”고 말했다. 이번 연구는 KIST의 기관고유연구사업으로 수행되었다. ○ 연구진 KIST 조한익 박사 ○ 그림자료 <그림1> 유기태양전지 이용 결과 정공수송층*에 응용한 결과, 현재 널리 사용되고 있는 피닷-피에스에스(PEDOT:PSS)*보다 소자의 수명 및 성능을 향상시킨다는 결과를 얻었다. * 유기태양전지 (organic solar cells): 일반적으로 무기물 태양전지와 달리 유기태양전지는 빛을 받아 전자와 정공을 형성하는 물질이 전도성고분자ㆍ플러렌 단분자 혼합층으로 구성되어 있다. 실리콘 태양전지에 비해 가볍고 굽힘 가능하며 낮은 가격에 소자를 생산할 수 있다는 장점이 있다. * 정공수송층 (hole transport layer): 유기 태양전지의 광 활성층은 빛을 받게 되면 전공과 전자를 형성하는 물질로 이루어져 있으며, 이렇게 형성된 정공과 전자는 각각 양극과 음극으로 재결합 없이 효과적으로 이동하여야 한다. 특히 전자와의 재결합 없이 정공의 효과적인 이동을 돕는 층을 정공 수송층이라고 한다. * 피닷-피에스에스 (PEDOT:PSS): PEDOT:PSS는 유기전자소자에서 가장 널리 사용되는 정공전달물질로서 수용액상에 분산된 상태로 존재한다. 초기 특성은 우수하나 PSS의 높은 산성으로 인하여 매우 낮은 소자 안정성을 보인다. <그림2> 논문이 게재된 Small지 2014. 6. 26일자 권두 표지 이미지. 과산화수소를 이용하여 박리된 2차원 부분산화 이황화몰리브덴 용액(갈색)을 기판위에 코팅하면 전자소자에 적용할 수 있음을 나타낸다.
유기 태양전지 대량생산 및 수명향상 기술 개발
유기 태양전지 대량생산 및 수명향상 기술 개발 - KIST, 이황화몰리브덴 암석과 소독용 과산화수소를 섞어 고성능/고안정성을 가진 부분산화 이황화몰리브덴 제조 - 공정개선으로 대량 생산 및 유기 전자소자 성능, 수명향상 가능성 열려 차세대 에너지변환장치인 태양전지 개발을 위해서는 높은 성능을 가진 안정적 전자 소자 개발이 필수적이다. 전기적, 기계적 성질이 뛰어나고 반도체 성질까지 보유해 전기 조절성이 뛰어난 이황화몰리브덴은 이런 이유로 차세대 전자소자로서 각광받고 있다. 특히, ‘부분산화 이황화몰리브덴’은 이황화몰리브덴 중에서도 안정성이 뛰어나다. 3차원의 울퉁불퉁한 암석형태로 존재하는 이황화몰리브덴을 전기적 성능을 가진 부분산화 이황화몰리브덴을 만들기 위해서는 2차원의 단일판 형태로 제작해야한다. 국내 연구진이 소독약으로 쓰이는 과산화수소를 사용하여 원자단위의 두께를 갖는 ‘부분산화 이황화몰리브덴’ 제조방법을 획기적으로 개선하여, 성능이 뛰어난 부분산화 이황화몰리브덴 대량생산의 길을 열었다. 한국과학기술연구원(KIST, 원장 이병권) 전북분원(분원장 김준경) 복합소재기술연구소 탄소융합소재연구센터 조한익 박사팀이 쉽고 대량생산이 가능한 판상형 ‘부분산화 이황화몰리브덴’ 제조법을 개발하였다. 연구팀은 판상형 ‘부분산화 이황화몰리브덴’ 제조를 위해 이황화몰리브덴과 약하게 반응할 수 있는 과산화수소와의 단순 혼합 및 교반을 이용하여 용액공정이 가능한 부분산화 이황화몰리브덴 나노시트 제조 및 고농도 분산을 갖는 용액을 성공적으로 제조하였다. 자연에서 암석형태로 발견할 수 있는 이황화몰리브덴*은 다층구조(3차원)를 가지고 있다. 태양전지에 적합한 특성을 갖는 재료를 제조하기 위해서는 이황화몰리브덴을 얇은 판상형으로 제조하고, 그 위에 산화몰리브덴 입자를 올려야하는 복잡한 공정을 거치게 된다. 특히, 기존 제조법은 장시간의 초음파를 암석에 처리하여 제조하기 때문에 대량생산이 어렵고 이황화몰리브덴의 농도가 낮았다. 또한 박리되지 않은 물질은 재분리 과정을 통해 다시 분리해야하는 어려움이 있다. 이 때문에 고농도의 판상형 이황화몰리브덴 제조에 어려움이 있었다. * 이황화몰리브덴 (molybdenum disulfide, MoS2): 이황화몰리브덴은 자연에서 발견되는 암석에서 얻어질 수 있다. 그래핀과 같이 전기적, 기계적 성질이 뛰어나며 실리콘을 대체할 수 있는 차세대 나노소재로서 각광을 받고 있다 연구팀은 3차원 이황화몰리브덴을 과산화수소에 단순 혼합하여 판상형 구조를 갖는 고농도의 액체상태의 ‘부분산화 이황화몰리브덴’ 제조에 성공하였다. 