검색결과
게시물 키워드"한국과학기술연구원"에 대한 1258개의 검색결과를 찾았습니다.
심혈관 질환의 스텐트 시술 부작용, 새로운 레이저 패터닝 기술만으로 해결한다.
심혈관 질환의 스텐트 시술 부작용, 새로운 레이저 패터닝 기술만으로 해결한다. - 약물 부작용 없이 혈관 내 세포 반응을 제어하는 혁신적 스텐트 표면 기술 - 레이저 가공 기술을 활용한 금속 소재 정밀 패턴 가공 및 빠른 실용화 가능 한국과학기술연구원(KIST, 원장 오상록) 생체재료연구센터 전호정 센터장, 한형섭 박사, KIST유럽연구소 전인동 박사 공동연구팀은 레이저 패터닝 기술로 혈관 내피세포의 성장을 촉진하고 평활근 세포의 탈분화를 억제하는 새로운 스텐트 표면처리 기술을 개발했다. 이 기술은 세포 종류별로 나노 패턴에 대한 반응 차이를 조절할 수 있으며 화학적 코팅 방식과 함께 활용 시 더 큰 혈관 회복 효과를 기대할 수 있다고 밝혔다. 우리나라가 초고령 사회로의 진입을 앞둔 가운데, 고령 인구의 혈관질환 발생이 늘어나고 있다. 이에 따라 좁아지거나 막힌 혈관을 확장해 혈류를 원활히 하는 관 모양의 의료기기인 치료용 스텐트의 중요성이 커지고 있다. 그러나 기존 금속 스텐트의 경우, 혈관 확장을 물리적으로 유지하지만 1개월 후 평활근 세포의 과도한 증식으로 재협착이 발생할 수 있다. 이를 해결하기 위해 약물 방출형 스텐트가 가장 많이 사용되고 있으나 혈관 재내피화를 억제해 혈전이 쌓일 위험을 높여 환자가 혈전용해제를 복용해야 하는 불편함이 있었다. 이러한 단점을 극복하기 위해 스텐트 표면에 단백질이나 핵산 등 활성 분자를 코팅하는 방식의 연구가 활발히 진행 중이다. 그러나 이러한 활성 분자들은 개별적인 기능만을 수행하기 때문에 혈관 내피세포를 빠르게 증식시키는 데 한계가 있다. 연구팀은 평활근 세포의 성장은 억제하면서 혈관 내피화를 촉진하기 위해 나노초 레이저 텍스처링 기술로 니켈-티타늄 합금 표면에 나노‧마이크로 주름 패턴을 형성했다. 스텐트 시술로 손상된 혈관 내벽에서 평활근 세포가 혈관 안으로 이동하는 과정에서 형태가 변하게 되는데, 레이저로 만든 주름 패턴은 평활근 세포의 길쭉한 형태를 유지할 수 있어 재협착을 방지한다. 또한, 주름 패턴의 영향으로 세포 간의 부착이 증가해 혈관 내벽을 재형성하는 재내피화까지 촉진할 수 있었다. 연구진은 혈관 기능의 회복 효과를 검증하기 위해 혈관 세포 및 태아 동물 뼈를 활용한 신생혈관 분석을 수행했다. 레이저 텍스처링으로 가공된 금속 표면이 혈관 내피세포의 증식 환경을 조성하면서 평활근 세포의 탈분화 반응과 과도한 증식이 효과적으로 억제됐다. 특히, 주름 표면 위에서 평활근 세포가 자라는 정도가 약 75% 감소했으며, 신생혈관 생성 정도는 2배 이상 증가하는 것을 확인했다. 이번에 개발한 표면 패턴 기술은 금속 스텐트는 물론 생분해성 스텐트에도 적용할 수 있을 것으로 기대된다. 생분해성 스텐트에 적용하면 녹기 전에 재협착을 예방하고 내피화를 촉진해 환자의 치료를 돕고 합병증 위험을 줄일 수 있다. 레이저 패터닝 기술을 실제 치료 현장에 적용하기 위해 장기적 안전성과 효능 검증에 대한 임상시험을 추진할 계획이다. KIST 전호정 센터장은 “이번 연구는 표면 패턴을 통해 약물 없이도 혈관 세포 반응을 선택적으로 제어할 가능성을 확인한 연구”라며, “산업용으로 널리 활용되는 나노초 레이저를 사용해 스텐트 표면을 빠르고 정밀하게 가공할 수 있어 실용화와 공정 효율성을 높이는 데 장점이 있다”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 유상임) 지원으로 KIST 주요사업과 미래유망융합기술파이오니아사업(RS-2023-00302145)으로 수행됐다. 