검색결과
게시물 키워드""에 대한 9083개의 검색결과를 찾았습니다.
순수 그라핀 제조, 분석에서 씨앗 성장법까지, 그라핀 연구의 새로운 가능성을 제시하다
순수 그라핀 제조, 분석에서 씨앗 성장법까지, 그라핀 연구의 새로운 가능성을 제시하다 - 대면적 그라핀 제작을 위한 그라핀 씨앗(seed) 성장법의 가능성 확인 - X-ray 분석기법 개발로 획기적 그라핀 분석기술 개발 탄소원자가 육각형 모양을 이루는 2차원 물질인 그라핀(Graphene)은 탁월한 전자소자 특성으로 차세대 소재로 주목받고 있으나 두께 0.4 나노미터인 순수 그라핀 제조에는 어려움이 있었다. 국제 연구팀이 5 나노미터(nm) 크기의 나노분말 및 수 십 크기의 시트형 순수 그라핀을 제조할 수 있는 방법을 개발했다. 또한 연구팀은 제조된 순수 그라핀을 투과전자현미경뿐만 아니라 사용이 용이한 X-ray로 증명함으로써 그라핀 분석에 획기적인 방법을 제시했다. 한국과학기술연구원(KIST, 원장 이병권) 계면제어연구센터 이재갑 박사팀은 기계적 방법으로 나노분말 형태의 순수 그라핀을 대량으로 제조하고 이를 씨앗(Seed)으로 이용해 시트형으로 크게 성장시킬 수 있는 기술을 개발하였다. 관련 연구는 Nature 자매지인 Scientific Reports에‘The seeded growth of graphene’라는 제목으로 7월 14일 게재되었으며, 국내외 특허등록(미국등록 3, 한국등록 2) 및 출원(2건)하였다. 연구팀은 2013년 응용물리분야 권위지인‘Applied Physics Letters’지에 다중벽탄소나노튜브(MWNT)가 튜브 구조가 아니라 튜브로 보이는 나선형 흑연 구조체임을 발표한 바 있다.* 연구팀은 이러한 연구의 연장선에서 다중벽탄소나노튜브를 기계적으로 파쇄하였고, 그 결과 5 나노미터(nm) 크기의 그라핀 분말을 대량으로 제조할 수 있었다(그림 1 참고). 이것은 꼬아만든 지푸라기 줄을 짧게 자를 경우 이의 구성재료인 지푸라기(그라핀에 대응)으로 분해되는 원리와 같다. * Structure of multi-wall carbon nanotubes: AA' graphene helices, Vol. 102, No. 16, 161911-1~5 (2013, 04) 연구팀은 제조된 그라핀 나노분말을 X-ray장치로 분석하였다. 그 결과 그라핀으로 분해 전(MWNT, 즉 나선 흑연)과, 분해 후(그라핀 나노분말) 그리고 그라핀 나노분말의 액상처리 후 각 단계에서 특이한 패턴을 보였다(그림 2 참고). 연구팀은 이 “특이한 X-ray 패턴”이 순수 그라핀의 검증방법이 될 수 있음을 알았다. 그라핀을 전자소자 등으로 사용하기 위해서는 큰 면적을 가진 그라핀 제작이 필요하다. 연구팀은 5 나노미터 크기의 그라핀 분말을 씨앗(seed)으로 사용하고 기상화학 플라즈마증착(CVD)*장치를 이용하여 수십 나노미터 크기의 시트형 그라핀으로 성장시킬 수 있음을 보였다. 제조된 시료의 투과전자현미경분석에서 평면으로 보이는 그라핀 시트의 끝단이 한 원자층임을 확인할 수 있는 “가장자리(edge) 조직”이 나타남을 확인하였다. 연구팀은 이 투과전자현미경의 가장자리 조직과 위에서 설명한 특이한 X-ray 패턴을 순수 그라핀 존재의 직접적인 증거임을 제시하였다. 특히, X-ray 분석법은 투과전자현미경 분석과 비교할 때 매우 간단하므로 비용과 시간을 크게 줄일 수 있어 순수한 분말상 그라핀 연구에 활기를 불어 넣을 것이다. * 플라즈마증착 방식: 일정의 진공용기에 가스를 넣고 전기에너지를 가하면 중성의 가스가 전자와 이온으로 분리되어 플라즈마가 발생된다. 플라즈마는 기체의 높은 에너지 상태이기 때문에 이 증착 방식은 물질성장에 필요한 활성종 또는 이온을 효과적으로 형성시켜 반응 속도를 증가시킬 수 있다. 한편, 연구팀은 씨앗 성장실험에서 일부의 그라핀 시트가 서로 붙어 적층 그라핀(흑연)으로 변화함을 관찰하였다. 이 결과는 순수 그라핀을 수십 나노미터 이상의 크기로 제조하는데 어려움이 있고, 향후 이를 극복하는 것이 다음 과제임을 보여주는 것이다. 또한, 나노분말형 및 시트형 그라핀의 양자점, 유연전극 등의 응용연구가 수행될 것이다. 관련 연구는 KIST 이재갑 박사가 주도하고 한국표준과학연구원 김용일 박사, 한국기초과학지원연구원 김진규 박사, 영남대학교 민봉기 박사, KIST 이경일 박사, 박예슬 씨 및 영국의 Heriot-Watt대학교 John Phillip 교수가 참여하였다. ○ 연구진 KIST 이재갑 박사 ○ 관련자료 <특허/등록> o (미국)불규칙 흑연 및 나노리본상 그라핀을 이용한 그 제조 방법, 8586000 (2013.11.19). o (미국)그라핀분말의 정제방법, 8672246(2013.12.20) o (미국)그라핀리본의 제조방법, 8597607(2013.12.03) o (한국)그라핀제어 나노흑연의 제조방법, 1312104(2013.09.13) o (한국)구조제어된 그라핀리본의 제조방법,1096518(2011.12.14) <특허/출원> o (미국)그라핀탄소섬유 조성물 및 탄소섬유의 제조방법, 13/939349 (2013.07.11) o (한국)그라핀 시드를 이용한 탄소시트제조방법 및 이에 의해 제조된 탄소 시트, 10-2014-0076000 (2014.6.20.) ○ 그림자료 <그림 1> 나선형의 다중벽탄소나노튜브(MWNT)를 파쇄하여 나노크기의 그라핀 분말을 제조한 후 이를 플라즈마 CVD 장치에서 그라핀 시트로 성장시키는 과정을 보여주는 모식도 <그림 2> X-ray 패턴 및 모식도. (a, a’) 다중벽탄소나노튜브 (MWNT) , (b, b’) MWNT를 파쇄하여 제조한 그라핀 나노분말, (c, c’) 알콜에서 정제된 후의 그라핀 나노분말. 정제된 그라핀 나노분말의 X-ray 패턴에서 (002) 픽은 면간거리가 AB 적층의 3.35 Å, AA’ 적층의 3.44 Å, AA 적층의 3.53 Å의 대략적인 평균값인 3.48 Å에서 나타났는데, 이것은 분말상 순수 그라핀의 증거가 될 수 있다.