이렇게 제조된 용액을 기판에 스핀 코팅(spin coating)* 하여 판상형 부분산화 이황화몰리브덴 필름을 손쉽게 제조하였다. *스핀 코팅 : 용액을 회전시켜 골고루 기판에 코팅시키는 방법으로 균일한 필름을 제조할수 있는 장점이 있다. 개발된 제조법은 손쉬운 방법으로 기존 공정대비 공정을 2단계 줄였을뿐 아니라, 고농도의 우수하고 안정한 ‘부분산화 이황화몰리브덴’을 제조할 수 있게 되어 대량 생산의 길을 열었다. 이러한 소재의 특성을 이용하여 현재 차세대 에너지원으로 각광받고 있는 유기태양전지에 이용한 결과, 기존 태양전지가 4일 정도 후 효율이 0%로 떨어지는 데 비해, 16일이 지나도 20%의 효율만 감소한다는 것을 확인할 수 있었다. 이번 연구 성과는 나노기술 분야의 국제학술지 스몰(small)에 "Exfoliated and partially oxidized MoS2 nanosheets by one-pot reaction for efficient and stable organic solar cells"의 제목으로 게재되었으며, 연구의 우수성 및 참신함을 인정받아 6월 25일자 권두 표지논문으로 선정되었다. <그림 1> KIST 조한익 박사는 “개발된 나노소재 박리방법은 값싼 원료를 이용하며 손쉽고 대량생산이 용이하여, 차후 이차원 나노소재 제조의 상업화에 쉽게 이용할 수 있을 것으로 보인다”고 말했다. 이번 연구는 KIST의 기관고유연구사업으로 수행되었다. ○ 연구진 KIST 조한익 박사 ○ 그림자료 <그림1> 유기태양전지 이용 결과 정공수송층*에 응용한 결과, 현재 널리 사용되고 있는 피닷-피에스에스(PEDOT:PSS)*보다 소자의 수명 및 성능을 향상시킨다는 결과를 얻었다. * 유기태양전지 (organic solar cells): 일반적으로 무기물 태양전지와 달리 유기태양전지는 빛을 받아 전자와 정공을 형성하는 물질이 전도성고분자ㆍ플러렌 단분자 혼합층으로 구성되어 있다. 실리콘 태양전지에 비해 가볍고 굽힘 가능하며 낮은 가격에 소자를 생산할 수 있다는 장점이 있다. * 정공수송층 (hole transport layer): 유기 태양전지의 광 활성층은 빛을 받게 되면 전공과 전자를 형성하는 물질로 이루어져 있으며, 이렇게 형성된 정공과 전자는 각각 양극과 음극으로 재결합 없이 효과적으로 이동하여야 한다. 특히 전자와의 재결합 없이 정공의 효과적인 이동을 돕는 층을 정공 수송층이라고 한다. * 피닷-피에스에스 (PEDOT:PSS): PEDOT:PSS는 유기전자소자에서 가장 널리 사용되는 정공전달물질로서 수용액상에 분산된 상태로 존재한다. 초기 특성은 우수하나 PSS의 높은 산성으로 인하여 매우 낮은 소자 안정성을 보인다. <그림2> 논문이 게재된 Small지 2014. 6. 26일자 권두 표지 이미지. 과산화수소를 이용하여 박리된 2차원 부분산화 이황화몰리브덴 용액(갈색)을 기판위에 코팅하면 전자소자에 적용할 수 있음을 나타낸다.
유기 태양전지 대량생산 및 수명향상 기술 개발
유기 태양전지 대량생산 및 수명향상 기술 개발 - KIST, 이황화몰리브덴 암석과 소독용 과산화수소를 섞어 고성능/고안정성을 가진 부분산화 이황화몰리브덴 제조 - 공정개선으로 대량 생산 및 유기 전자소자 성능, 수명향상 가능성 열려 차세대 에너지변환장치인 태양전지 개발을 위해서는 높은 성능을 가진 안정적 전자 소자 개발이 필수적이다. 전기적, 기계적 성질이 뛰어나고 반도체 성질까지 보유해 전기 조절성이 뛰어난 이황화몰리브덴은 이런 이유로 차세대 전자소자로서 각광받고 있다. 특히, ‘부분산화 이황화몰리브덴’은 이황화몰리브덴 중에서도 안정성이 뛰어나다. 3차원의 울퉁불퉁한 암석형태로 존재하는 이황화몰리브덴을 전기적 성능을 가진 부분산화 이황화몰리브덴을 만들기 위해서는 2차원의 단일판 형태로 제작해야한다. 국내 연구진이 소독약으로 쓰이는 과산화수소를 사용하여 원자단위의 두께를 갖는 ‘부분산화 이황화몰리브덴’ 제조방법을 획기적으로 개선하여, 성능이 뛰어난 부분산화 이황화몰리브덴 대량생산의 길을 열었다. 한국과학기술연구원(KIST, 원장 이병권) 전북분원(분원장 김준경) 복합소재기술연구소 탄소융합소재연구센터 조한익 박사팀이 쉽고 대량생산이 가능한 판상형 ‘부분산화 이황화몰리브덴’ 제조법을 개발하였다. 