이번 연구 결과는 국제 학술지 「Bioactive Materials」 (IF: 18.0, JCR 분야 상위 0.9%)에 게재됐다. * (논문명) Exploring the potential of laser-textured metal alloys: Fine-tuning vascular cells responses through in vitro and ex vivo analysis [그림 1] 금속 스텐트가 삽입된 혈관의 모식도 확장된 스텐트는 막힌 혈관 벽을 물리적으로 확장시키기에, 금속 표면과 혈관 구성 세포 간의 상호작용에 따라 치유가 촉진되거나 부작용이 발생할 수 있음 [그림 2] 나노초 레이저 텍스처링 조건에 따른 금속 표면의 나노/마이크로 구조 제어 파장 1064 nm, 펄스폭 4 ns, 펄스 반복횟수 800 kHz의 레이저를 0.5 m/s의 속도로 의료용 금속 표면에 조사를 하게 되면 반복 횟수에 따라 나노미터에서부터 마이크로미터 거칠기의 주름을 갖는 표면 구조를 생성할 수 있음 [그림 3] 나노초 레이저 텍스처링된 금속 표면에서의 탈분화 및 증식이 억제되는 평활근 세포 나노초 레이저 텍스처링 조건에 따른 금속 표면의 나노/마이크로 구조 제어를 통해 일반 금속 스텐트와 혈관 구성세포간의 상호작용을 제어할 수 있음. 평활근 세포의 탈분화를 억제하여 이동 및 증식을 억제할 수 있음 [그림 4] 태아 마우스 중족골 분석을 통해 나노초 레이저 텍스처링된 금속 표면에서의 신생혈관 형성 분석 나노초 레이저 텍스처링 조건에 따른 금속 표면의 나노/마이크로 구조 제어를 통해 일반 금속 스텐트와 혈관 구성세포간의 상호작용을 제어할 수 있음. 신생혈관 형성을 촉진함
심혈관 질환의 스텐트 시술 부작용, 새로운 레이저 패터닝 기술만으로 해결한다.
심혈관 질환의 스텐트 시술 부작용, 새로운 레이저 패터닝 기술만으로 해결한다. - 약물 부작용 없이 혈관 내 세포 반응을 제어하는 혁신적 스텐트 표면 기술 - 레이저 가공 기술을 활용한 금속 소재 정밀 패턴 가공 및 빠른 실용화 가능 한국과학기술연구원(KIST, 원장 오상록) 생체재료연구센터 전호정 센터장, 한형섭 박사, KIST유럽연구소 전인동 박사 공동연구팀은 레이저 패터닝 기술로 혈관 내피세포의 성장을 촉진하고 평활근 세포의 탈분화를 억제하는 새로운 스텐트 표면처리 기술을 개발했다. 이 기술은 세포 종류별로 나노 패턴에 대한 반응 차이를 조절할 수 있으며 화학적 코팅 방식과 함께 활용 시 더 큰 혈관 회복 효과를 기대할 수 있다고 밝혔다. 우리나라가 초고령 사회로의 진입을 앞둔 가운데, 고령 인구의 혈관질환 발생이 늘어나고 있다. 이에 따라 좁아지거나 막힌 혈관을 확장해 혈류를 원활히 하는 관 모양의 의료기기인 치료용 스텐트의 중요성이 커지고 있다. 그러나 기존 금속 스텐트의 경우, 혈관 확장을 물리적으로 유지하지만 1개월 후 평활근 세포의 과도한 증식으로 재협착이 발생할 수 있다. 이를 해결하기 위해 약물 방출형 스텐트가 가장 많이 사용되고 있으나 혈관 재내피화를 억제해 혈전이 쌓일 위험을 높여 환자가 혈전용해제를 복용해야 하는 불편함이 있었다. 이러한 단점을 극복하기 위해 스텐트 표면에 단백질이나 핵산 등 활성 분자를 코팅하는 방식의 연구가 활발히 진행 중이다. 그러나 이러한 활성 분자들은 개별적인 기능만을 수행하기 때문에 혈관 내피세포를 빠르게 증식시키는 데 한계가 있다. 연구팀은 평활근 세포의 성장은 억제하면서 혈관 내피화를 촉진하기 위해 나노초 레이저 텍스처링 기술로 니켈-티타늄 합금 표면에 나노‧마이크로 주름 패턴을 형성했다. 