순수 그라핀 제조, 분석에서 씨앗 성장법까지, 그라핀 연구의 새로운 가능성을 제시하다
순수 그라핀 제조, 분석에서 씨앗 성장법까지, 그라핀 연구의 새로운 가능성을 제시하다 - 대면적 그라핀 제작을 위한 그라핀 씨앗(seed) 성장법의 가능성 확인 - X-ray 분석기법 개발로 획기적 그라핀 분석기술 개발 탄소원자가 육각형 모양을 이루는 2차원 물질인 그라핀(Graphene)은 탁월한 전자소자 특성으로 차세대 소재로 주목받고 있으나 두께 0.4 나노미터인 순수 그라핀 제조에는 어려움이 있었다. 국제 연구팀이 5 나노미터(nm) 크기의 나노분말 및 수 십 크기의 시트형 순수 그라핀을 제조할 수 있는 방법을 개발했다. 또한 연구팀은 제조된 순수 그라핀을 투과전자현미경뿐만 아니라 사용이 용이한 X-ray로 증명함으로써 그라핀 분석에 획기적인 방법을 제시했다. 한국과학기술연구원(KIST, 원장 이병권) 계면제어연구센터 이재갑 박사팀은 기계적 방법으로 나노분말 형태의 순수 그라핀을 대량으로 제조하고 이를 씨앗(Seed)으로 이용해 시트형으로 크게 성장시킬 수 있는 기술을 개발하였다. 관련 연구는 Nature 자매지인 Scientific Reports에‘The seeded growth of graphene’라는 제목으로 7월 14일 게재되었으며, 국내외 특허등록(미국등록 3, 한국등록 2) 및 출원(2건)하였다. 연구팀은 2013년 응용물리분야 권위지인‘Applied Physics Letters’지에 다중벽탄소나노튜브(MWNT)가 튜브 구조가 아니라 튜브로 보이는 나선형 흑연 구조체임을 발표한 바 있다.* 연구팀은 이러한 연구의 연장선에서 다중벽탄소나노튜브를 기계적으로 파쇄하였고, 그 결과 5 나노미터(nm) 크기의 그라핀 분말을 대량으로 제조할 수 있었다(그림 1 참고). 이것은 꼬아만든 지푸라기 줄을 짧게 자를 경우 이의 구성재료인 지푸라기(그라핀에 대응)으로 분해되는 원리와 같다. * Structure of multi-wall carbon nanotubes: AA' graphene helices, Vol. 102, No. 16, 161911-1~5 (2013, 04) 연구팀은 제조된 그라핀 나노분말을 X-ray장치로 분석하였다. 그 결과 그라핀으로 분해 전(MWNT, 즉 나선 흑연)과, 분해 후(그라핀 나노분말) 그리고 그라핀 나노분말의 액상처리 후 각 단계에서 특이한 패턴을 보였다(그림 2 참고). 연구팀은 이 “특이한 X-ray 패턴”이 순수 그라핀의 검증방법이 될 수 있음을 알았다. 그라핀을 전자소자 등으로 사용하기 위해서는 큰 면적을 가진 그라핀 제작이 필요하다. 연구팀은 5 나노미터 크기의 그라핀 분말을 씨앗(seed)으로 사용하고 기상화학 플라즈마증착(CVD)*장치를 이용하여 수십 나노미터 크기의 시트형 그라핀으로 성장시킬 수 있음을 보였다. 제조된 시료의 투과전자현미경분석에서 평면으로 보이는 그라핀 시트의 끝단이 한 원자층임을 확인할 수 있는 “가장자리(edge) 조직”이 나타남을 확인하였다. 연구팀은 이 투과전자현미경의 가장자리 조직과 위에서 설명한 특이한 X-ray 패턴을 순수 그라핀 존재의 직접적인 증거임을 제시하였다. 특히, X-ray 분석법은 투과전자현미경 분석과 비교할 때 매우 간단하므로 비용과 시간을 크게 줄일 수 있어 순수한 분말상 그라핀 연구에 활기를 불어 넣을 것이다. * 플라즈마증착 방식: 일정의 진공용기에 가스를 넣고 전기에너지를 가하면 중성의 가스가 전자와 이온으로 분리되어 플라즈마가 발생된다. 플라즈마는 기체의 높은 에너지 상태이기 때문에 이 증착 방식은 물질성장에 필요한 활성종 또는 이온을 효과적으로 형성시켜 반응 속도를 증가시킬 수 있다. 한편, 연구팀은 씨앗 성장실험에서 일부의 그라핀 시트가 서로 붙어 적층 그라핀(흑연)으로 변화함을 관찰하였다. 이 결과는 순수 그라핀을 수십 나노미터 이상의 크기로 제조하는데 어려움이 있고, 향후 이를 극복하는 것이 다음 과제임을 보여주는 것이다. 또한, 나노분말형 및 시트형 그라핀의 양자점, 유연전극 등의 응용연구가 수행될 것이다. 관련 연구는 KIST 이재갑 박사가 주도하고 한국표준과학연구원 김용일 박사, 한국기초과학지원연구원 김진규 박사, 영남대학교 민봉기 박사, KIST 이경일 박사, 박예슬 씨 및 영국의 Heriot-Watt대학교 John Phillip 교수가 참여하였다. ○ 연구진 KIST 이재갑 박사 ○ 관련자료 <특허/등록> o (미국)불규칙 흑연 및 나노리본상 그라핀을 이용한 그 제조 방법, 8586000 (2013.11.19). o (미국)그라핀분말의 정제방법, 8672246(2013.12.20) o (미국)그라핀리본의 제조방법, 8597607(2013.12.03) o (한국)그라핀제어 나노흑연의 제조방법, 1312104(2013.09.13) o (한국)구조제어된 그라핀리본의 제조방법,1096518(2011.12.14) <특허/출원> o (미국)그라핀탄소섬유 조성물 및 탄소섬유의 제조방법, 13/939349 (2013.07.11) o (한국)그라핀 시드를 이용한 탄소시트제조방법 및 이에 의해 제조된 탄소 시트, 10-2014-0076000 (2014.6.20.) ○ 그림자료 <그림 1> 나선형의 다중벽탄소나노튜브(MWNT)를 파쇄하여 나노크기의 그라핀 분말을 제조한 후 이를 플라즈마 CVD 장치에서 그라핀 시트로 성장시키는 과정을 보여주는 모식도 <그림 2> X-ray 패턴 및 모식도. (a, a’) 다중벽탄소나노튜브 (MWNT) , (b, b’) MWNT를 파쇄하여 제조한 그라핀 나노분말, (c, c’) 알콜에서 정제된 후의 그라핀 나노분말. 정제된 그라핀 나노분말의 X-ray 패턴에서 (002) 픽은 면간거리가 AB 적층의 3.35 Å, AA’ 적층의 3.44 Å, AA 적층의 3.53 Å의 대략적인 평균값인 3.48 Å에서 나타났는데, 이것은 분말상 순수 그라핀의 증거가 될 수 있다.
