검색결과
게시물 키워드"한국과학기술연구원"에 대한 1258개의 검색결과를 찾았습니다.
인공장기 인쇄하는 안전한 바이오 잉크
- 광경화 과정 없이 조직 재생을 유도하는 3D 바이오 프린팅 잉크 개발 - 인공장기 등 환자 맞춤형 재생 치료기술로 응용 기대 초고령화 사회로의 진입과 더불어 사고로 인한 부상, 만성질환의 증가 등으로 인공장기나 조직과 같은 생체재료 개발이 활발하다. 최근에는 세포와 생체재료를 사용해 3차원의 인공조직 구조를 구현하는 3D 바이오 프린팅 기술이 크게 주목받고 있다. 그런데, 바이오 잉크로 가장 많이 사용되는 하이드로겔의 경우 광경화 과정에서 사용되는 화학적 가교제와 자외선으로 인해 체내에서 세포 독성을 일으킬 수 있다는 문제가 있었다. 한국과학기술연구원(KIST, 원장 윤석진) 생체 재료 연구단 송수창 박사 연구팀은 광경화 과정 없이 온도 조절 만으로 물리적인 구조를 안정적으로 유지하고, 조직 재생을 유도한 후 일정 시간이 지나면 체내에서 생 분해되는 폴리포스파젠 하이드로겔 기반의 온도 감응성 바이오 잉크를 최초로 개발했다고 밝혔다. 기존의 하이드로겔 기반 바이오 잉크는 출력 후 3차원 지지체의 물리적 강도를 강화하기 위해 사용되는 광경화 과정을 반드시 거쳐야 하고, 조직 재생 효과를 증대 시키기 위해 외부 배양 세포를 이식함으로써 인체 내 부작용의 위험성이 컸다. 이에 연구팀은 저온에서는 액상 형태로 존재하고 체온에서는 단단한 젤로 변화하는 특성을 지닌 온도 감응성 폴리포스파젠 하이드로겔을 이용해 새로운 바이오 잉크 소재를 개발했다. 이를 통해 화학적 가교제나 자외선 조사 과정 없이 온도 조절 만으로 조직 재생이 가능하며 물리적으로 안정적 구조를 가진 3차원 지지체를 제작해 인체의 면역 부작용 발생 가능성을 최소화할 수 있게 되었다. 개발된 바이오 잉크는 또한 조직 재생에 도움을 주는 단백질인 성장 인자와 상호작용 할 수 있는 분자 구조로 되어 있어 세포의 성장 및 분화, 면역 반응 등을 조절하는 성장 인자를 장기간 보존할 수 있다. 연구팀은 바이오 잉크를 통해 출력된 3차원 지지체 내에 세포의 분화를 자율적으로 조절할 수 있는 환경을 유도함으로써 조직 재생 효과를 극대화할 수 있었다. 연구팀은 세포 유입과 뼈 재생에 필요한 전환 성장 인자 베타 1((Transforming growth factor beta 1, TGF-β1)과 골 형성 단백질(Bone morphogenetic protein-2, BMP-2)을 포함한 바이오 잉크를 3D 바이오 프린터로 출력해 3차원 지지체를 제작한 뒤 쥐의 뼈 손상 부위에 이식하는 실험을 수행했다. 그 결과 주변 조직으로부터 세포가 지지체 안으로 유입되어 뼈가 정상 조직 수준으로 재생되었으며, 이식된 3차원 지지체는 체내에서 42일에 걸쳐 서서히 생 분해되는 것을 확인할 수 있었다. KIST 송수창 박사는 “연구팀은 지난 2022년 6월 온도 감응성 폴리포스파젠 하이드로겔을 ㈜넥스젤바이오텍에 기술 이전해 골이식재, 성형필러 등의 제품 개발을 진행하고 있다."며, "이번에 개발된 바이오 잉크는 그 자체의 물리적 특성을 달리해 뼈 조직 외에 다른 조직의 재생에도 적용하는 후속 연구를 진행 중이며, 최종적으로는 부위 별 조직 및 장기 맞춤형 바이오 잉크를 제품화할 수 있을 것으로 기대한다."라고 밝혔다. 본 연구는 과학기술정보통신부(장관 이종호) 지원을 받아 KIST 주요 사업으로 수행되었으며, 연구 결과는 재료 분야 국제 학술지인 'Small'(IF : 15.153, JCR 분야 상위 7.101%) 최신 호에 표지 논문(Inside back cover)으로 게재되었다. [그림 1] 온도에 따른 성장인자를 포함한 바이오 잉크의 물리적인 강도 변화 및 3차원 지지체 프린팅 [사진 1] KIST 연구진이 개발한 온도감응형 하이드로겔 기반의 새로운 바이오잉크(가운데)와 이를 이용하여 3D바이오 프린팅 기술로 제작된 3차원 지지체(좌, 우) [그림 2] 바이오 잉크로 3D 프린트한 지지체를 뼈 손상 부위에 이식 후 생분해와 뼈 재생효과 확인 [사진 2] KIST 김준 위촉연구원(제1저자)가 3D 바이오 프린터로 출력한 조직재생용 3차원 지지체를 살펴보고 있다 [사진 3] 이번 기술을 개발한 KIST 연구진.((좌측, 제1저자) KIST 김준 위촉연구원, (우측, 교신저자)KIST 송수창 책임연구원) [그림 3] 표지논문(Inside back cover) 선정 이미지 ○ 논문명: Thermo-Responsive Nanocomposite Bioink with Growth-Factor Holding and its Application to Bone Regeneration ○ 게재일: 2022.12.26. ○ DOI: https://doi.org/10.1002/smll.202203464 ○ 논문저자 - 김준 위촉연구원(제1저자/KIST 생체분자인식연구센터) - 정훈기 책임연구원(제1저자/KIST 생체분자인식연구센터)
인공장기 인쇄하는 안전한 바이오 잉크