연구팀은 판상형 ‘부분산화 이황화몰리브덴’ 제조를 위해 이황화몰리브덴과 약하게 반응할 수 있는 과산화수소와의 단순 혼합 및 교반을 이용하여 용액공정이 가능한 부분산화 이황화몰리브덴 나노시트 제조 및 고농도 분산을 갖는 용액을 성공적으로 제조하였다. 자연에서 암석형태로 발견할 수 있는 이황화몰리브덴*은 다층구조(3차원)를 가지고 있다. 태양전지에 적합한 특성을 갖는 재료를 제조하기 위해서는 이황화몰리브덴을 얇은 판상형으로 제조하고, 그 위에 산화몰리브덴 입자를 올려야하는 복잡한 공정을 거치게 된다. 특히, 기존 제조법은 장시간의 초음파를 암석에 처리하여 제조하기 때문에 대량생산이 어렵고 이황화몰리브덴의 농도가 낮았다. 또한 박리되지 않은 물질은 재분리 과정을 통해 다시 분리해야하는 어려움이 있다. 이 때문에 고농도의 판상형 이황화몰리브덴 제조에 어려움이 있었다. * 이황화몰리브덴 (molybdenum disulfide, MoS2): 이황화몰리브덴은 자연에서 발견되는 암석에서 얻어질 수 있다. 그래핀과 같이 전기적, 기계적 성질이 뛰어나며 실리콘을 대체할 수 있는 차세대 나노소재로서 각광을 받고 있다 연구팀은 3차원 이황화몰리브덴을 과산화수소에 단순 혼합하여 판상형 구조를 갖는 고농도의 액체상태의 ‘부분산화 이황화몰리브덴’ 제조에 성공하였다. 이렇게 제조된 용액을 기판에 스핀 코팅(spin coating)* 하여 판상형 부분산화 이황화몰리브덴 필름을 손쉽게 제조하였다. *스핀 코팅 : 용액을 회전시켜 골고루 기판에 코팅시키는 방법으로 균일한 필름을 제조할수 있는 장점이 있다. 개발된 제조법은 손쉬운 방법으로 기존 공정대비 공정을 2단계 줄였을뿐 아니라, 고농도의 우수하고 안정한 ‘부분산화 이황화몰리브덴’을 제조할 수 있게 되어 대량 생산의 길을 열었다. 이러한 소재의 특성을 이용하여 현재 차세대 에너지원으로 각광받고 있는 유기태양전지에 이용한 결과, 기존 태양전지가 4일 정도 후 효율이 0%로 떨어지는 데 비해, 16일이 지나도 20%의 효율만 감소한다는 것을 확인할 수 있었다. 이번 연구 성과는 나노기술 분야의 국제학술지 스몰(small)에 "Exfoliated and partially oxidized MoS2 nanosheets by one-pot reaction for efficient and stable organic solar cells"의 제목으로 게재되었으며, 연구의 우수성 및 참신함을 인정받아 6월 25일자 권두 표지논문으로 선정되었다. <그림 1> KIST 조한익 박사는 “개발된 나노소재 박리방법은 값싼 원료를 이용하며 손쉽고 대량생산이 용이하여, 차후 이차원 나노소재 제조의 상업화에 쉽게 이용할 수 있을 것으로 보인다”고 말했다. 이번 연구는 KIST의 기관고유연구사업으로 수행되었다. ○ 연구진 KIST 조한익 박사 ○ 그림자료 <그림1> 유기태양전지 이용 결과 정공수송층*에 응용한 결과, 현재 널리 사용되고 있는 피닷-피에스에스(PEDOT:PSS)*보다 소자의 수명 및 성능을 향상시킨다는 결과를 얻었다. * 유기태양전지 (organic solar cells): 일반적으로 무기물 태양전지와 달리 유기태양전지는 빛을 받아 전자와 정공을 형성하는 물질이 전도성고분자ㆍ플러렌 단분자 혼합층으로 구성되어 있다. 실리콘 태양전지에 비해 가볍고 굽힘 가능하며 낮은 가격에 소자를 생산할 수 있다는 장점이 있다. * 정공수송층 (hole transport layer): 유기 태양전지의 광 활성층은 빛을 받게 되면 전공과 전자를 형성하는 물질로 이루어져 있으며, 이렇게 형성된 정공과 전자는 각각 양극과 음극으로 재결합 없이 효과적으로 이동하여야 한다. 특히 전자와의 재결합 없이 정공의 효과적인 이동을 돕는 층을 정공 수송층이라고 한다. * 피닷-피에스에스 (PEDOT:PSS): PEDOT:PSS는 유기전자소자에서 가장 널리 사용되는 정공전달물질로서 수용액상에 분산된 상태로 존재한다. 초기 특성은 우수하나 PSS의 높은 산성으로 인하여 매우 낮은 소자 안정성을 보인다. <그림2> 논문이 게재된 Small지 2014. 6. 26일자 권두 표지 이미지. 과산화수소를 이용하여 박리된 2차원 부분산화 이황화몰리브덴 용액(갈색)을 기판위에 코팅하면 전자소자에 적용할 수 있음을 나타낸다.