스텐트 시술로 손상된 혈관 내벽에서 평활근 세포가 혈관 안으로 이동하는 과정에서 형태가 변하게 되는데, 레이저로 만든 주름 패턴은 평활근 세포의 길쭉한 형태를 유지할 수 있어 재협착을 방지한다. 또한, 주름 패턴의 영향으로 세포 간의 부착이 증가해 혈관 내벽을 재형성하는 재내피화까지 촉진할 수 있었다. 연구진은 혈관 기능의 회복 효과를 검증하기 위해 혈관 세포 및 태아 동물 뼈를 활용한 신생혈관 분석을 수행했다. 레이저 텍스처링으로 가공된 금속 표면이 혈관 내피세포의 증식 환경을 조성하면서 평활근 세포의 탈분화 반응과 과도한 증식이 효과적으로 억제됐다. 특히, 주름 표면 위에서 평활근 세포가 자라는 정도가 약 75% 감소했으며, 신생혈관 생성 정도는 2배 이상 증가하는 것을 확인했다. 이번에 개발한 표면 패턴 기술은 금속 스텐트는 물론 생분해성 스텐트에도 적용할 수 있을 것으로 기대된다. 생분해성 스텐트에 적용하면 녹기 전에 재협착을 예방하고 내피화를 촉진해 환자의 치료를 돕고 합병증 위험을 줄일 수 있다. 레이저 패터닝 기술을 실제 치료 현장에 적용하기 위해 장기적 안전성과 효능 검증에 대한 임상시험을 추진할 계획이다. KIST 전호정 센터장은 “이번 연구는 표면 패턴을 통해 약물 없이도 혈관 세포 반응을 선택적으로 제어할 가능성을 확인한 연구”라며, “산업용으로 널리 활용되는 나노초 레이저를 사용해 스텐트 표면을 빠르고 정밀하게 가공할 수 있어 실용화와 공정 효율성을 높이는 데 장점이 있다”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 유상임) 지원으로 KIST 주요사업과 미래유망융합기술파이오니아사업(RS-2023-00302145)으로 수행됐다. 이번 연구 결과는 국제 학술지 「Bioactive Materials」 (IF: 18.0, JCR 분야 상위 0.9%)에 게재됐다. * (논문명) Exploring the potential of laser-textured metal alloys: Fine-tuning vascular cells responses through in vitro and ex vivo analysis [그림 1] 금속 스텐트가 삽입된 혈관의 모식도 확장된 스텐트는 막힌 혈관 벽을 물리적으로 확장시키기에, 금속 표면과 혈관 구성 세포 간의 상호작용에 따라 치유가 촉진되거나 부작용이 발생할 수 있음 [그림 2] 나노초 레이저 텍스처링 조건에 따른 금속 표면의 나노/마이크로 구조 제어 파장 1064 nm, 펄스폭 4 ns, 펄스 반복횟수 800 kHz의 레이저를 0.5 m/s의 속도로 의료용 금속 표면에 조사를 하게 되면 반복 횟수에 따라 나노미터에서부터 마이크로미터 거칠기의 주름을 갖는 표면 구조를 생성할 수 있음 [그림 3] 나노초 레이저 텍스처링된 금속 표면에서의 탈분화 및 증식이 억제되는 평활근 세포 나노초 레이저 텍스처링 조건에 따른 금속 표면의 나노/마이크로 구조 제어를 통해 일반 금속 스텐트와 혈관 구성세포간의 상호작용을 제어할 수 있음. 평활근 세포의 탈분화를 억제하여 이동 및 증식을 억제할 수 있음 [그림 4] 태아 마우스 중족골 분석을 통해 나노초 레이저 텍스처링된 금속 표면에서의 신생혈관 형성 분석 나노초 레이저 텍스처링 조건에 따른 금속 표면의 나노/마이크로 구조 제어를 통해 일반 금속 스텐트와 혈관 구성세포간의 상호작용을 제어할 수 있음. 신생혈관 형성을 촉진함
심혈관 질환의 스텐트 시술 부작용, 새로운 레이저 패터닝 기술만으로 해결한다.