- 광경화 과정 없이 조직 재생을 유도하는 3D 바이오 프린팅 잉크 개발 - 인공장기 등 환자 맞춤형 재생 치료기술로 응용 기대 초고령화 사회로의 진입과 더불어 사고로 인한 부상, 만성질환의 증가 등으로 인공장기나 조직과 같은 생체재료 개발이 활발하다. 최근에는 세포와 생체재료를 사용해 3차원의 인공조직 구조를 구현하는 3D 바이오 프린팅 기술이 크게 주목받고 있다. 그런데, 바이오 잉크로 가장 많이 사용되는 하이드로겔의 경우 광경화 과정에서 사용되는 화학적 가교제와 자외선으로 인해 체내에서 세포 독성을 일으킬 수 있다는 문제가 있었다. 한국과학기술연구원(KIST, 원장 윤석진) 생체 재료 연구단 송수창 박사 연구팀은 광경화 과정 없이 온도 조절 만으로 물리적인 구조를 안정적으로 유지하고, 조직 재생을 유도한 후 일정 시간이 지나면 체내에서 생 분해되는 폴리포스파젠 하이드로겔 기반의 온도 감응성 바이오 잉크를 최초로 개발했다고 밝혔다. 기존의 하이드로겔 기반 바이오 잉크는 출력 후 3차원 지지체의 물리적 강도를 강화하기 위해 사용되는 광경화 과정을 반드시 거쳐야 하고, 조직 재생 효과를 증대 시키기 위해 외부 배양 세포를 이식함으로써 인체 내 부작용의 위험성이 컸다. 이에 연구팀은 저온에서는 액상 형태로 존재하고 체온에서는 단단한 젤로 변화하는 특성을 지닌 온도 감응성 폴리포스파젠 하이드로겔을 이용해 새로운 바이오 잉크 소재를 개발했다. 이를 통해 화학적 가교제나 자외선 조사 과정 없이 온도 조절 만으로 조직 재생이 가능하며 물리적으로 안정적 구조를 가진 3차원 지지체를 제작해 인체의 면역 부작용 발생 가능성을 최소화할 수 있게 되었다. 개발된 바이오 잉크는 또한 조직 재생에 도움을 주는 단백질인 성장 인자와 상호작용 할 수 있는 분자 구조로 되어 있어 세포의 성장 및 분화, 면역 반응 등을 조절하는 성장 인자를 장기간 보존할 수 있다. 연구팀은 바이오 잉크를 통해 출력된 3차원 지지체 내에 세포의 분화를 자율적으로 조절할 수 있는 환경을 유도함으로써 조직 재생 효과를 극대화할 수 있었다. 연구팀은 세포 유입과 뼈 재생에 필요한 전환 성장 인자 베타 1((Transforming growth factor beta 1, TGF-β1)과 골 형성 단백질(Bone morphogenetic protein-2, BMP-2)을 포함한 바이오 잉크를 3D 바이오 프린터로 출력해 3차원 지지체를 제작한 뒤 쥐의 뼈 손상 부위에 이식하는 실험을 수행했다. 그 결과 주변 조직으로부터 세포가 지지체 안으로 유입되어 뼈가 정상 조직 수준으로 재생되었으며, 이식된 3차원 지지체는 체내에서 42일에 걸쳐 서서히 생 분해되는 것을 확인할 수 있었다. KIST 송수창 박사는 “연구팀은 지난 2022년 6월 온도 감응성 폴리포스파젠 하이드로겔을 ㈜넥스젤바이오텍에 기술 이전해 골이식재, 성형필러 등의 제품 개발을 진행하고 있다."며, "이번에 개발된 바이오 잉크는 그 자체의 물리적 특성을 달리해 뼈 조직 외에 다른 조직의 재생에도 적용하는 후속 연구를 진행 중이며, 최종적으로는 부위 별 조직 및 장기 맞춤형 바이오 잉크를 제품화할 수 있을 것으로 기대한다."라고 밝혔다. 본 연구는 과학기술정보통신부(장관 이종호) 지원을 받아 KIST 주요 사업으로 수행되었으며, 연구 결과는 재료 분야 국제 학술지인 'Small'(IF : 15.153, JCR 분야 상위 7.101%) 최신 호에 표지 논문(Inside back cover)으로 게재되었다. [그림 1] 온도에 따른 성장인자를 포함한 바이오 잉크의 물리적인 강도 변화 및 3차원 지지체 프린팅 [사진 1] KIST 연구진이 개발한 온도감응형 하이드로겔 기반의 새로운 바이오잉크(가운데)와 이를 이용하여 3D바이오 프린팅 기술로 제작된 3차원 지지체(좌, 우) [그림 2] 바이오 잉크로 3D 프린트한 지지체를 뼈 손상 부위에 이식 후 생분해와 뼈 재생효과 확인 [사진 2] KIST 김준 위촉연구원(제1저자)가 3D 바이오 프린터로 출력한 조직재생용 3차원 지지체를 살펴보고 있다 [사진 3] 이번 기술을 개발한 KIST 연구진.((좌측, 제1저자) KIST 김준 위촉연구원, (우측, 교신저자)KIST 송수창 책임연구원) [그림 3] 표지논문(Inside back cover) 선정 이미지 ○ 논문명: Thermo-Responsive Nanocomposite Bioink with Growth-Factor Holding and its Application to Bone Regeneration ○ 게재일: 2022.12.26. ○ DOI: https://doi.org/10.1002/smll.202203464 ○ 논문저자 - 김준 위촉연구원(제1저자/KIST 생체분자인식연구센터) - 정훈기 책임연구원(제1저자/KIST 생체분자인식연구센터)
인공장기 인쇄하는 안전한 바이오 잉크
- 광경화 과정 없이 조직 재생을 유도하는 3D 바이오 프린팅 잉크 개발 - 인공장기 등 환자 맞춤형 재생 치료기술로 응용 기대 초고령화 사회로의 진입과 더불어 사고로 인한 부상, 만성질환의 증가 등으로 인공장기나 조직과 같은 생체재료 개발이 활발하다. 최근에는 세포와 생체재료를 사용해 3차원의 인공조직 구조를 구현하는 3D 바이오 프린팅 기술이 크게 주목받고 있다. 그런데, 바이오 잉크로 가장 많이 사용되는 하이드로겔의 경우 광경화 과정에서 사용되는 화학적 가교제와 자외선으로 인해 체내에서 세포 독성을 일으킬 수 있다는 문제가 있었다. 한국과학기술연구원(KIST, 원장 윤석진) 생체 재료 연구단 송수창 박사 연구팀은 광경화 과정 없이 온도 조절 만으로 물리적인 구조를 안정적으로 유지하고, 조직 재생을 유도한 후 일정 시간이 지나면 체내에서 생 분해되는 폴리포스파젠 하이드로겔 기반의 온도 감응성 바이오 잉크를 최초로 개발했다고 밝혔다. 기존의 하이드로겔 기반 바이오 잉크는 출력 후 3차원 지지체의 물리적 강도를 강화하기 위해 사용되는 광경화 과정을 반드시 거쳐야 하고, 조직 재생 효과를 증대 시키기 위해 외부 배양 세포를 이식함으로써 인체 내 부작용의 위험성이 컸다. 이에 연구팀은 저온에서는 액상 형태로 존재하고 체온에서는 단단한 젤로 변화하는 특성을 지닌 온도 감응성 폴리포스파젠 하이드로겔을 이용해 새로운 바이오 잉크 소재를 개발했다. 이를 통해 화학적 가교제나 자외선 조사 과정 없이 온도 조절 만으로 조직 재생이 가능하며 물리적으로 안정적 구조를 가진 3차원 지지체를 제작해 인체의 면역 부작용 발생 가능성을 최소화할 수 있게 되었다. 