순수 그라핀 제조, 분석에서 씨앗 성장법까지, 그라핀 연구의 새로운 가능성을 제시하다
순수 그라핀 제조, 분석에서 씨앗 성장법까지, 그라핀 연구의 새로운 가능성을 제시하다 - 대면적 그라핀 제작을 위한 그라핀 씨앗(seed) 성장법의 가능성 확인 - X-ray 분석기법 개발로 획기적 그라핀 분석기술 개발 탄소원자가 육각형 모양을 이루는 2차원 물질인 그라핀(Graphene)은 탁월한 전자소자 특성으로 차세대 소재로 주목받고 있으나 두께 0.4 나노미터인 순수 그라핀 제조에는 어려움이 있었다. 국제 연구팀이 5 나노미터(nm) 크기의 나노분말 및 수 십 크기의 시트형 순수 그라핀을 제조할 수 있는 방법을 개발했다. 또한 연구팀은 제조된 순수 그라핀을 투과전자현미경뿐만 아니라 사용이 용이한 X-ray로 증명함으로써 그라핀 분석에 획기적인 방법을 제시했다. 한국과학기술연구원(KIST, 원장 이병권) 계면제어연구센터 이재갑 박사팀은 기계적 방법으로 나노분말 형태의 순수 그라핀을 대량으로 제조하고 이를 씨앗(Seed)으로 이용해 시트형으로 크게 성장시킬 수 있는 기술을 개발하였다. 관련 연구는 Nature 자매지인 Scientific Reports에‘The seeded growth of graphene’라는 제목으로 7월 14일 게재되었으며, 국내외 특허등록(미국등록 3, 한국등록 2) 및 출원(2건)하였다. 연구팀은 2013년 응용물리분야 권위지인‘Applied Physics Letters’지에 다중벽탄소나노튜브(MWNT)가 튜브 구조가 아니라 튜브로 보이는 나선형 흑연 구조체임을 발표한 바 있다.* 연구팀은 이러한 연구의 연장선에서 다중벽탄소나노튜브를 기계적으로 파쇄하였고, 그 결과 5 나노미터(nm) 크기의 그라핀 분말을 대량으로 제조할 수 있었다(그림 1 참고). 이것은 꼬아만든 지푸라기 줄을 짧게 자를 경우 이의 구성재료인 지푸라기(그라핀에 대응)으로 분해되는 원리와 같다. * Structure of multi-wall carbon nanotubes: AA' graphene helices, Vol. 102, No. 16, 161911-1~5 (2013, 04) 연구팀은 제조된 그라핀 나노분말을 X-ray장치로 분석하였다. 그 결과 그라핀으로 분해 전(MWNT, 즉 나선 흑연)과, 분해 후(그라핀 나노분말) 그리고 그라핀 나노분말의 액상처리 후 각 단계에서 특이한 패턴을 보였다(그림 2 참고). 연구팀은 이 “특이한 X-ray 패턴”이 순수 그라핀의 검증방법이 될 수 있음을 알았다. 그라핀을 전자소자 등으로 사용하기 위해서는 큰 면적을 가진 그라핀 제작이 필요하다. 연구팀은 5 나노미터 크기의 그라핀 분말을 씨앗(seed)으로 사용하고 기상화학 플라즈마증착(CVD)*장치를 이용하여 수십 나노미터 크기의 시트형 그라핀으로 성장시킬 수 있음을 보였다. 제조된 시료의 투과전자현미경분석에서 평면으로 보이는 그라핀 시트의 끝단이 한 원자층임을 확인할 수 있는 “가장자리(edge) 조직”이 나타남을 확인하였다. 연구팀은 이 투과전자현미경의 가장자리 조직과 위에서 설명한 특이한 X-ray 패턴을 순수 그라핀 존재의 직접적인 증거임을 제시하였다. 특히, X-ray 분석법은 투과전자현미경 분석과 비교할 때 매우 간단하므로 비용과 시간을 크게 줄일 수 있어 순수한 분말상 그라핀 연구에 활기를 불어 넣을 것이다. * 플라즈마증착 방식: 일정의 진공용기에 가스를 넣고 전기에너지를 가하면 중성의 가스가 전자와 이온으로 분리되어 플라즈마가 발생된다. 플라즈마는 기체의 높은 에너지 상태이기 때문에 이 증착 방식은 물질성장에 필요한 활성종 또는 이온을 효과적으로 형성시켜 반응 속도를 증가시킬 수 있다. 한편, 연구팀은 씨앗 성장실험에서 일부의 그라핀 시트가 서로 붙어 적층 그라핀(흑연)으로 변화함을 관찰하였다. 이 결과는 순수 그라핀을 수십 나노미터 이상의 크기로 제조하는데 어려움이 있고, 향후 이를 극복하는 것이 다음 과제임을 보여주는 것이다. 또한, 나노분말형 및 시트형 그라핀의 양자점, 유연전극 등의 응용연구가 수행될 것이다. 관련 연구는 KIST 이재갑 박사가 주도하고 한국표준과학연구원 김용일 박사, 한국기초과학지원연구원 김진규 박사, 영남대학교 민봉기 박사, KIST 이경일 박사, 박예슬 씨 및 영국의 Heriot-Watt대학교 John Phillip 교수가 참여하였다. ○ 연구진 KIST 이재갑 박사 ○ 관련자료 <특허/등록> o (미국)불규칙 흑연 및 나노리본상 그라핀을 이용한 그 제조 방법, 8586000 (2013.11.19). o (미국)그라핀분말의 정제방법, 8672246(2013.12.20) o (미국)그라핀리본의 제조방법, 8597607(2013.12.03) o (한국)그라핀제어 나노흑연의 제조방법, 1312104(2013.09.13) o (한국)구조제어된 그라핀리본의 제조방법,1096518(2011.12.14) <특허/출원> o (미국)그라핀탄소섬유 조성물 및 탄소섬유의 제조방법, 13/939349 (2013.07.11) o (한국)그라핀 시드를 이용한 탄소시트제조방법 및 이에 의해 제조된 탄소 시트, 10-2014-0076000 (2014.6.20.) ○ 그림자료 <그림 1> 나선형의 다중벽탄소나노튜브(MWNT)를 파쇄하여 나노크기의 그라핀 분말을 제조한 후 이를 플라즈마 CVD 장치에서 그라핀 시트로 성장시키는 과정을 보여주는 모식도 <그림 2> X-ray 패턴 및 모식도. (a, a’) 다중벽탄소나노튜브 (MWNT) , (b, b’) MWNT를 파쇄하여 제조한 그라핀 나노분말, (c, c’) 알콜에서 정제된 후의 그라핀 나노분말. 정제된 그라핀 나노분말의 X-ray 패턴에서 (002) 픽은 면간거리가 AB 적층의 3.35 Å, AA’ 적층의 3.44 Å, AA 적층의 3.53 Å의 대략적인 평균값인 3.48 Å에서 나타났는데, 이것은 분말상 순수 그라핀의 증거가 될 수 있다.