심혈관 질환의 스텐트 시술 부작용, 새로운 레이저 패터닝 기술만으로 해결한다. - 약물 부작용 없이 혈관 내 세포 반응을 제어하는 혁신적 스텐트 표면 기술 - 레이저 가공 기술을 활용한 금속 소재 정밀 패턴 가공 및 빠른 실용화 가능 한국과학기술연구원(KIST, 원장 오상록) 생체재료연구센터 전호정 센터장, 한형섭 박사, KIST유럽연구소 전인동 박사 공동연구팀은 레이저 패터닝 기술로 혈관 내피세포의 성장을 촉진하고 평활근 세포의 탈분화를 억제하는 새로운 스텐트 표면처리 기술을 개발했다. 이 기술은 세포 종류별로 나노 패턴에 대한 반응 차이를 조절할 수 있으며 화학적 코팅 방식과 함께 활용 시 더 큰 혈관 회복 효과를 기대할 수 있다고 밝혔다. 우리나라가 초고령 사회로의 진입을 앞둔 가운데, 고령 인구의 혈관질환 발생이 늘어나고 있다. 이에 따라 좁아지거나 막힌 혈관을 확장해 혈류를 원활히 하는 관 모양의 의료기기인 치료용 스텐트의 중요성이 커지고 있다. 그러나 기존 금속 스텐트의 경우, 혈관 확장을 물리적으로 유지하지만 1개월 후 평활근 세포의 과도한 증식으로 재협착이 발생할 수 있다. 이를 해결하기 위해 약물 방출형 스텐트가 가장 많이 사용되고 있으나 혈관 재내피화를 억제해 혈전이 쌓일 위험을 높여 환자가 혈전용해제를 복용해야 하는 불편함이 있었다. 이러한 단점을 극복하기 위해 스텐트 표면에 단백질이나 핵산 등 활성 분자를 코팅하는 방식의 연구가 활발히 진행 중이다. 그러나 이러한 활성 분자들은 개별적인 기능만을 수행하기 때문에 혈관 내피세포를 빠르게 증식시키는 데 한계가 있다. 연구팀은 평활근 세포의 성장은 억제하면서 혈관 내피화를 촉진하기 위해 나노초 레이저 텍스처링 기술로 니켈-티타늄 합금 표면에 나노‧마이크로 주름 패턴을 형성했다. 스텐트 시술로 손상된 혈관 내벽에서 평활근 세포가 혈관 안으로 이동하는 과정에서 형태가 변하게 되는데, 레이저로 만든 주름 패턴은 평활근 세포의 길쭉한 형태를 유지할 수 있어 재협착을 방지한다. 또한, 주름 패턴의 영향으로 세포 간의 부착이 증가해 혈관 내벽을 재형성하는 재내피화까지 촉진할 수 있었다. 연구진은 혈관 기능의 회복 효과를 검증하기 위해 혈관 세포 및 태아 동물 뼈를 활용한 신생혈관 분석을 수행했다. 레이저 텍스처링으로 가공된 금속 표면이 혈관 내피세포의 증식 환경을 조성하면서 평활근 세포의 탈분화 반응과 과도한 증식이 효과적으로 억제됐다. 특히, 주름 표면 위에서 평활근 세포가 자라는 정도가 약 75% 감소했으며, 신생혈관 생성 정도는 2배 이상 증가하는 것을 확인했다. 이번에 개발한 표면 패턴 기술은 금속 스텐트는 물론 생분해성 스텐트에도 적용할 수 있을 것으로 기대된다. 생분해성 스텐트에 적용하면 녹기 전에 재협착을 예방하고 내피화를 촉진해 환자의 치료를 돕고 합병증 위험을 줄일 수 있다. 