개발된 바이오 잉크는 또한 조직 재생에 도움을 주는 단백질인 성장 인자와 상호작용 할 수 있는 분자 구조로 되어 있어 세포의 성장 및 분화, 면역 반응 등을 조절하는 성장 인자를 장기간 보존할 수 있다. 연구팀은 바이오 잉크를 통해 출력된 3차원 지지체 내에 세포의 분화를 자율적으로 조절할 수 있는 환경을 유도함으로써 조직 재생 효과를 극대화할 수 있었다. 연구팀은 세포 유입과 뼈 재생에 필요한 전환 성장 인자 베타 1((Transforming growth factor beta 1, TGF-β1)과 골 형성 단백질(Bone morphogenetic protein-2, BMP-2)을 포함한 바이오 잉크를 3D 바이오 프린터로 출력해 3차원 지지체를 제작한 뒤 쥐의 뼈 손상 부위에 이식하는 실험을 수행했다. 그 결과 주변 조직으로부터 세포가 지지체 안으로 유입되어 뼈가 정상 조직 수준으로 재생되었으며, 이식된 3차원 지지체는 체내에서 42일에 걸쳐 서서히 생 분해되는 것을 확인할 수 있었다. KIST 송수창 박사는 “연구팀은 지난 2022년 6월 온도 감응성 폴리포스파젠 하이드로겔을 ㈜넥스젤바이오텍에 기술 이전해 골이식재, 성형필러 등의 제품 개발을 진행하고 있다."며, "이번에 개발된 바이오 잉크는 그 자체의 물리적 특성을 달리해 뼈 조직 외에 다른 조직의 재생에도 적용하는 후속 연구를 진행 중이며, 최종적으로는 부위 별 조직 및 장기 맞춤형 바이오 잉크를 제품화할 수 있을 것으로 기대한다."라고 밝혔다. 본 연구는 과학기술정보통신부(장관 이종호) 지원을 받아 KIST 주요 사업으로 수행되었으며, 연구 결과는 재료 분야 국제 학술지인 'Small'(IF : 15.153, JCR 분야 상위 7.101%) 최신 호에 표지 논문(Inside back cover)으로 게재되었다. [그림 1] 온도에 따른 성장인자를 포함한 바이오 잉크의 물리적인 강도 변화 및 3차원 지지체 프린팅 [사진 1] KIST 연구진이 개발한 온도감응형 하이드로겔 기반의 새로운 바이오잉크(가운데)와 이를 이용하여 3D바이오 프린팅 기술로 제작된 3차원 지지체(좌, 우) [그림 2] 바이오 잉크로 3D 프린트한 지지체를 뼈 손상 부위에 이식 후 생분해와 뼈 재생효과 확인 [사진 2] KIST 김준 위촉연구원(제1저자)가 3D 바이오 프린터로 출력한 조직재생용 3차원 지지체를 살펴보고 있다 [사진 3] 이번 기술을 개발한 KIST 연구진.((좌측, 제1저자) KIST 김준 위촉연구원, (우측, 교신저자)KIST 송수창 책임연구원) [그림 3] 표지논문(Inside back cover) 선정 이미지 ○ 논문명: Thermo-Responsive Nanocomposite Bioink with Growth-Factor Holding and its Application to Bone Regeneration ○ 게재일: 2022.12.26. ○ DOI: https://doi.org/10.1002/smll.202203464 ○ 논문저자 - 김준 위촉연구원(제1저자/KIST 생체분자인식연구센터) - 정훈기 책임연구원(제1저자/KIST 생체분자인식연구센터)
인공장기 인쇄하는 안전한 바이오 잉크
- 광경화 과정 없이 조직 재생을 유도하는 3D 바이오 프린팅 잉크 개발 - 인공장기 등 환자 맞춤형 재생 치료기술로 응용 기대 초고령화 사회로의 진입과 더불어 사고로 인한 부상, 만성질환의 증가 등으로 인공장기나 조직과 같은 생체재료 개발이 활발하다. 최근에는 세포와 생체재료를 사용해 3차원의 인공조직 구조를 구현하는 3D 바이오 프린팅 기술이 크게 주목받고 있다. 그런데, 바이오 잉크로 가장 많이 사용되는 하이드로겔의 경우 광경화 과정에서 사용되는 화학적 가교제와 자외선으로 인해 체내에서 세포 독성을 일으킬 수 있다는 문제가 있었다. 한국과학기술연구원(KIST, 원장 윤석진) 생체 재료 연구단 송수창 박사 연구팀은 광경화 과정 없이 온도 조절 만으로 물리적인 구조를 안정적으로 유지하고, 조직 재생을 유도한 후 일정 시간이 지나면 체내에서 생 분해되는 폴리포스파젠 하이드로겔 기반의 온도 감응성 바이오 잉크를 최초로 개발했다고 밝혔다. 기존의 하이드로겔 기반 바이오 잉크는 출력 후 3차원 지지체의 물리적 강도를 강화하기 위해 사용되는 광경화 과정을 반드시 거쳐야 하고, 조직 재생 효과를 증대 시키기 위해 외부 배양 세포를 이식함으로써 인체 내 부작용의 위험성이 컸다. 이에 연구팀은 저온에서는 액상 형태로 존재하고 체온에서는 단단한 젤로 변화하는 특성을 지닌 온도 감응성 폴리포스파젠 하이드로겔을 이용해 새로운 바이오 잉크 소재를 개발했다. 이를 통해 화학적 가교제나 자외선 조사 과정 없이 온도 조절 만으로 조직 재생이 가능하며 물리적으로 안정적 구조를 가진 3차원 지지체를 제작해 인체의 면역 부작용 발생 가능성을 최소화할 수 있게 되었다. 개발된 바이오 잉크는 또한 조직 재생에 도움을 주는 단백질인 성장 인자와 상호작용 할 수 있는 분자 구조로 되어 있어 세포의 성장 및 분화, 면역 반응 등을 조절하는 성장 인자를 장기간 보존할 수 있다. 연구팀은 바이오 잉크를 통해 출력된 3차원 지지체 내에 세포의 분화를 자율적으로 조절할 수 있는 환경을 유도함으로써 조직 재생 효과를 극대화할 수 있었다. 연구팀은 세포 유입과 뼈 재생에 필요한 전환 성장 인자 베타 1((Transforming growth factor beta 1, TGF-β1)과 골 형성 단백질(Bone morphogenetic protein-2, BMP-2)을 포함한 바이오 잉크를 3D 바이오 프린터로 출력해 3차원 지지체를 제작한 뒤 쥐의 뼈 손상 부위에 이식하는 실험을 수행했다. 