유기 태양전지 대량생산 및 수명향상 기술 개발
유기 태양전지 대량생산 및 수명향상 기술 개발 - KIST, 이황화몰리브덴 암석과 소독용 과산화수소를 섞어 고성능/고안정성을 가진 부분산화 이황화몰리브덴 제조 - 공정개선으로 대량 생산 및 유기 전자소자 성능, 수명향상 가능성 열려 차세대 에너지변환장치인 태양전지 개발을 위해서는 높은 성능을 가진 안정적 전자 소자 개발이 필수적이다. 전기적, 기계적 성질이 뛰어나고 반도체 성질까지 보유해 전기 조절성이 뛰어난 이황화몰리브덴은 이런 이유로 차세대 전자소자로서 각광받고 있다. 특히, ‘부분산화 이황화몰리브덴’은 이황화몰리브덴 중에서도 안정성이 뛰어나다. 3차원의 울퉁불퉁한 암석형태로 존재하는 이황화몰리브덴을 전기적 성능을 가진 부분산화 이황화몰리브덴을 만들기 위해서는 2차원의 단일판 형태로 제작해야한다. 국내 연구진이 소독약으로 쓰이는 과산화수소를 사용하여 원자단위의 두께를 갖는 ‘부분산화 이황화몰리브덴’ 제조방법을 획기적으로 개선하여, 성능이 뛰어난 부분산화 이황화몰리브덴 대량생산의 길을 열었다. 한국과학기술연구원(KIST, 원장 이병권) 전북분원(분원장 김준경) 복합소재기술연구소 탄소융합소재연구센터 조한익 박사팀이 쉽고 대량생산이 가능한 판상형 ‘부분산화 이황화몰리브덴’ 제조법을 개발하였다. 연구팀은 판상형 ‘부분산화 이황화몰리브덴’ 제조를 위해 이황화몰리브덴과 약하게 반응할 수 있는 과산화수소와의 단순 혼합 및 교반을 이용하여 용액공정이 가능한 부분산화 이황화몰리브덴 나노시트 제조 및 고농도 분산을 갖는 용액을 성공적으로 제조하였다. 자연에서 암석형태로 발견할 수 있는 이황화몰리브덴*은 다층구조(3차원)를 가지고 있다. 태양전지에 적합한 특성을 갖는 재료를 제조하기 위해서는 이황화몰리브덴을 얇은 판상형으로 제조하고, 그 위에 산화몰리브덴 입자를 올려야하는 복잡한 공정을 거치게 된다. 특히, 기존 제조법은 장시간의 초음파를 암석에 처리하여 제조하기 때문에 대량생산이 어렵고 이황화몰리브덴의 농도가 낮았다. 또한 박리되지 않은 물질은 재분리 과정을 통해 다시 분리해야하는 어려움이 있다. 이 때문에 고농도의 판상형 이황화몰리브덴 제조에 어려움이 있었다. * 이황화몰리브덴 (molybdenum disulfide, MoS2): 이황화몰리브덴은 자연에서 발견되는 암석에서 얻어질 수 있다. 그래핀과 같이 전기적, 기계적 성질이 뛰어나며 실리콘을 대체할 수 있는 차세대 나노소재로서 각광을 받고 있다 연구팀은 3차원 이황화몰리브덴을 과산화수소에 단순 혼합하여 판상형 구조를 갖는 고농도의 액체상태의 ‘부분산화 이황화몰리브덴’ 제조에 성공하였다. 이렇게 제조된 용액을 기판에 스핀 코팅(spin coating)* 하여 판상형 부분산화 이황화몰리브덴 필름을 손쉽게 제조하였다. *스핀 코팅 : 용액을 회전시켜 골고루 기판에 코팅시키는 방법으로 균일한 필름을 제조할수 있는 장점이 있다. 개발된 제조법은 손쉬운 방법으로 기존 공정대비 공정을 2단계 줄였을뿐 아니라, 고농도의 우수하고 안정한 ‘부분산화 이황화몰리브덴’을 제조할 수 있게 되어 대량 생산의 길을 열었다. 이러한 소재의 특성을 이용하여 현재 차세대 에너지원으로 각광받고 있는 유기태양전지에 이용한 결과, 기존 태양전지가 4일 정도 후 효율이 0%로 떨어지는 데 비해, 16일이 지나도 20%의 효율만 감소한다는 것을 확인할 수 있었다. 이번 연구 성과는 나노기술 분야의 국제학술지 스몰(small)에 "Exfoliated and partially oxidized MoS2 nanosheets by one-pot reaction for efficient and stable organic solar cells"의 제목으로 게재되었으며, 연구의 우수성 및 참신함을 인정받아 6월 25일자 권두 표지논문으로 선정되었다. <그림 1> KIST 조한익 박사는 “개발된 나노소재 박리방법은 값싼 원료를 이용하며 손쉽고 대량생산이 용이하여, 차후 이차원 나노소재 제조의 상업화에 쉽게 이용할 수 있을 것으로 보인다”고 말했다. 이번 연구는 KIST의 기관고유연구사업으로 수행되었다. ○ 연구진 KIST 조한익 박사 ○ 그림자료 <그림1> 유기태양전지 이용 결과 정공수송층*에 응용한 결과, 현재 널리 사용되고 있는 피닷-피에스에스(PEDOT:PSS)*보다 소자의 수명 및 성능을 향상시킨다는 결과를 얻었다. * 유기태양전지 (organic solar cells): 일반적으로 무기물 태양전지와 달리 유기태양전지는 빛을 받아 전자와 정공을 형성하는 물질이 전도성고분자ㆍ플러렌 단분자 혼합층으로 구성되어 있다. 실리콘 태양전지에 비해 가볍고 굽힘 가능하며 낮은 가격에 소자를 생산할 수 있다는 장점이 있다. * 정공수송층 (hole transport layer): 유기 태양전지의 광 활성층은 빛을 받게 되면 전공과 전자를 형성하는 물질로 이루어져 있으며, 이렇게 형성된 정공과 전자는 각각 양극과 음극으로 재결합 없이 효과적으로 이동하여야 한다. 특히 전자와의 재결합 없이 정공의 효과적인 이동을 돕는 층을 정공 수송층이라고 한다. * 피닷-피에스에스 (PEDOT:PSS): PEDOT:PSS는 유기전자소자에서 가장 널리 사용되는 정공전달물질로서 수용액상에 분산된 상태로 존재한다. 초기 특성은 우수하나 PSS의 높은 산성으로 인하여 매우 낮은 소자 안정성을 보인다. <그림2> 논문이 게재된 Small지 2014. 6. 26일자 권두 표지 이미지. 과산화수소를 이용하여 박리된 2차원 부분산화 이황화몰리브덴 용액(갈색)을 기판위에 코팅하면 전자소자에 적용할 수 있음을 나타낸다.