순수 그라핀 제조, 분석에서 씨앗 성장법까지, 그라핀 연구의 새로운 가능성을 제시하다
순수 그라핀 제조, 분석에서 씨앗 성장법까지, 그라핀 연구의 새로운 가능성을 제시하다 - 대면적 그라핀 제작을 위한 그라핀 씨앗(seed) 성장법의 가능성 확인 - X-ray 분석기법 개발로 획기적 그라핀 분석기술 개발 탄소원자가 육각형 모양을 이루는 2차원 물질인 그라핀(Graphene)은 탁월한 전자소자 특성으로 차세대 소재로 주목받고 있으나 두께 0.4 나노미터인 순수 그라핀 제조에는 어려움이 있었다. 국제 연구팀이 5 나노미터(nm) 크기의 나노분말 및 수 십 크기의 시트형 순수 그라핀을 제조할 수 있는 방법을 개발했다. 또한 연구팀은 제조된 순수 그라핀을 투과전자현미경뿐만 아니라 사용이 용이한 X-ray로 증명함으로써 그라핀 분석에 획기적인 방법을 제시했다. 한국과학기술연구원(KIST, 원장 이병권) 계면제어연구센터 이재갑 박사팀은 기계적 방법으로 나노분말 형태의 순수 그라핀을 대량으로 제조하고 이를 씨앗(Seed)으로 이용해 시트형으로 크게 성장시킬 수 있는 기술을 개발하였다. 관련 연구는 Nature 자매지인 Scientific Reports에‘The seeded growth of graphene’라는 제목으로 7월 14일 게재되었으며, 국내외 특허등록(미국등록 3, 한국등록 2) 및 출원(2건)하였다. 연구팀은 2013년 응용물리분야 권위지인‘Applied Physics Letters’지에 다중벽탄소나노튜브(MWNT)가 튜브 구조가 아니라 튜브로 보이는 나선형 흑연 구조체임을 발표한 바 있다.* 연구팀은 이러한 연구의 연장선에서 다중벽탄소나노튜브를 기계적으로 파쇄하였고, 그 결과 5 나노미터(nm) 크기의 그라핀 분말을 대량으로 제조할 수 있었다(그림 1 참고). 이것은 꼬아만든 지푸라기 줄을 짧게 자를 경우 이의 구성재료인 지푸라기(그라핀에 대응)으로 분해되는 원리와 같다. * Structure of multi-wall carbon nanotubes: AA' graphene helices, Vol. 102, No. 16, 161911-1~5 (2013, 04) 연구팀은 제조된 그라핀 나노분말을 X-ray장치로 분석하였다. 그 결과 그라핀으로 분해 전(MWNT, 즉 나선 흑연)과, 분해 후(그라핀 나노분말) 그리고 그라핀 나노분말의 액상처리 후 각 단계에서 특이한 패턴을 보였다(그림 2 참고). 연구팀은 이 “특이한 X-ray 패턴”이 순수 그라핀의 검증방법이 될 수 있음을 알았다. 그라핀을 전자소자 등으로 사용하기 위해서는 큰 면적을 가진 그라핀 제작이 필요하다. 연구팀은 5 나노미터 크기의 그라핀 분말을 씨앗(seed)으로 사용하고 기상화학 플라즈마증착(CVD)*장치를 이용하여 수십 나노미터 크기의 시트형 그라핀으로 성장시킬 수 있음을 보였다. 제조된 시료의 투과전자현미경분석에서 평면으로 보이는 그라핀 시트의 끝단이 한 원자층임을 확인할 수 있는 “가장자리(edge) 조직”이 나타남을 확인하였다. 연구팀은 이 투과전자현미경의 가장자리 조직과 위에서 설명한 특이한 X-ray 패턴을 순수 그라핀 존재의 직접적인 증거임을 제시하였다. 특히, X-ray 분석법은 투과전자현미경 분석과 비교할 때 매우 간단하므로 비용과 시간을 크게 줄일 수 있어 순수한 분말상 그라핀 연구에 활기를 불어 넣을 것이다. * 플라즈마증착 방식: 일정의 진공용기에 가스를 넣고 전기에너지를 가하면 중성의 가스가 전자와 이온으로 분리되어 플라즈마가 발생된다. 플라즈마는 기체의 높은 에너지 상태이기 때문에 이 증착 방식은 물질성장에 필요한 활성종 또는 이온을 효과적으로 형성시켜 반응 속도를 증가시킬 수 있다. 한편, 연구팀은 씨앗 성장실험에서 일부의 그라핀 시트가 서로 붙어 적층 그라핀(흑연)으로 변화함을 관찰하였다. 이 결과는 순수 그라핀을 수십 나노미터 이상의 크기로 제조하는데 어려움이 있고, 향후 이를 극복하는 것이 다음 과제임을 보여주는 것이다. 또한, 나노분말형 및 시트형 그라핀의 양자점, 유연전극 등의 응용연구가 수행될 것이다. 관련 연구는 KIST 이재갑 박사가 주도하고 한국표준과학연구원 김용일 박사, 한국기초과학지원연구원 김진규 박사, 영남대학교 민봉기 박사, KIST 이경일 박사, 박예슬 씨 및 영국의 Heriot-Watt대학교 John Phillip 교수가 참여하였다. ○ 연구진 KIST 이재갑 박사 ○ 관련자료 <특허/등록> o (미국)불규칙 흑연 및 나노리본상 그라핀을 이용한 그 제조 방법, 8586000 (2013.11.19). o (미국)그라핀분말의 정제방법, 8672246(2013.12.20) o (미국)그라핀리본의 제조방법, 8597607(2013.12.03) o (한국)그라핀제어 나노흑연의 제조방법, 1312104(2013.09.13) o (한국)구조제어된 그라핀리본의 제조방법,1096518(2011.12.14) <특허/출원> o (미국)그라핀탄소섬유 조성물 및 탄소섬유의 제조방법, 13/939349 (2013.07.11) o (한국)그라핀 시드를 이용한 탄소시트제조방법 및 이에 의해 제조된 탄소 시트, 10-2014-0076000 (2014.6.20.) ○ 그림자료 <그림 1> 나선형의 다중벽탄소나노튜브(MWNT)를 파쇄하여 나노크기의 그라핀 분말을 제조한 후 이를 플라즈마 CVD 장치에서 그라핀 시트로 성장시키는 과정을 보여주는 모식도 <그림 2> X-ray 패턴 및 모식도. (a, a’) 다중벽탄소나노튜브 (MWNT) , (b, b’) MWNT를 파쇄하여 제조한 그라핀 나노분말, (c, c’) 알콜에서 정제된 후의 그라핀 나노분말. 정제된 그라핀 나노분말의 X-ray 패턴에서 (002) 픽은 면간거리가 AB 적층의 3.35 Å, AA’ 적층의 3.44 Å, AA 적층의 3.53 Å의 대략적인 평균값인 3.48 Å에서 나타났는데, 이것은 분말상 순수 그라핀의 증거가 될 수 있다.