그 결과 주변 조직으로부터 세포가 지지체 안으로 유입되어 뼈가 정상 조직 수준으로 재생되었으며, 이식된 3차원 지지체는 체내에서 42일에 걸쳐 서서히 생 분해되는 것을 확인할 수 있었다. KIST 송수창 박사는 “연구팀은 지난 2022년 6월 온도 감응성 폴리포스파젠 하이드로겔을 ㈜넥스젤바이오텍에 기술 이전해 골이식재, 성형필러 등의 제품 개발을 진행하고 있다."며, "이번에 개발된 바이오 잉크는 그 자체의 물리적 특성을 달리해 뼈 조직 외에 다른 조직의 재생에도 적용하는 후속 연구를 진행 중이며, 최종적으로는 부위 별 조직 및 장기 맞춤형 바이오 잉크를 제품화할 수 있을 것으로 기대한다."라고 밝혔다. 본 연구는 과학기술정보통신부(장관 이종호) 지원을 받아 KIST 주요 사업으로 수행되었으며, 연구 결과는 재료 분야 국제 학술지인 'Small'(IF : 15.153, JCR 분야 상위 7.101%) 최신 호에 표지 논문(Inside back cover)으로 게재되었다. [그림 1] 온도에 따른 성장인자를 포함한 바이오 잉크의 물리적인 강도 변화 및 3차원 지지체 프린팅 [사진 1] KIST 연구진이 개발한 온도감응형 하이드로겔 기반의 새로운 바이오잉크(가운데)와 이를 이용하여 3D바이오 프린팅 기술로 제작된 3차원 지지체(좌, 우) [그림 2] 바이오 잉크로 3D 프린트한 지지체를 뼈 손상 부위에 이식 후 생분해와 뼈 재생효과 확인 [사진 2] KIST 김준 위촉연구원(제1저자)가 3D 바이오 프린터로 출력한 조직재생용 3차원 지지체를 살펴보고 있다 [사진 3] 이번 기술을 개발한 KIST 연구진.((좌측, 제1저자) KIST 김준 위촉연구원, (우측, 교신저자)KIST 송수창 책임연구원) [그림 3] 표지논문(Inside back cover) 선정 이미지 ○ 논문명: Thermo-Responsive Nanocomposite Bioink with Growth-Factor Holding and its Application to Bone Regeneration ○ 게재일: 2022.12.26. ○ DOI: https://doi.org/10.1002/smll.202203464 ○ 논문저자 - 김준 위촉연구원(제1저자/KIST 생체분자인식연구센터) - 정훈기 책임연구원(제1저자/KIST 생체분자인식연구센터)
인공장기 인쇄하는 안전한 바이오 잉크
- 광경화 과정 없이 조직 재생을 유도하는 3D 바이오 프린팅 잉크 개발 - 인공장기 등 환자 맞춤형 재생 치료기술로 응용 기대 초고령화 사회로의 진입과 더불어 사고로 인한 부상, 만성질환의 증가 등으로 인공장기나 조직과 같은 생체재료 개발이 활발하다. 최근에는 세포와 생체재료를 사용해 3차원의 인공조직 구조를 구현하는 3D 바이오 프린팅 기술이 크게 주목받고 있다. 그런데, 바이오 잉크로 가장 많이 사용되는 하이드로겔의 경우 광경화 과정에서 사용되는 화학적 가교제와 자외선으로 인해 체내에서 세포 독성을 일으킬 수 있다는 문제가 있었다. 한국과학기술연구원(KIST, 원장 윤석진) 생체 재료 연구단 송수창 박사 연구팀은 광경화 과정 없이 온도 조절 만으로 물리적인 구조를 안정적으로 유지하고, 조직 재생을 유도한 후 일정 시간이 지나면 체내에서 생 분해되는 폴리포스파젠 하이드로겔 기반의 온도 감응성 바이오 잉크를 최초로 개발했다고 밝혔다. 기존의 하이드로겔 기반 바이오 잉크는 출력 후 3차원 지지체의 물리적 강도를 강화하기 위해 사용되는 광경화 과정을 반드시 거쳐야 하고, 조직 재생 효과를 증대 시키기 위해 외부 배양 세포를 이식함으로써 인체 내 부작용의 위험성이 컸다. 이에 연구팀은 저온에서는 액상 형태로 존재하고 체온에서는 단단한 젤로 변화하는 특성을 지닌 온도 감응성 폴리포스파젠 하이드로겔을 이용해 새로운 바이오 잉크 소재를 개발했다. 이를 통해 화학적 가교제나 자외선 조사 과정 없이 온도 조절 만으로 조직 재생이 가능하며 물리적으로 안정적 구조를 가진 3차원 지지체를 제작해 인체의 면역 부작용 발생 가능성을 최소화할 수 있게 되었다. 개발된 바이오 잉크는 또한 조직 재생에 도움을 주는 단백질인 성장 인자와 상호작용 할 수 있는 분자 구조로 되어 있어 세포의 성장 및 분화, 면역 반응 등을 조절하는 성장 인자를 장기간 보존할 수 있다. 연구팀은 바이오 잉크를 통해 출력된 3차원 지지체 내에 세포의 분화를 자율적으로 조절할 수 있는 환경을 유도함으로써 조직 재생 효과를 극대화할 수 있었다. 연구팀은 세포 유입과 뼈 재생에 필요한 전환 성장 인자 베타 1((Transforming growth factor beta 1, TGF-β1)과 골 형성 단백질(Bone morphogenetic protein-2, BMP-2)을 포함한 바이오 잉크를 3D 바이오 프린터로 출력해 3차원 지지체를 제작한 뒤 쥐의 뼈 손상 부위에 이식하는 실험을 수행했다. 그 결과 주변 조직으로부터 세포가 지지체 안으로 유입되어 뼈가 정상 조직 수준으로 재생되었으며, 이식된 3차원 지지체는 체내에서 42일에 걸쳐 서서히 생 분해되는 것을 확인할 수 있었다. KIST 송수창 박사는 “연구팀은 지난 2022년 6월 온도 감응성 폴리포스파젠 하이드로겔을 ㈜넥스젤바이오텍에 기술 이전해 골이식재, 성형필러 등의 제품 개발을 진행하고 있다."며, "이번에 개발된 바이오 잉크는 그 자체의 물리적 특성을 달리해 뼈 조직 외에 다른 조직의 재생에도 적용하는 후속 연구를 진행 중이며, 최종적으로는 부위 별 조직 및 장기 맞춤형 바이오 잉크를 제품화할 수 있을 것으로 기대한다."라고 밝혔다. 