유기 태양전지 대량생산 및 수명향상 기술 개발
유기 태양전지 대량생산 및 수명향상 기술 개발 - KIST, 이황화몰리브덴 암석과 소독용 과산화수소를 섞어 고성능/고안정성을 가진 부분산화 이황화몰리브덴 제조 - 공정개선으로 대량 생산 및 유기 전자소자 성능, 수명향상 가능성 열려 차세대 에너지변환장치인 태양전지 개발을 위해서는 높은 성능을 가진 안정적 전자 소자 개발이 필수적이다. 전기적, 기계적 성질이 뛰어나고 반도체 성질까지 보유해 전기 조절성이 뛰어난 이황화몰리브덴은 이런 이유로 차세대 전자소자로서 각광받고 있다. 특히, ‘부분산화 이황화몰리브덴’은 이황화몰리브덴 중에서도 안정성이 뛰어나다. 3차원의 울퉁불퉁한 암석형태로 존재하는 이황화몰리브덴을 전기적 성능을 가진 부분산화 이황화몰리브덴을 만들기 위해서는 2차원의 단일판 형태로 제작해야한다. 국내 연구진이 소독약으로 쓰이는 과산화수소를 사용하여 원자단위의 두께를 갖는 ‘부분산화 이황화몰리브덴’ 제조방법을 획기적으로 개선하여, 성능이 뛰어난 부분산화 이황화몰리브덴 대량생산의 길을 열었다. 한국과학기술연구원(KIST, 원장 이병권) 전북분원(분원장 김준경) 복합소재기술연구소 탄소융합소재연구센터 조한익 박사팀이 쉽고 대량생산이 가능한 판상형 ‘부분산화 이황화몰리브덴’ 제조법을 개발하였다. 연구팀은 판상형 ‘부분산화 이황화몰리브덴’ 제조를 위해 이황화몰리브덴과 약하게 반응할 수 있는 과산화수소와의 단순 혼합 및 교반을 이용하여 용액공정이 가능한 부분산화 이황화몰리브덴 나노시트 제조 및 고농도 분산을 갖는 용액을 성공적으로 제조하였다. 자연에서 암석형태로 발견할 수 있는 이황화몰리브덴*은 다층구조(3차원)를 가지고 있다. 태양전지에 적합한 특성을 갖는 재료를 제조하기 위해서는 이황화몰리브덴을 얇은 판상형으로 제조하고, 그 위에 산화몰리브덴 입자를 올려야하는 복잡한 공정을 거치게 된다. 특히, 기존 제조법은 장시간의 초음파를 암석에 처리하여 제조하기 때문에 대량생산이 어렵고 이황화몰리브덴의 농도가 낮았다. 또한 박리되지 않은 물질은 재분리 과정을 통해 다시 분리해야하는 어려움이 있다. 이 때문에 고농도의 판상형 이황화몰리브덴 제조에 어려움이 있었다. * 이황화몰리브덴 (molybdenum disulfide, MoS2): 이황화몰리브덴은 자연에서 발견되는 암석에서 얻어질 수 있다. 그래핀과 같이 전기적, 기계적 성질이 뛰어나며 실리콘을 대체할 수 있는 차세대 나노소재로서 각광을 받고 있다 연구팀은 3차원 이황화몰리브덴을 과산화수소에 단순 혼합하여 판상형 구조를 갖는 고농도의 액체상태의 ‘부분산화 이황화몰리브덴’ 제조에 성공하였다. 이렇게 제조된 용액을 기판에 스핀 코팅(spin coating)* 하여 판상형 부분산화 이황화몰리브덴 필름을 손쉽게 제조하였다. *스핀 코팅 : 용액을 회전시켜 골고루 기판에 코팅시키는 방법으로 균일한 필름을 제조할수 있는 장점이 있다. 개발된 제조법은 손쉬운 방법으로 기존 공정대비 공정을 2단계 줄였을뿐 아니라, 고농도의 우수하고 안정한 ‘부분산화 이황화몰리브덴’을 제조할 수 있게 되어 대량 생산의 길을 열었다. 이러한 소재의 특성을 이용하여 현재 차세대 에너지원으로 각광받고 있는 유기태양전지에 이용한 결과, 기존 태양전지가 4일 정도 후 효율이 0%로 떨어지는 데 비해, 16일이 지나도 20%의 효율만 감소한다는 것을 확인할 수 있었다. 이번 연구 성과는 나노기술 분야의 국제학술지 스몰(small)에 "Exfoliated and partially oxidized MoS2 nanosheets by one-pot reaction for efficient and stable organic solar cells"의 제목으로 게재되었으며, 연구의 우수성 및 참신함을 인정받아 6월 25일자 권두 표지논문으로 선정되었다. <그림 1> KIST 조한익 박사는 “개발된 나노소재 박리방법은 값싼 원료를 이용하며 손쉽고 대량생산이 용이하여, 차후 이차원 나노소재 제조의 상업화에 쉽게 이용할 수 있을 것으로 보인다”고 말했다. 