순수 그라핀 제조, 분석에서 씨앗 성장법까지, 그라핀 연구의 새로운 가능성을 제시하다
순수 그라핀 제조, 분석에서 씨앗 성장법까지, 그라핀 연구의 새로운 가능성을 제시하다 - 대면적 그라핀 제작을 위한 그라핀 씨앗(seed) 성장법의 가능성 확인 - X-ray 분석기법 개발로 획기적 그라핀 분석기술 개발 탄소원자가 육각형 모양을 이루는 2차원 물질인 그라핀(Graphene)은 탁월한 전자소자 특성으로 차세대 소재로 주목받고 있으나 두께 0.4 나노미터인 순수 그라핀 제조에는 어려움이 있었다. 국제 연구팀이 5 나노미터(nm) 크기의 나노분말 및 수 십 크기의 시트형 순수 그라핀을 제조할 수 있는 방법을 개발했다. 또한 연구팀은 제조된 순수 그라핀을 투과전자현미경뿐만 아니라 사용이 용이한 X-ray로 증명함으로써 그라핀 분석에 획기적인 방법을 제시했다. 한국과학기술연구원(KIST, 원장 이병권) 계면제어연구센터 이재갑 박사팀은 기계적 방법으로 나노분말 형태의 순수 그라핀을 대량으로 제조하고 이를 씨앗(Seed)으로 이용해 시트형으로 크게 성장시킬 수 있는 기술을 개발하였다. 관련 연구는 Nature 자매지인 Scientific Reports에‘The seeded growth of graphene’라는 제목으로 7월 14일 게재되었으며, 국내외 특허등록(미국등록 3, 한국등록 2) 및 출원(2건)하였다. 연구팀은 2013년 응용물리분야 권위지인‘Applied Physics Letters’지에 다중벽탄소나노튜브(MWNT)가 튜브 구조가 아니라 튜브로 보이는 나선형 흑연 구조체임을 발표한 바 있다.* 연구팀은 이러한 연구의 연장선에서 다중벽탄소나노튜브를 기계적으로 파쇄하였고, 그 결과 5 나노미터(nm) 크기의 그라핀 분말을 대량으로 제조할 수 있었다(그림 1 참고). 이것은 꼬아만든 지푸라기 줄을 짧게 자를 경우 이의 구성재료인 지푸라기(그라핀에 대응)으로 분해되는 원리와 같다. * Structure of multi-wall carbon nanotubes: AA' graphene helices, Vol. 102, No. 16, 161911-1~5 (2013, 04) 연구팀은 제조된 그라핀 나노분말을 X-ray장치로 분석하였다. 그 결과 그라핀으로 분해 전(MWNT, 즉 나선 흑연)과, 분해 후(그라핀 나노분말) 그리고 그라핀 나노분말의 액상처리 후 각 단계에서 특이한 패턴을 보였다(그림 2 참고). 연구팀은 이 “특이한 X-ray 패턴”이 순수 그라핀의 검증방법이 될 수 있음을 알았다. 그라핀을 전자소자 등으로 사용하기 위해서는 큰 면적을 가진 그라핀 제작이 필요하다. 연구팀은 5 나노미터 크기의 그라핀 분말을 씨앗(seed)으로 사용하고 기상화학 플라즈마증착(CVD)*장치를 이용하여 수십 나노미터 크기의 시트형 그라핀으로 성장시킬 수 있음을 보였다. 제조된 시료의 투과전자현미경분석에서 평면으로 보이는 그라핀 시트의 끝단이 한 원자층임을 확인할 수 있는 “가장자리(edge) 조직”이 나타남을 확인하였다. 연구팀은 이 투과전자현미경의 가장자리 조직과 위에서 설명한 특이한 X-ray 패턴을 순수 그라핀 존재의 직접적인 증거임을 제시하였다. 특히, X-ray 분석법은 투과전자현미경 분석과 비교할 때 매우 간단하므로 비용과 시간을 크게 줄일 수 있어 순수한 분말상 그라핀 연구에 활기를 불어 넣을 것이다. * 플라즈마증착 방식: 일정의 진공용기에 가스를 넣고 전기에너지를 가하면 중성의 가스가 전자와 이온으로 분리되어 플라즈마가 발생된다. 플라즈마는 기체의 높은 에너지 상태이기 때문에 이 증착 방식은 물질성장에 필요한 활성종 또는 이온을 효과적으로 형성시켜 반응 속도를 증가시킬 수 있다. 한편, 연구팀은 씨앗 성장실험에서 일부의 그라핀 시트가 서로 붙어 적층 그라핀(흑연)으로 변화함을 관찰하였다. 이 결과는 순수 그라핀을 수십 나노미터 이상의 크기로 제조하는데 어려움이 있고, 향후 이를 극복하는 것이 다음 과제임을 보여주는 것이다. 또한, 나노분말형 및 시트형 그라핀의 양자점, 유연전극 등의 응용연구가 수행될 것이다. 관련 연구는 KIST 이재갑 박사가 주도하고 한국표준과학연구원 김용일 박사, 한국기초과학지원연구원 김진규 박사, 영남대학교 민봉기 박사, KIST 이경일 박사, 박예슬 씨 및 영국의 Heriot-Watt대학교 John Phillip 교수가 참여하였다. ○ 연구진 KIST 이재갑 박사 ○ 관련자료 <특허/등록> o (미국)불규칙 흑연 및 나노리본상 그라핀을 이용한 그 제조 방법, 8586000 (2013.11.19). o (미국)그라핀분말의 정제방법, 8672246(2013.12.20) o (미국)그라핀리본의 제조방법, 8597607(2013.12.03) o (한국)그라핀제어 나노흑연의 제조방법, 1312104(2013.09.13) o (한국)구조제어된 그라핀리본의 제조방법,1096518(2011.12.14) <특허/출원> o (미국)그라핀탄소섬유 조성물 및 탄소섬유의 제조방법, 13/939349 (2013.07.11) o (한국)그라핀 시드를 이용한 탄소시트제조방법 및 이에 의해 제조된 탄소 시트, 10-2014-0076000 (2014.6.20.) ○ 그림자료 <그림 1> 나선형의 다중벽탄소나노튜브(MWNT)를 파쇄하여 나노크기의 그라핀 분말을 제조한 후 이를 플라즈마 CVD 장치에서 그라핀 시트로 성장시키는 과정을 보여주는 모식도 <그림 2> X-ray 패턴 및 모식도. (a, a’) 다중벽탄소나노튜브 (MWNT) , (b, b’) MWNT를 파쇄하여 제조한 그라핀 나노분말, (c, c’) 알콜에서 정제된 후의 그라핀 나노분말. 정제된 그라핀 나노분말의 X-ray 패턴에서 (002) 픽은 면간거리가 AB 적층의 3.35 Å, AA’ 적층의 3.44 Å, AA 적층의 3.53 Å의 대략적인 평균값인 3.48 Å에서 나타났는데, 이것은 분말상 순수 그라핀의 증거가 될 수 있다.