본 연구는 과학기술정보통신부(장관 이종호) 지원을 받아 KIST 주요 사업으로 수행되었으며, 연구 결과는 재료 분야 국제 학술지인 'Small'(IF : 15.153, JCR 분야 상위 7.101%) 최신 호에 표지 논문(Inside back cover)으로 게재되었다. [그림 1] 온도에 따른 성장인자를 포함한 바이오 잉크의 물리적인 강도 변화 및 3차원 지지체 프린팅 [사진 1] KIST 연구진이 개발한 온도감응형 하이드로겔 기반의 새로운 바이오잉크(가운데)와 이를 이용하여 3D바이오 프린팅 기술로 제작된 3차원 지지체(좌, 우) [그림 2] 바이오 잉크로 3D 프린트한 지지체를 뼈 손상 부위에 이식 후 생분해와 뼈 재생효과 확인 [사진 2] KIST 김준 위촉연구원(제1저자)가 3D 바이오 프린터로 출력한 조직재생용 3차원 지지체를 살펴보고 있다 [사진 3] 이번 기술을 개발한 KIST 연구진.((좌측, 제1저자) KIST 김준 위촉연구원, (우측, 교신저자)KIST 송수창 책임연구원) [그림 3] 표지논문(Inside back cover) 선정 이미지 ○ 논문명: Thermo-Responsive Nanocomposite Bioink with Growth-Factor Holding and its Application to Bone Regeneration ○ 게재일: 2022.12.26. ○ DOI: https://doi.org/10.1002/smll.202203464 ○ 논문저자 - 김준 위촉연구원(제1저자/KIST 생체분자인식연구센터) - 정훈기 책임연구원(제1저자/KIST 생체분자인식연구센터)
인공장기 인쇄하는 안전한 바이오 잉크
- 광경화 과정 없이 조직 재생을 유도하는 3D 바이오 프린팅 잉크 개발 - 인공장기 등 환자 맞춤형 재생 치료기술로 응용 기대 초고령화 사회로의 진입과 더불어 사고로 인한 부상, 만성질환의 증가 등으로 인공장기나 조직과 같은 생체재료 개발이 활발하다. 최근에는 세포와 생체재료를 사용해 3차원의 인공조직 구조를 구현하는 3D 바이오 프린팅 기술이 크게 주목받고 있다. 그런데, 바이오 잉크로 가장 많이 사용되는 하이드로겔의 경우 광경화 과정에서 사용되는 화학적 가교제와 자외선으로 인해 체내에서 세포 독성을 일으킬 수 있다는 문제가 있었다. 한국과학기술연구원(KIST, 원장 윤석진) 생체 재료 연구단 송수창 박사 연구팀은 광경화 과정 없이 온도 조절 만으로 물리적인 구조를 안정적으로 유지하고, 조직 재생을 유도한 후 일정 시간이 지나면 체내에서 생 분해되는 폴리포스파젠 하이드로겔 기반의 온도 감응성 바이오 잉크를 최초로 개발했다고 밝혔다. 기존의 하이드로겔 기반 바이오 잉크는 출력 후 3차원 지지체의 물리적 강도를 강화하기 위해 사용되는 광경화 과정을 반드시 거쳐야 하고, 조직 재생 효과를 증대 시키기 위해 외부 배양 세포를 이식함으로써 인체 내 부작용의 위험성이 컸다. 이에 연구팀은 저온에서는 액상 형태로 존재하고 체온에서는 단단한 젤로 변화하는 특성을 지닌 온도 감응성 폴리포스파젠 하이드로겔을 이용해 새로운 바이오 잉크 소재를 개발했다. 이를 통해 화학적 가교제나 자외선 조사 과정 없이 온도 조절 만으로 조직 재생이 가능하며 물리적으로 안정적 구조를 가진 3차원 지지체를 제작해 인체의 면역 부작용 발생 가능성을 최소화할 수 있게 되었다. 개발된 바이오 잉크는 또한 조직 재생에 도움을 주는 단백질인 성장 인자와 상호작용 할 수 있는 분자 구조로 되어 있어 세포의 성장 및 분화, 면역 반응 등을 조절하는 성장 인자를 장기간 보존할 수 있다. 연구팀은 바이오 잉크를 통해 출력된 3차원 지지체 내에 세포의 분화를 자율적으로 조절할 수 있는 환경을 유도함으로써 조직 재생 효과를 극대화할 수 있었다. 연구팀은 세포 유입과 뼈 재생에 필요한 전환 성장 인자 베타 1((Transforming growth factor beta 1, TGF-β1)과 골 형성 단백질(Bone morphogenetic protein-2, BMP-2)을 포함한 바이오 잉크를 3D 바이오 프린터로 출력해 3차원 지지체를 제작한 뒤 쥐의 뼈 손상 부위에 이식하는 실험을 수행했다. 그 결과 주변 조직으로부터 세포가 지지체 안으로 유입되어 뼈가 정상 조직 수준으로 재생되었으며, 이식된 3차원 지지체는 체내에서 42일에 걸쳐 서서히 생 분해되는 것을 확인할 수 있었다. KIST 송수창 박사는 “연구팀은 지난 2022년 6월 온도 감응성 폴리포스파젠 하이드로겔을 ㈜넥스젤바이오텍에 기술 이전해 골이식재, 성형필러 등의 제품 개발을 진행하고 있다."며, "이번에 개발된 바이오 잉크는 그 자체의 물리적 특성을 달리해 뼈 조직 외에 다른 조직의 재생에도 적용하는 후속 연구를 진행 중이며, 최종적으로는 부위 별 조직 및 장기 맞춤형 바이오 잉크를 제품화할 수 있을 것으로 기대한다."라고 밝혔다. 본 연구는 과학기술정보통신부(장관 이종호) 지원을 받아 KIST 주요 사업으로 수행되었으며, 연구 결과는 재료 분야 국제 학술지인 'Small'(IF : 15.153, JCR 분야 상위 7.101%) 최신 호에 표지 논문(Inside back cover)으로 게재되었다. [그림 1] 온도에 따른 성장인자를 포함한 바이오 잉크의 물리적인 강도 변화 및 3차원 지지체 프린팅 [사진 1] KIST 연구진이 개발한 온도감응형 하이드로겔 기반의 새로운 바이오잉크(가운데)와 이를 이용하여 3D바이오 프린팅 기술로 제작된 3차원 지지체(좌, 우) [그림 2] 바이오 잉크로 3D 프린트한 지지체를 뼈 손상 부위에 이식 후 생분해와 뼈 재생효과 확인 [사진 2] KIST 김준 위촉연구원(제1저자)가 3D 바이오 프린터로 출력한 조직재생용 3차원 지지체를 살펴보고 있다 [사진 3] 이번 기술을 개발한 KIST 연구진.((좌측, 제1저자) KIST 김준 위촉연구원, (우측, 교신저자)KIST 송수창 책임연구원) [그림 3] 표지논문(Inside back cover) 선정 이미지 ○ 논문명: Thermo-Responsive Nanocomposite Bioink with Growth-Factor Holding and its Application to Bone Regeneration ○ 게재일: 2022.12.26. ○ DOI: https://doi.org/10.1002/smll.202203464 ○ 논문저자 - 김준 위촉연구원(제1저자/KIST 생체분자인식연구센터) - 정훈기 책임연구원(제1저자/KIST 생체분자인식연구센터)