이번 연구는 KIST의 기관고유연구사업으로 수행되었다. ○ 연구진 KIST 조한익 박사 ○ 그림자료 <그림1> 유기태양전지 이용 결과 정공수송층*에 응용한 결과, 현재 널리 사용되고 있는 피닷-피에스에스(PEDOT:PSS)*보다 소자의 수명 및 성능을 향상시킨다는 결과를 얻었다. * 유기태양전지 (organic solar cells): 일반적으로 무기물 태양전지와 달리 유기태양전지는 빛을 받아 전자와 정공을 형성하는 물질이 전도성고분자ㆍ플러렌 단분자 혼합층으로 구성되어 있다. 실리콘 태양전지에 비해 가볍고 굽힘 가능하며 낮은 가격에 소자를 생산할 수 있다는 장점이 있다. * 정공수송층 (hole transport layer): 유기 태양전지의 광 활성층은 빛을 받게 되면 전공과 전자를 형성하는 물질로 이루어져 있으며, 이렇게 형성된 정공과 전자는 각각 양극과 음극으로 재결합 없이 효과적으로 이동하여야 한다. 특히 전자와의 재결합 없이 정공의 효과적인 이동을 돕는 층을 정공 수송층이라고 한다. * 피닷-피에스에스 (PEDOT:PSS): PEDOT:PSS는 유기전자소자에서 가장 널리 사용되는 정공전달물질로서 수용액상에 분산된 상태로 존재한다. 초기 특성은 우수하나 PSS의 높은 산성으로 인하여 매우 낮은 소자 안정성을 보인다. <그림2> 논문이 게재된 Small지 2014. 6. 26일자 권두 표지 이미지. 과산화수소를 이용하여 박리된 2차원 부분산화 이황화몰리브덴 용액(갈색)을 기판위에 코팅하면 전자소자에 적용할 수 있음을 나타낸다.
유기 태양전지 대량생산 및 수명향상 기술 개발
유기 태양전지 대량생산 및 수명향상 기술 개발 - KIST, 이황화몰리브덴 암석과 소독용 과산화수소를 섞어 고성능/고안정성을 가진 부분산화 이황화몰리브덴 제조 - 공정개선으로 대량 생산 및 유기 전자소자 성능, 수명향상 가능성 열려 차세대 에너지변환장치인 태양전지 개발을 위해서는 높은 성능을 가진 안정적 전자 소자 개발이 필수적이다. 전기적, 기계적 성질이 뛰어나고 반도체 성질까지 보유해 전기 조절성이 뛰어난 이황화몰리브덴은 이런 이유로 차세대 전자소자로서 각광받고 있다. 특히, ‘부분산화 이황화몰리브덴’은 이황화몰리브덴 중에서도 안정성이 뛰어나다. 3차원의 울퉁불퉁한 암석형태로 존재하는 이황화몰리브덴을 전기적 성능을 가진 부분산화 이황화몰리브덴을 만들기 위해서는 2차원의 단일판 형태로 제작해야한다. 국내 연구진이 소독약으로 쓰이는 과산화수소를 사용하여 원자단위의 두께를 갖는 ‘부분산화 이황화몰리브덴’ 제조방법을 획기적으로 개선하여, 성능이 뛰어난 부분산화 이황화몰리브덴 대량생산의 길을 열었다. 한국과학기술연구원(KIST, 원장 이병권) 전북분원(분원장 김준경) 복합소재기술연구소 탄소융합소재연구센터 조한익 박사팀이 쉽고 대량생산이 가능한 판상형 ‘부분산화 이황화몰리브덴’ 제조법을 개발하였다. 연구팀은 판상형 ‘부분산화 이황화몰리브덴’ 제조를 위해 이황화몰리브덴과 약하게 반응할 수 있는 과산화수소와의 단순 혼합 및 교반을 이용하여 용액공정이 가능한 부분산화 이황화몰리브덴 나노시트 제조 및 고농도 분산을 갖는 용액을 성공적으로 제조하였다. 자연에서 암석형태로 발견할 수 있는 이황화몰리브덴*은 다층구조(3차원)를 가지고 있다. 태양전지에 적합한 특성을 갖는 재료를 제조하기 위해서는 이황화몰리브덴을 얇은 판상형으로 제조하고, 그 위에 산화몰리브덴 입자를 올려야하는 복잡한 공정을 거치게 된다. 