순수 그라핀 제조, 분석에서 씨앗 성장법까지, 그라핀 연구의 새로운 가능성을 제시하다
순수 그라핀 제조, 분석에서 씨앗 성장법까지, 그라핀 연구의 새로운 가능성을 제시하다 - 대면적 그라핀 제작을 위한 그라핀 씨앗(seed) 성장법의 가능성 확인 - X-ray 분석기법 개발로 획기적 그라핀 분석기술 개발 탄소원자가 육각형 모양을 이루는 2차원 물질인 그라핀(Graphene)은 탁월한 전자소자 특성으로 차세대 소재로 주목받고 있으나 두께 0.4 나노미터인 순수 그라핀 제조에는 어려움이 있었다. 국제 연구팀이 5 나노미터(nm) 크기의 나노분말 및 수 십 크기의 시트형 순수 그라핀을 제조할 수 있는 방법을 개발했다. 또한 연구팀은 제조된 순수 그라핀을 투과전자현미경뿐만 아니라 사용이 용이한 X-ray로 증명함으로써 그라핀 분석에 획기적인 방법을 제시했다. 한국과학기술연구원(KIST, 원장 이병권) 계면제어연구센터 이재갑 박사팀은 기계적 방법으로 나노분말 형태의 순수 그라핀을 대량으로 제조하고 이를 씨앗(Seed)으로 이용해 시트형으로 크게 성장시킬 수 있는 기술을 개발하였다. 관련 연구는 Nature 자매지인 Scientific Reports에‘The seeded growth of graphene’라는 제목으로 7월 14일 게재되었으며, 국내외 특허등록(미국등록 3, 한국등록 2) 및 출원(2건)하였다. 연구팀은 2013년 응용물리분야 권위지인‘Applied Physics Letters’지에 다중벽탄소나노튜브(MWNT)가 튜브 구조가 아니라 튜브로 보이는 나선형 흑연 구조체임을 발표한 바 있다.* 연구팀은 이러한 연구의 연장선에서 다중벽탄소나노튜브를 기계적으로 파쇄하였고, 그 결과 5 나노미터(nm) 크기의 그라핀 분말을 대량으로 제조할 수 있었다(그림 1 참고). 이것은 꼬아만든 지푸라기 줄을 짧게 자를 경우 이의 구성재료인 지푸라기(그라핀에 대응)으로 분해되는 원리와 같다. * Structure of multi-wall carbon nanotubes: AA' graphene helices, Vol. 102, No. 16, 161911-1~5 (2013, 04) 연구팀은 제조된 그라핀 나노분말을 X-ray장치로 분석하였다. 그 결과 그라핀으로 분해 전(MWNT, 즉 나선 흑연)과, 분해 후(그라핀 나노분말) 그리고 그라핀 나노분말의 액상처리 후 각 단계에서 특이한 패턴을 보였다(그림 2 참고). 연구팀은 이 “특이한 X-ray 패턴”이 순수 그라핀의 검증방법이 될 수 있음을 알았다. 그라핀을 전자소자 등으로 사용하기 위해서는 큰 면적을 가진 그라핀 제작이 필요하다. 연구팀은 5 나노미터 크기의 그라핀 분말을 씨앗(seed)으로 사용하고 기상화학 플라즈마증착(CVD)*장치를 이용하여 수십 나노미터 크기의 시트형 그라핀으로 성장시킬 수 있음을 보였다. 제조된 시료의 투과전자현미경분석에서 평면으로 보이는 그라핀 시트의 끝단이 한 원자층임을 확인할 수 있는 “가장자리(edge) 조직”이 나타남을 확인하였다. 연구팀은 이 투과전자현미경의 가장자리 조직과 위에서 설명한 특이한 X-ray 패턴을 순수 그라핀 존재의 직접적인 증거임을 제시하였다. 특히, X-ray 분석법은 투과전자현미경 분석과 비교할 때 매우 간단하므로 비용과 시간을 크게 줄일 수 있어 순수한 분말상 그라핀 연구에 활기를 불어 넣을 것이다. * 플라즈마증착 방식: 일정의 진공용기에 가스를 넣고 전기에너지를 가하면 중성의 가스가 전자와 이온으로 분리되어 플라즈마가 발생된다. 플라즈마는 기체의 높은 에너지 상태이기 때문에 이 증착 방식은 물질성장에 필요한 활성종 또는 이온을 효과적으로 형성시켜 반응 속도를 증가시킬 수 있다. 한편, 연구팀은 씨앗 성장실험에서 일부의 그라핀 시트가 서로 붙어 적층 그라핀(흑연)으로 변화함을 관찰하였다. 이 결과는 순수 그라핀을 수십 나노미터 이상의 크기로 제조하는데 어려움이 있고, 향후 이를 극복하는 것이 다음 과제임을 보여주는 것이다. 또한, 나노분말형 및 시트형 그라핀의 양자점, 유연전극 등의 응용연구가 수행될 것이다. 관련 연구는 KIST 이재갑 박사가 주도하고 한국표준과학연구원 김용일 박사, 한국기초과학지원연구원 김진규 박사, 영남대학교 민봉기 박사, KIST 이경일 박사, 박예슬 씨 및 영국의 Heriot-Watt대학교 John Phillip 교수가 참여하였다. ○ 연구진 KIST 이재갑 박사 ○ 관련자료 <특허/등록> o (미국)불규칙 흑연 및 나노리본상 그라핀을 이용한 그 제조 방법, 8586000 (2013.11.19). o (미국)그라핀분말의 정제방법, 8672246(2013.12.20) o (미국)그라핀리본의 제조방법, 8597607(2013.12.03) o (한국)그라핀제어 나노흑연의 제조방법, 1312104(2013.09.13) o (한국)구조제어된 그라핀리본의 제조방법,1096518(2011.12.14) <특허/출원> o (미국)그라핀탄소섬유 조성물 및 탄소섬유의 제조방법, 13/939349 (2013.07.11) o (한국)그라핀 시드를 이용한 탄소시트제조방법 및 이에 의해 제조된 탄소 시트, 10-2014-0076000 (2014.6.20.) ○ 그림자료 <그림 1> 나선형의 다중벽탄소나노튜브(MWNT)를 파쇄하여 나노크기의 그라핀 분말을 제조한 후 이를 플라즈마 CVD 장치에서 그라핀 시트로 성장시키는 과정을 보여주는 모식도 <그림 2> X-ray 패턴 및 모식도. (a, a’) 다중벽탄소나노튜브 (MWNT) , (b, b’) MWNT를 파쇄하여 제조한 그라핀 나노분말, (c, c’) 알콜에서 정제된 후의 그라핀 나노분말. 정제된 그라핀 나노분말의 X-ray 패턴에서 (002) 픽은 면간거리가 AB 적층의 3.35 Å, AA’ 적층의 3.44 Å, AA 적층의 3.53 Å의 대략적인 평균값인 3.48 Å에서 나타났는데, 이것은 분말상 순수 그라핀의 증거가 될 수 있다.