생활 속 악취 획기적으로 줄여줄 신기술 개발
- KIST, 열건조 활성탄 개발로 질소계 악취물질 흡착효율 최대 38배 향상 - 암모니아 등 질소계 악취가스의 흡착 메커니즘 최초 규명 일상생활에서 악취가스는 정화조, 하수시설, 축산 농가, 폐기물 처리시설 등 다양한 곳에서 발생하기 때문에 이로 인한 민원이 끊이지 않고 있다. 환경부에 따르면 2017년~2021년 악취 관련 민원은 17만 5,456건으로 매년 약 4만건의 민원이 접수되고 있으며, 이러한 악취 관련 민원에 대응하고 체계적인 악취 관리를 위해 악취방지법(2005년 제정)을 시행 중이다. 악취가스는 기본적으로 불쾌감을 주고, 눈, 코, 호흡기를 강하게 자극하는 등 인체에도 악영향을 미칠 뿐만 아니라 주변 환경에도 영향을 줄 수 있어서 이를 제거하기 위한 다양한 방법이 존재한다. 대표적인 악취 제거 방법은 활성탄을 흡착제로 사용하는 것인데 재활용성이 낮고, 복합 악취가스의 경우 원인물질을 제거하는데 어려움이 있었다. 한국과학기술연구원(KIST, 원장 윤석진) 지속가능환경연구단 이지원·오영탁 박사 연구팀은 공기 중 4종의 질소계 악취물질(암모니아, 에틸아민, 디메틸아민, 트리메탈아민) 제거성능을 획기적으로 향상시킨 활성탄 제조기술을 개발했다고 밝혔다. 해당 연구성과는 악취물질 제거를 위한 활성탄의 흡착효율을 높였을 뿐만 아니라 흡착제와 악취가스 간 흡착 메커니즘 또한 최초로 규명해 복합 악취물질에 대한 다양한 형태의 흡착제를 개발할 수 있게 되어 주목을 받고 있다. 연구팀은 질산을 이용해 활성탄을 산화시킨 후 열 건조 과정을 통해 표면의 산화정도를 정밀하게 제어함으로써 질소계 악취물질의 흡착효율을 높일 수 있었는데, 가장 많이 산화된 열 건조 활성탄의 경우 기존의 활성탄 대비 악취물질 제거 효율이 최대 38배 향상되는 것을 확인했다. 연구팀은 산화된 활성탄 표면에 있는 산소 원자가 질소계 악취분자에 포함된 아민과 강한 수소결합을 하기 때문이라는 사실도 최초로 밝혀냈다. 활성탄 표면에서 아민과 더 많은 수소결합을 형성될 수 있도록 산화 정도가 높아져 질소계 악취물질이 더 잘 흡착되는 원리이다. 또한, 일반적인 가스반응과 달리 흡착제와 악취물질 간의 상호작용은 양성자 친화도 보다 얼마나 많은 수소결합이 일어나는지에 더 큰 영향을 받는다는 것이 이번 연구를 통해 밝혀졌다. 한편, 열 건조 활성탄은 질소계 악취물질 중 흡착 효율이 가장 낮았던 트라이메틸아민에 대한 선택성이 13배 이상 높은 것으로 나타나 더 높은 흡착력으로 트라이메틸아민 제거 또한 가능해졌다. 트라이메틸아민은 국내에서 법으로 규제되는 지정악취물질로 농업, 쓰레기 매립장, 하수 및 폐수처리장에서 많이 발생하는 악취의 대표적인 원인이다. 특히, 열 건조 활성탄은 트라이메틸아민에 대해 평균 93.8%의 재활용성을 지녀 기존 활성탄의 재활용 수치인 63% 대비 높은 경제성을 나타냈다. KIST 이지원 박사는 “악취가스의 흡착 메커니즘 규명을 통해 특정 가스 제거에 특화된 소재를 개발할 수 있으며, 산화과정을 거친 열 건조 활성탄은 생산방법이 비교적 간단하고, 재사용도 가능하기 때문에 필터, 마스크 등 정화장치의 소재로 응용될 수 있을 것으로 생각한다.”고 말했다. 본 연구는 과학기술정보통신부 지원으로 KIST 주요사업을 통해 수행되었으며, 연구결과는 환경과학분야 국제학술지 “Journal of Cleaner Production(IF: 11.072, JCR 분야 상위 8.423%) 최신호에 게재되었다. [그림 1]열건조 활성탄의 흡착 메커니즘 및 질소계 악취물질의 흡착성능 [그림 2] DFT계산 결과 및 열건조 활성탄의 질소계 악취물질 선택성 ○ 논문명: Adsorption Enhancement of Hazardous Odor Gas using Controlled Thermal Oxidation of Activated Carbon ○ 게재일: 2023.03.20. ○ DOI: https://doi.org/10.1016/j.jclepro.2023.136261 ○ 논문저자 - 표수열 학생연구원(제1저자/KIST 지속가능환경연구단) - 이지원 선임연구원(제1저자/KIST 지속가능환경연구단) - 오영탁 책임연구원(교신저자/KIST 지속가능환경연구단)
생활 속 악취 획기적으로 줄여줄 신기술 개발
- KIST, 열건조 활성탄 개발로 질소계 악취물질 흡착효율 최대 38배 향상 - 암모니아 등 질소계 악취가스의 흡착 메커니즘 최초 규명 일상생활에서 악취가스는 정화조, 하수시설, 축산 농가, 폐기물 처리시설 등 다양한 곳에서 발생하기 때문에 이로 인한 민원이 끊이지 않고 있다. 환경부에 따르면 2017년~2021년 악취 관련 민원은 17만 5,456건으로 매년 약 4만건의 민원이 접수되고 있으며, 이러한 악취 관련 민원에 대응하고 체계적인 악취 관리를 위해 악취방지법(2005년 제정)을 시행 중이다. 악취가스는 기본적으로 불쾌감을 주고, 눈, 코, 호흡기를 강하게 자극하는 등 인체에도 악영향을 미칠 뿐만 아니라 주변 환경에도 영향을 줄 수 있어서 이를 제거하기 위한 다양한 방법이 존재한다. 대표적인 악취 제거 방법은 활성탄을 흡착제로 사용하는 것인데 재활용성이 낮고, 복합 악취가스의 경우 원인물질을 제거하는데 어려움이 있었다. 한국과학기술연구원(KIST, 원장 윤석진) 지속가능환경연구단 이지원·오영탁 박사 연구팀은 공기 중 4종의 질소계 악취물질(암모니아, 에틸아민, 디메틸아민, 트리메탈아민) 제거성능을 획기적으로 향상시킨 활성탄 제조기술을 개발했다고 밝혔다. 