특히, 기존 제조법은 장시간의 초음파를 암석에 처리하여 제조하기 때문에 대량생산이 어렵고 이황화몰리브덴의 농도가 낮았다. 또한 박리되지 않은 물질은 재분리 과정을 통해 다시 분리해야하는 어려움이 있다. 이 때문에 고농도의 판상형 이황화몰리브덴 제조에 어려움이 있었다. * 이황화몰리브덴 (molybdenum disulfide, MoS2): 이황화몰리브덴은 자연에서 발견되는 암석에서 얻어질 수 있다. 그래핀과 같이 전기적, 기계적 성질이 뛰어나며 실리콘을 대체할 수 있는 차세대 나노소재로서 각광을 받고 있다 연구팀은 3차원 이황화몰리브덴을 과산화수소에 단순 혼합하여 판상형 구조를 갖는 고농도의 액체상태의 ‘부분산화 이황화몰리브덴’ 제조에 성공하였다. 이렇게 제조된 용액을 기판에 스핀 코팅(spin coating)* 하여 판상형 부분산화 이황화몰리브덴 필름을 손쉽게 제조하였다. *스핀 코팅 : 용액을 회전시켜 골고루 기판에 코팅시키는 방법으로 균일한 필름을 제조할수 있는 장점이 있다. 개발된 제조법은 손쉬운 방법으로 기존 공정대비 공정을 2단계 줄였을뿐 아니라, 고농도의 우수하고 안정한 ‘부분산화 이황화몰리브덴’을 제조할 수 있게 되어 대량 생산의 길을 열었다. 이러한 소재의 특성을 이용하여 현재 차세대 에너지원으로 각광받고 있는 유기태양전지에 이용한 결과, 기존 태양전지가 4일 정도 후 효율이 0%로 떨어지는 데 비해, 16일이 지나도 20%의 효율만 감소한다는 것을 확인할 수 있었다. 이번 연구 성과는 나노기술 분야의 국제학술지 스몰(small)에 "Exfoliated and partially oxidized MoS2 nanosheets by one-pot reaction for efficient and stable organic solar cells"의 제목으로 게재되었으며, 연구의 우수성 및 참신함을 인정받아 6월 25일자 권두 표지논문으로 선정되었다. <그림 1> KIST 조한익 박사는 “개발된 나노소재 박리방법은 값싼 원료를 이용하며 손쉽고 대량생산이 용이하여, 차후 이차원 나노소재 제조의 상업화에 쉽게 이용할 수 있을 것으로 보인다”고 말했다. 이번 연구는 KIST의 기관고유연구사업으로 수행되었다. ○ 연구진 KIST 조한익 박사 ○ 그림자료 <그림1> 유기태양전지 이용 결과 정공수송층*에 응용한 결과, 현재 널리 사용되고 있는 피닷-피에스에스(PEDOT:PSS)*보다 소자의 수명 및 성능을 향상시킨다는 결과를 얻었다. * 유기태양전지 (organic solar cells): 일반적으로 무기물 태양전지와 달리 유기태양전지는 빛을 받아 전자와 정공을 형성하는 물질이 전도성고분자ㆍ플러렌 단분자 혼합층으로 구성되어 있다. 실리콘 태양전지에 비해 가볍고 굽힘 가능하며 낮은 가격에 소자를 생산할 수 있다는 장점이 있다. * 정공수송층 (hole transport layer): 유기 태양전지의 광 활성층은 빛을 받게 되면 전공과 전자를 형성하는 물질로 이루어져 있으며, 이렇게 형성된 정공과 전자는 각각 양극과 음극으로 재결합 없이 효과적으로 이동하여야 한다. 특히 전자와의 재결합 없이 정공의 효과적인 이동을 돕는 층을 정공 수송층이라고 한다. * 피닷-피에스에스 (PEDOT:PSS): PEDOT:PSS는 유기전자소자에서 가장 널리 사용되는 정공전달물질로서 수용액상에 분산된 상태로 존재한다. 초기 특성은 우수하나 PSS의 높은 산성으로 인하여 매우 낮은 소자 안정성을 보인다. <그림2> 논문이 게재된 Small지 2014. 6. 26일자 권두 표지 이미지. 과산화수소를 이용하여 박리된 2차원 부분산화 이황화몰리브덴 용액(갈색)을 기판위에 코팅하면 전자소자에 적용할 수 있음을 나타낸다.