순수 그라핀 제조, 분석에서 씨앗 성장법까지, 그라핀 연구의 새로운 가능성을 제시하다
순수 그라핀 제조, 분석에서 씨앗 성장법까지, 그라핀 연구의 새로운 가능성을 제시하다 - 대면적 그라핀 제작을 위한 그라핀 씨앗(seed) 성장법의 가능성 확인 - X-ray 분석기법 개발로 획기적 그라핀 분석기술 개발 탄소원자가 육각형 모양을 이루는 2차원 물질인 그라핀(Graphene)은 탁월한 전자소자 특성으로 차세대 소재로 주목받고 있으나 두께 0.4 나노미터인 순수 그라핀 제조에는 어려움이 있었다. 국제 연구팀이 5 나노미터(nm) 크기의 나노분말 및 수 십 크기의 시트형 순수 그라핀을 제조할 수 있는 방법을 개발했다. 또한 연구팀은 제조된 순수 그라핀을 투과전자현미경뿐만 아니라 사용이 용이한 X-ray로 증명함으로써 그라핀 분석에 획기적인 방법을 제시했다. 한국과학기술연구원(KIST, 원장 이병권) 계면제어연구센터 이재갑 박사팀은 기계적 방법으로 나노분말 형태의 순수 그라핀을 대량으로 제조하고 이를 씨앗(Seed)으로 이용해 시트형으로 크게 성장시킬 수 있는 기술을 개발하였다. 관련 연구는 Nature 자매지인 Scientific Reports에‘The seeded growth of graphene’라는 제목으로 7월 14일 게재되었으며, 국내외 특허등록(미국등록 3, 한국등록 2) 및 출원(2건)하였다. 연구팀은 2013년 응용물리분야 권위지인‘Applied Physics Letters’지에 다중벽탄소나노튜브(MWNT)가 튜브 구조가 아니라 튜브로 보이는 나선형 흑연 구조체임을 발표한 바 있다.* 연구팀은 이러한 연구의 연장선에서 다중벽탄소나노튜브를 기계적으로 파쇄하였고, 그 결과 5 나노미터(nm) 크기의 그라핀 분말을 대량으로 제조할 수 있었다(그림 1 참고). 이것은 꼬아만든 지푸라기 줄을 짧게 자를 경우 이의 구성재료인 지푸라기(그라핀에 대응)으로 분해되는 원리와 같다. * Structure of multi-wall carbon nanotubes: AA' graphene helices, Vol. 102, No. 16, 161911-1~5 (2013, 04) 연구팀은 제조된 그라핀 나노분말을 X-ray장치로 분석하였다. 그 결과 그라핀으로 분해 전(MWNT, 즉 나선 흑연)과, 분해 후(그라핀 나노분말) 그리고 그라핀 나노분말의 액상처리 후 각 단계에서 특이한 패턴을 보였다(그림 2 참고). 연구팀은 이 “특이한 X-ray 패턴”이 순수 그라핀의 검증방법이 될 수 있음을 알았다. 그라핀을 전자소자 등으로 사용하기 위해서는 큰 면적을 가진 그라핀 제작이 필요하다. 연구팀은 5 나노미터 크기의 그라핀 분말을 씨앗(seed)으로 사용하고 기상화학 플라즈마증착(CVD)*장치를 이용하여 수십 나노미터 크기의 시트형 그라핀으로 성장시킬 수 있음을 보였다. 제조된 시료의 투과전자현미경분석에서 평면으로 보이는 그라핀 시트의 끝단이 한 원자층임을 확인할 수 있는 “가장자리(edge) 조직”이 나타남을 확인하였다. 연구팀은 이 투과전자현미경의 가장자리 조직과 위에서 설명한 특이한 X-ray 패턴을 순수 그라핀 존재의 직접적인 증거임을 제시하였다. 특히, X-ray 분석법은 투과전자현미경 분석과 비교할 때 매우 간단하므로 비용과 시간을 크게 줄일 수 있어 순수한 분말상 그라핀 연구에 활기를 불어 넣을 것이다. * 플라즈마증착 방식: 일정의 진공용기에 가스를 넣고 전기에너지를 가하면 중성의 가스가 전자와 이온으로 분리되어 플라즈마가 발생된다. 플라즈마는 기체의 높은 에너지 상태이기 때문에 이 증착 방식은 물질성장에 필요한 활성종 또는 이온을 효과적으로 형성시켜 반응 속도를 증가시킬 수 있다. 한편, 연구팀은 씨앗 성장실험에서 일부의 그라핀 시트가 서로 붙어 적층 그라핀(흑연)으로 변화함을 관찰하였다. 이 결과는 순수 그라핀을 수십 나노미터 이상의 크기로 제조하는데 어려움이 있고, 향후 이를 극복하는 것이 다음 과제임을 보여주는 것이다. 또한, 나노분말형 및 시트형 그라핀의 양자점, 유연전극 등의 응용연구가 수행될 것이다. 관련 연구는 KIST 이재갑 박사가 주도하고 한국표준과학연구원 김용일 박사, 한국기초과학지원연구원 김진규 박사, 영남대학교 민봉기 박사, KIST 이경일 박사, 박예슬 씨 및 영국의 Heriot-Watt대학교 John Phillip 교수가 참여하였다. ○ 연구진 KIST 이재갑 박사 ○ 관련자료 <특허/등록> o (미국)불규칙 흑연 및 나노리본상 그라핀을 이용한 그 제조 방법, 8586000 (2013.11.19). o (미국)그라핀분말의 정제방법, 8672246(2013.12.20) o (미국)그라핀리본의 제조방법, 8597607(2013.12.03) o (한국)그라핀제어 나노흑연의 제조방법, 1312104(2013.09.13) o (한국)구조제어된 그라핀리본의 제조방법,1096518(2011.12.14) <특허/출원> o (미국)그라핀탄소섬유 조성물 및 탄소섬유의 제조방법, 13/939349 (2013.07.11) o (한국)그라핀 시드를 이용한 탄소시트제조방법 및 이에 의해 제조된 탄소 시트, 10-2014-0076000 (2014.6.20.) ○ 그림자료 <그림 1> 나선형의 다중벽탄소나노튜브(MWNT)를 파쇄하여 나노크기의 그라핀 분말을 제조한 후 이를 플라즈마 CVD 장치에서 그라핀 시트로 성장시키는 과정을 보여주는 모식도 <그림 2> X-ray 패턴 및 모식도. (a, a’) 다중벽탄소나노튜브 (MWNT) , (b, b’) MWNT를 파쇄하여 제조한 그라핀 나노분말, (c, c’) 알콜에서 정제된 후의 그라핀 나노분말. 정제된 그라핀 나노분말의 X-ray 패턴에서 (002) 픽은 면간거리가 AB 적층의 3.35 Å, AA’ 적층의 3.44 Å, AA 적층의 3.53 Å의 대략적인 평균값인 3.48 Å에서 나타났는데, 이것은 분말상 순수 그라핀의 증거가 될 수 있다.