해당 연구성과는 악취물질 제거를 위한 활성탄의 흡착효율을 높였을 뿐만 아니라 흡착제와 악취가스 간 흡착 메커니즘 또한 최초로 규명해 복합 악취물질에 대한 다양한 형태의 흡착제를 개발할 수 있게 되어 주목을 받고 있다. 연구팀은 질산을 이용해 활성탄을 산화시킨 후 열 건조 과정을 통해 표면의 산화정도를 정밀하게 제어함으로써 질소계 악취물질의 흡착효율을 높일 수 있었는데, 가장 많이 산화된 열 건조 활성탄의 경우 기존의 활성탄 대비 악취물질 제거 효율이 최대 38배 향상되는 것을 확인했다. 연구팀은 산화된 활성탄 표면에 있는 산소 원자가 질소계 악취분자에 포함된 아민과 강한 수소결합을 하기 때문이라는 사실도 최초로 밝혀냈다. 활성탄 표면에서 아민과 더 많은 수소결합을 형성될 수 있도록 산화 정도가 높아져 질소계 악취물질이 더 잘 흡착되는 원리이다. 또한, 일반적인 가스반응과 달리 흡착제와 악취물질 간의 상호작용은 양성자 친화도 보다 얼마나 많은 수소결합이 일어나는지에 더 큰 영향을 받는다는 것이 이번 연구를 통해 밝혀졌다. 한편, 열 건조 활성탄은 질소계 악취물질 중 흡착 효율이 가장 낮았던 트라이메틸아민에 대한 선택성이 13배 이상 높은 것으로 나타나 더 높은 흡착력으로 트라이메틸아민 제거 또한 가능해졌다. 트라이메틸아민은 국내에서 법으로 규제되는 지정악취물질로 농업, 쓰레기 매립장, 하수 및 폐수처리장에서 많이 발생하는 악취의 대표적인 원인이다. 특히, 열 건조 활성탄은 트라이메틸아민에 대해 평균 93.8%의 재활용성을 지녀 기존 활성탄의 재활용 수치인 63% 대비 높은 경제성을 나타냈다. KIST 이지원 박사는 “악취가스의 흡착 메커니즘 규명을 통해 특정 가스 제거에 특화된 소재를 개발할 수 있으며, 산화과정을 거친 열 건조 활성탄은 생산방법이 비교적 간단하고, 재사용도 가능하기 때문에 필터, 마스크 등 정화장치의 소재로 응용될 수 있을 것으로 생각한다.”고 말했다. 본 연구는 과학기술정보통신부 지원으로 KIST 주요사업을 통해 수행되었으며, 연구결과는 환경과학분야 국제학술지 “Journal of Cleaner Production(IF: 11.072, JCR 분야 상위 8.423%) 최신호에 게재되었다. [그림 1]열건조 활성탄의 흡착 메커니즘 및 질소계 악취물질의 흡착성능 [그림 2] DFT계산 결과 및 열건조 활성탄의 질소계 악취물질 선택성 ○ 논문명: Adsorption Enhancement of Hazardous Odor Gas using Controlled Thermal Oxidation of Activated Carbon ○ 게재일: 2023.03.20. ○ DOI: https://doi.org/10.1016/j.jclepro.2023.136261 ○ 논문저자 - 표수열 학생연구원(제1저자/KIST 지속가능환경연구단) - 이지원 선임연구원(제1저자/KIST 지속가능환경연구단) - 오영탁 책임연구원(교신저자/KIST 지속가능환경연구단)
생활 속 악취 획기적으로 줄여줄 신기술 개발
- KIST, 열건조 활성탄 개발로 질소계 악취물질 흡착효율 최대 38배 향상 - 암모니아 등 질소계 악취가스의 흡착 메커니즘 최초 규명 일상생활에서 악취가스는 정화조, 하수시설, 축산 농가, 폐기물 처리시설 등 다양한 곳에서 발생하기 때문에 이로 인한 민원이 끊이지 않고 있다. 환경부에 따르면 2017년~2021년 악취 관련 민원은 17만 5,456건으로 매년 약 4만건의 민원이 접수되고 있으며, 이러한 악취 관련 민원에 대응하고 체계적인 악취 관리를 위해 악취방지법(2005년 제정)을 시행 중이다. 악취가스는 기본적으로 불쾌감을 주고, 눈, 코, 호흡기를 강하게 자극하는 등 인체에도 악영향을 미칠 뿐만 아니라 주변 환경에도 영향을 줄 수 있어서 이를 제거하기 위한 다양한 방법이 존재한다. 대표적인 악취 제거 방법은 활성탄을 흡착제로 사용하는 것인데 재활용성이 낮고, 복합 악취가스의 경우 원인물질을 제거하는데 어려움이 있었다. 한국과학기술연구원(KIST, 원장 윤석진) 지속가능환경연구단 이지원·오영탁 박사 연구팀은 공기 중 4종의 질소계 악취물질(암모니아, 에틸아민, 디메틸아민, 트리메탈아민) 제거성능을 획기적으로 향상시킨 활성탄 제조기술을 개발했다고 밝혔다. 해당 연구성과는 악취물질 제거를 위한 활성탄의 흡착효율을 높였을 뿐만 아니라 흡착제와 악취가스 간 흡착 메커니즘 또한 최초로 규명해 복합 악취물질에 대한 다양한 형태의 흡착제를 개발할 수 있게 되어 주목을 받고 있다. 연구팀은 질산을 이용해 활성탄을 산화시킨 후 열 건조 과정을 통해 표면의 산화정도를 정밀하게 제어함으로써 질소계 악취물질의 흡착효율을 높일 수 있었는데, 가장 많이 산화된 열 건조 활성탄의 경우 기존의 활성탄 대비 악취물질 제거 효율이 최대 38배 향상되는 것을 확인했다. 연구팀은 산화된 활성탄 표면에 있는 산소 원자가 질소계 악취분자에 포함된 아민과 강한 수소결합을 하기 때문이라는 사실도 최초로 밝혀냈다. 활성탄 표면에서 아민과 더 많은 수소결합을 형성될 수 있도록 산화 정도가 높아져 질소계 악취물질이 더 잘 흡착되는 원리이다. 또한, 일반적인 가스반응과 달리 흡착제와 악취물질 간의 상호작용은 양성자 친화도 보다 얼마나 많은 수소결합이 일어나는지에 더 큰 영향을 받는다는 것이 이번 연구를 통해 밝혀졌다. 한편, 열 건조 활성탄은 질소계 악취물질 중 흡착 효율이 가장 낮았던 트라이메틸아민에 대한 선택성이 13배 이상 높은 것으로 나타나 더 높은 흡착력으로 트라이메틸아민 제거 또한 가능해졌다. 트라이메틸아민은 국내에서 법으로 규제되는 지정악취물질로 농업, 쓰레기 매립장, 하수 및 폐수처리장에서 많이 발생하는 악취의 대표적인 원인이다. 