유기 태양전지 대량생산 및 수명향상 기술 개발
유기 태양전지 대량생산 및 수명향상 기술 개발 - KIST, 이황화몰리브덴 암석과 소독용 과산화수소를 섞어 고성능/고안정성을 가진 부분산화 이황화몰리브덴 제조 - 공정개선으로 대량 생산 및 유기 전자소자 성능, 수명향상 가능성 열려 차세대 에너지변환장치인 태양전지 개발을 위해서는 높은 성능을 가진 안정적 전자 소자 개발이 필수적이다. 전기적, 기계적 성질이 뛰어나고 반도체 성질까지 보유해 전기 조절성이 뛰어난 이황화몰리브덴은 이런 이유로 차세대 전자소자로서 각광받고 있다. 특히, ‘부분산화 이황화몰리브덴’은 이황화몰리브덴 중에서도 안정성이 뛰어나다. 3차원의 울퉁불퉁한 암석형태로 존재하는 이황화몰리브덴을 전기적 성능을 가진 부분산화 이황화몰리브덴을 만들기 위해서는 2차원의 단일판 형태로 제작해야한다. 국내 연구진이 소독약으로 쓰이는 과산화수소를 사용하여 원자단위의 두께를 갖는 ‘부분산화 이황화몰리브덴’ 제조방법을 획기적으로 개선하여, 성능이 뛰어난 부분산화 이황화몰리브덴 대량생산의 길을 열었다. 한국과학기술연구원(KIST, 원장 이병권) 전북분원(분원장 김준경) 복합소재기술연구소 탄소융합소재연구센터 조한익 박사팀이 쉽고 대량생산이 가능한 판상형 ‘부분산화 이황화몰리브덴’ 제조법을 개발하였다. 연구팀은 판상형 ‘부분산화 이황화몰리브덴’ 제조를 위해 이황화몰리브덴과 약하게 반응할 수 있는 과산화수소와의 단순 혼합 및 교반을 이용하여 용액공정이 가능한 부분산화 이황화몰리브덴 나노시트 제조 및 고농도 분산을 갖는 용액을 성공적으로 제조하였다. 자연에서 암석형태로 발견할 수 있는 이황화몰리브덴*은 다층구조(3차원)를 가지고 있다. 태양전지에 적합한 특성을 갖는 재료를 제조하기 위해서는 이황화몰리브덴을 얇은 판상형으로 제조하고, 그 위에 산화몰리브덴 입자를 올려야하는 복잡한 공정을 거치게 된다. 특히, 기존 제조법은 장시간의 초음파를 암석에 처리하여 제조하기 때문에 대량생산이 어렵고 이황화몰리브덴의 농도가 낮았다. 또한 박리되지 않은 물질은 재분리 과정을 통해 다시 분리해야하는 어려움이 있다. 이 때문에 고농도의 판상형 이황화몰리브덴 제조에 어려움이 있었다. * 이황화몰리브덴 (molybdenum disulfide, MoS2): 이황화몰리브덴은 자연에서 발견되는 암석에서 얻어질 수 있다. 그래핀과 같이 전기적, 기계적 성질이 뛰어나며 실리콘을 대체할 수 있는 차세대 나노소재로서 각광을 받고 있다 연구팀은 3차원 이황화몰리브덴을 과산화수소에 단순 혼합하여 판상형 구조를 갖는 고농도의 액체상태의 ‘부분산화 이황화몰리브덴’ 제조에 성공하였다. 이렇게 제조된 용액을 기판에 스핀 코팅(spin coating)* 하여 판상형 부분산화 이황화몰리브덴 필름을 손쉽게 제조하였다. *스핀 코팅 : 용액을 회전시켜 골고루 기판에 코팅시키는 방법으로 균일한 필름을 제조할수 있는 장점이 있다. 개발된 제조법은 손쉬운 방법으로 기존 공정대비 공정을 2단계 줄였을뿐 아니라, 고농도의 우수하고 안정한 ‘부분산화 이황화몰리브덴’을 제조할 수 있게 되어 대량 생산의 길을 열었다. 이러한 소재의 특성을 이용하여 현재 차세대 에너지원으로 각광받고 있는 유기태양전지에 이용한 결과, 기존 태양전지가 4일 정도 후 효율이 0%로 떨어지는 데 비해, 16일이 지나도 20%의 효율만 감소한다는 것을 확인할 수 있었다. 이번 연구 성과는 나노기술 분야의 국제학술지 스몰(small)에 "Exfoliated and partially oxidized MoS2 nanosheets by one-pot reaction for efficient and stable organic solar cells"의 제목으로 게재되었으며, 연구의 우수성 및 참신함을 인정받아 6월 25일자 권두 표지논문으로 선정되었다. <그림 1> KIST 조한익 박사는 “개발된 나노소재 박리방법은 값싼 원료를 이용하며 손쉽고 대량생산이 용이하여, 차후 이차원 나노소재 제조의 상업화에 쉽게 이용할 수 있을 것으로 보인다”고 말했다. 이번 연구는 KIST의 기관고유연구사업으로 수행되었다. ○ 연구진 KIST 조한익 박사 ○ 그림자료 <그림1> 유기태양전지 이용 결과 정공수송층*에 응용한 결과, 현재 널리 사용되고 있는 피닷-피에스에스(PEDOT:PSS)*보다 소자의 수명 및 성능을 향상시킨다는 결과를 얻었다. * 유기태양전지 (organic solar cells): 일반적으로 무기물 태양전지와 달리 유기태양전지는 빛을 받아 전자와 정공을 형성하는 물질이 전도성고분자ㆍ플러렌 단분자 혼합층으로 구성되어 있다. 실리콘 태양전지에 비해 가볍고 굽힘 가능하며 낮은 가격에 소자를 생산할 수 있다는 장점이 있다. * 정공수송층 (hole transport layer): 유기 태양전지의 광 활성층은 빛을 받게 되면 전공과 전자를 형성하는 물질로 이루어져 있으며, 이렇게 형성된 정공과 전자는 각각 양극과 음극으로 재결합 없이 효과적으로 이동하여야 한다. 특히 전자와의 재결합 없이 정공의 효과적인 이동을 돕는 층을 정공 수송층이라고 한다. * 피닷-피에스에스 (PEDOT:PSS): PEDOT:PSS는 유기전자소자에서 가장 널리 사용되는 정공전달물질로서 수용액상에 분산된 상태로 존재한다. 초기 특성은 우수하나 PSS의 높은 산성으로 인하여 매우 낮은 소자 안정성을 보인다. <그림2> 논문이 게재된 Small지 2014. 6. 26일자 권두 표지 이미지. 과산화수소를 이용하여 박리된 2차원 부분산화 이황화몰리브덴 용액(갈색)을 기판위에 코팅하면 전자소자에 적용할 수 있음을 나타낸다.