국내에서도 액체 수소 구매 가능해진다(2014.07.09)
수소는 지구온난화를 야기하는 이산화탄소 문제와 화석연료의 고갈에 대비하는 차세대 에너지원으로 많은 연구가 이루어지고 있다. 수소 연료전지자동차, 발전소 등 활용가능성이 무궁무진한 수소는 현재 기체 상태로 저장함에 따라 많은 양의 수소를 저장 및 운반하지 못한다는 문제를 가지고 있었다. 우리 원 도시에너지시스템연구단 김서영 박사는 국내 최초로 수소를 액화시키는 연구개발 기술력을 바탕으로 벤처 기업인 하이리움 산업을 설립하였다. 김서영 박사는 연구단장시절, 연구원의 승인을 받아 하이리움 산업을 탄생시켰으며, CEO로서 본 사업을 이끌게 된다. 수소를 저장 및 운반하기 위하여 고압 기체수소, 수소산화물 등 다양한 방법이 있지만 액체수소는 부피 및 질량대비 가장 많은 양의 수소를 저장 할 수 있는 방법이다. 액체수소는 이미 1960년대부터 미국에서는 로켓의 연료 등으로 다양하게 사용되어 왔지만 첨단우주기술 및 군사전용기술로 지정되어 수출금지 품목으로 분류되어 왔으며, 기술적 이유로 국내에서는 생산이 불가능 하였다. 최근 들어 연료전지 개발이 활성화되고 시장이 커짐에 따라 액체수소의 사용처 역시 우주 관련 산업 뿐 아니라 자동차, 무인항공기 등 다양한 파워팩 분야로 확대되고 있다. 액체수소 기반 수소 공급시스템은 기존 연료전지 및 수소 내연기관의 작동 시간문제를 최소 3-4배 이상으로 해결 할 수 있게 된다. 김서영 박사 연구팀은 1996년부터 국내 최초 액화수소 연구개발을 진행하였으며, 최근 미래창조과학부의 국가과제를 수행하며 보다 완성도 높은 수소액화기, 저장용기 및 극저온 장치의 개발에 성공하였다. 2009년에는 세계 최초 의료용 연료전지냉동고 개발에도 성공 하였던 연구팀으로 수소 공급장치 및 연료전지 융합 시스템기술에 있어서 세계 최고 수준의 기술력을 보유하고 있다. 하이리움 산업은 극저온유체 이송관, 액화수소 저장용기 등 해외경쟁업체 대비 우수한 가격 및 기술경쟁력을 바탕으로 군수 산업 및 의료산업에 액체 수소를 공급하여 새로운 시장을 창출하여 창조 경제에도 이바지한다는 목표를 가지고 있다. 또한 보유 기술을 바탕으로 무인항공기 및 무인잠수함용 액화수소 연료탱크 및 연료전지 개발이 진행 중이다. 김서영 박사는 “액화수소는 국내 다양한 시장을 만들 수 있는 중요한 에너지원으로 이를 국산화 한 것에 자부심을 느낀다.” 라며 “대한민국 우주개발 및 달 탐사 프로그램 등의 참여를 통해 항공 우주 산업에도 공헌 할 수 있도록 노력하겠다.”라고 말했다.
노인치매예방로봇 덴마크 진출... 유럽 전역에 수출기대(2014.07.09)
우리 원은 자체 개발한 로봇 ‘실벗’을 활용해 덴마크에 합작회사를 설립할 계획이라고 3일 밝혔다. 프론티어지능로봇사업단(단장. 김문상 책임연구원)에 따르면, 합작사에는 현지 투자자와 덴마크 오르후스 시청, 그리고 우리 원이 출자한 로봇전문기업 ‘로보케어’가 참여하여, 회사가 설립되면 노인치매예방을 위해 두뇌 활성을 꾀하는 ‘브레인 피트니스 프로그램’을 탑재한 한국형 로봇 ‘실벗’을 유럽 전역에 판매할 계획이다. 실벗은 2007년부터 지난해까지 프론티어지능로봇사업단이 개발한 한국형 지능로봇으로, 사람의 얼굴 생김새와 표정을 인식하고 간단한 대화를 나누는 것은 물론, 스스로 사물을 인식하고 장애물을 피해 움직이는 기능을 갖췄다. 그리고 노인 건강 도우미 역할을 위해 기억력·주의력·인지력 등을 향상시키는 치매예방 게임을 탑재하고 있어, 국내 강남구 치매지원센터, 삼성노블타운티, 부산광역치매지원센터, 경기치매지원센터와 덴마크 노인복지센터 등에서 활용되고 있다. 올해 초 출시한 실벗3는 초기 모델보다 소음과 고장률을 낮추고 작동 속도, 인식 및 내비게이션 기능을 향상시켰다. 합작사 설립은 2011년 덴마크 기술자문가 그룹 (CareNet)이 우리 원을 방문한 이후, 두 세 차례 덴마크 현지에서 실시한 시범사업을 거쳐 본격화 되었다. 올해 초 합작회사 설립을 먼저 제안한 덴마크 오르후스 시청은 (Aarhus Kommune)은 양국간 합작사 설립에 참여할 현지 법인과 투자자 유치는 물론 현지 내 제품 수요처 발굴에 적극적으로 나서고 있어, 참여기관들의 지분 비율, 투자 규모 등 세부적인 사항을 조율해 연내 합작사를 출범시킬 계획이다. 2011년 말부터 꾸준히 덴마크 오르후스 시 내, 비카가든 (노인복지센터)에서 ‘실벗’을 도입하여 ‘브레인 피트니스 프로그램(Brain Fitness Program)’을 운영해온 오르후스 시청은, 올해 초 ‘로보케어’로 부터 최신 모델인 ‘실벗3’ 한 대를 더 구입했고, 오는 8월에는 대당 약 2만6000달러 가격에 석 대를 더 구매할 예정이다. 실벗의 주된 수요처기도 한 오르후스 시청이 합작사가 만든 로봇 제품을 다시 구매한다면 더욱 안정적인 수익을 창출할 것으로 예상되는데 유럽 전역으로 사업을 확장하면 대규모 투자 유치 또한 기대된다. 우리 원 출자 로봇전문기업은 ‘로보케어’는 이번 합작사 설립에 로봇 하드웨어와 소프트웨어 제작 기술과 소프트웨어개발도구(SDK) 등을 제공하여, 자금 투자 없이 기술 투자로 지분을 보유할 예정이다. 우리 원이 자체 개발한 지능형 로봇 ‘실벗’의 SDK를 활용한다면, 유럽 사정에 알맞은 맞춤형 프로그램을 탑재하여 현지 소비자와 기관 관계자들의 주목을 끌 것으로 전망된다. 실벗을 개발한 김문상 프론티어지능로봇사업단장은 “이제는 로봇을 시범도입하는 수준에서 정식 제품으로 수출하기 위한 현지 입찰 절차 등의 법적 행정 조치가 끝났다”고 밝혔다. 김 단장은 “복지 선진국이 노인 복지 분야에 로봇을 선도적으로 도입하는 사례”라며 “노인 복지와 로봇 기술이 결합하는 새로운 생태계가 탄생할 것”으로 기대한다고 말했다.