특히, 열 건조 활성탄은 트라이메틸아민에 대해 평균 93.8%의 재활용성을 지녀 기존 활성탄의 재활용 수치인 63% 대비 높은 경제성을 나타냈다. KIST 이지원 박사는 “악취가스의 흡착 메커니즘 규명을 통해 특정 가스 제거에 특화된 소재를 개발할 수 있으며, 산화과정을 거친 열 건조 활성탄은 생산방법이 비교적 간단하고, 재사용도 가능하기 때문에 필터, 마스크 등 정화장치의 소재로 응용될 수 있을 것으로 생각한다.”고 말했다. 본 연구는 과학기술정보통신부 지원으로 KIST 주요사업을 통해 수행되었으며, 연구결과는 환경과학분야 국제학술지 “Journal of Cleaner Production(IF: 11.072, JCR 분야 상위 8.423%) 최신호에 게재되었다. [그림 1]열건조 활성탄의 흡착 메커니즘 및 질소계 악취물질의 흡착성능 [그림 2] DFT계산 결과 및 열건조 활성탄의 질소계 악취물질 선택성 ○ 논문명: Adsorption Enhancement of Hazardous Odor Gas using Controlled Thermal Oxidation of Activated Carbon ○ 게재일: 2023.03.20. ○ DOI: https://doi.org/10.1016/j.jclepro.2023.136261 ○ 논문저자 - 표수열 학생연구원(제1저자/KIST 지속가능환경연구단) - 이지원 선임연구원(제1저자/KIST 지속가능환경연구단) - 오영탁 책임연구원(교신저자/KIST 지속가능환경연구단)
생활 속 악취 획기적으로 줄여줄 신기술 개발
- KIST, 열건조 활성탄 개발로 질소계 악취물질 흡착효율 최대 38배 향상 - 암모니아 등 질소계 악취가스의 흡착 메커니즘 최초 규명 일상생활에서 악취가스는 정화조, 하수시설, 축산 농가, 폐기물 처리시설 등 다양한 곳에서 발생하기 때문에 이로 인한 민원이 끊이지 않고 있다. 환경부에 따르면 2017년~2021년 악취 관련 민원은 17만 5,456건으로 매년 약 4만건의 민원이 접수되고 있으며, 이러한 악취 관련 민원에 대응하고 체계적인 악취 관리를 위해 악취방지법(2005년 제정)을 시행 중이다. 악취가스는 기본적으로 불쾌감을 주고, 눈, 코, 호흡기를 강하게 자극하는 등 인체에도 악영향을 미칠 뿐만 아니라 주변 환경에도 영향을 줄 수 있어서 이를 제거하기 위한 다양한 방법이 존재한다. 대표적인 악취 제거 방법은 활성탄을 흡착제로 사용하는 것인데 재활용성이 낮고, 복합 악취가스의 경우 원인물질을 제거하는데 어려움이 있었다. 한국과학기술연구원(KIST, 원장 윤석진) 지속가능환경연구단 이지원·오영탁 박사 연구팀은 공기 중 4종의 질소계 악취물질(암모니아, 에틸아민, 디메틸아민, 트리메탈아민) 제거성능을 획기적으로 향상시킨 활성탄 제조기술을 개발했다고 밝혔다. 해당 연구성과는 악취물질 제거를 위한 활성탄의 흡착효율을 높였을 뿐만 아니라 흡착제와 악취가스 간 흡착 메커니즘 또한 최초로 규명해 복합 악취물질에 대한 다양한 형태의 흡착제를 개발할 수 있게 되어 주목을 받고 있다. 연구팀은 질산을 이용해 활성탄을 산화시킨 후 열 건조 과정을 통해 표면의 산화정도를 정밀하게 제어함으로써 질소계 악취물질의 흡착효율을 높일 수 있었는데, 가장 많이 산화된 열 건조 활성탄의 경우 기존의 활성탄 대비 악취물질 제거 효율이 최대 38배 향상되는 것을 확인했다. 연구팀은 산화된 활성탄 표면에 있는 산소 원자가 질소계 악취분자에 포함된 아민과 강한 수소결합을 하기 때문이라는 사실도 최초로 밝혀냈다. 활성탄 표면에서 아민과 더 많은 수소결합을 형성될 수 있도록 산화 정도가 높아져 질소계 악취물질이 더 잘 흡착되는 원리이다. 또한, 일반적인 가스반응과 달리 흡착제와 악취물질 간의 상호작용은 양성자 친화도 보다 얼마나 많은 수소결합이 일어나는지에 더 큰 영향을 받는다는 것이 이번 연구를 통해 밝혀졌다. 한편, 열 건조 활성탄은 질소계 악취물질 중 흡착 효율이 가장 낮았던 트라이메틸아민에 대한 선택성이 13배 이상 높은 것으로 나타나 더 높은 흡착력으로 트라이메틸아민 제거 또한 가능해졌다. 트라이메틸아민은 국내에서 법으로 규제되는 지정악취물질로 농업, 쓰레기 매립장, 하수 및 폐수처리장에서 많이 발생하는 악취의 대표적인 원인이다. 특히, 열 건조 활성탄은 트라이메틸아민에 대해 평균 93.8%의 재활용성을 지녀 기존 활성탄의 재활용 수치인 63% 대비 높은 경제성을 나타냈다. KIST 이지원 박사는 “악취가스의 흡착 메커니즘 규명을 통해 특정 가스 제거에 특화된 소재를 개발할 수 있으며, 산화과정을 거친 열 건조 활성탄은 생산방법이 비교적 간단하고, 재사용도 가능하기 때문에 필터, 마스크 등 정화장치의 소재로 응용될 수 있을 것으로 생각한다.”고 말했다. 본 연구는 과학기술정보통신부 지원으로 KIST 주요사업을 통해 수행되었으며, 연구결과는 환경과학분야 국제학술지 “Journal of Cleaner Production(IF: 11.072, JCR 분야 상위 8.423%) 최신호에 게재되었다. [그림 1]열건조 활성탄의 흡착 메커니즘 및 질소계 악취물질의 흡착성능 [그림 2] DFT계산 결과 및 열건조 활성탄의 질소계 악취물질 선택성 ○ 논문명: Adsorption Enhancement of Hazardous Odor Gas using Controlled Thermal Oxidation of Activated Carbon ○ 게재일: 2023.03.20. ○ DOI: https://doi.org/10.1016/j.jclepro.2023.136261 ○ 논문저자 - 표수열 학생연구원(제1저자/KIST 지속가능환경연구단) - 이지원 선임연구원(제1저자/KIST 지속가능환경연구단) - 오영탁 책임연구원(교신저자/KIST 지속가능환경연구단)