레이저 패터닝 기술을 실제 치료 현장에 적용하기 위해 장기적 안전성과 효능 검증에 대한 임상시험을 추진할 계획이다. KIST 전호정 센터장은 “이번 연구는 표면 패턴을 통해 약물 없이도 혈관 세포 반응을 선택적으로 제어할 가능성을 확인한 연구”라며, “산업용으로 널리 활용되는 나노초 레이저를 사용해 스텐트 표면을 빠르고 정밀하게 가공할 수 있어 실용화와 공정 효율성을 높이는 데 장점이 있다”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 유상임) 지원으로 KIST 주요사업과 미래유망융합기술파이오니아사업(RS-2023-00302145)으로 수행됐다. 이번 연구 결과는 국제 학술지 「Bioactive Materials」 (IF: 18.0, JCR 분야 상위 0.9%)에 게재됐다. * (논문명) Exploring the potential of laser-textured metal alloys: Fine-tuning vascular cells responses through in vitro and ex vivo analysis [그림 1] 금속 스텐트가 삽입된 혈관의 모식도 확장된 스텐트는 막힌 혈관 벽을 물리적으로 확장시키기에, 금속 표면과 혈관 구성 세포 간의 상호작용에 따라 치유가 촉진되거나 부작용이 발생할 수 있음 [그림 2] 나노초 레이저 텍스처링 조건에 따른 금속 표면의 나노/마이크로 구조 제어 파장 1064 nm, 펄스폭 4 ns, 펄스 반복횟수 800 kHz의 레이저를 0.5 m/s의 속도로 의료용 금속 표면에 조사를 하게 되면 반복 횟수에 따라 나노미터에서부터 마이크로미터 거칠기의 주름을 갖는 표면 구조를 생성할 수 있음 [그림 3] 나노초 레이저 텍스처링된 금속 표면에서의 탈분화 및 증식이 억제되는 평활근 세포 나노초 레이저 텍스처링 조건에 따른 금속 표면의 나노/마이크로 구조 제어를 통해 일반 금속 스텐트와 혈관 구성세포간의 상호작용을 제어할 수 있음. 평활근 세포의 탈분화를 억제하여 이동 및 증식을 억제할 수 있음 [그림 4] 태아 마우스 중족골 분석을 통해 나노초 레이저 텍스처링된 금속 표면에서의 신생혈관 형성 분석 나노초 레이저 텍스처링 조건에 따른 금속 표면의 나노/마이크로 구조 제어를 통해 일반 금속 스텐트와 혈관 구성세포간의 상호작용을 제어할 수 있음. 신생혈관 형성을 촉진함
심혈관 질환의 스텐트 시술 부작용, 새로운 레이저 패터닝 기술만으로 해결한다.
심혈관 질환의 스텐트 시술 부작용, 새로운 레이저 패터닝 기술만으로 해결한다. - 약물 부작용 없이 혈관 내 세포 반응을 제어하는 혁신적 스텐트 표면 기술 - 레이저 가공 기술을 활용한 금속 소재 정밀 패턴 가공 및 빠른 실용화 가능 한국과학기술연구원(KIST, 원장 오상록) 생체재료연구센터 전호정 센터장, 한형섭 박사, KIST유럽연구소 전인동 박사 공동연구팀은 레이저 패터닝 기술로 혈관 내피세포의 성장을 촉진하고 평활근 세포의 탈분화를 억제하는 새로운 스텐트 표면처리 기술을 개발했다. 이 기술은 세포 종류별로 나노 패턴에 대한 반응 차이를 조절할 수 있으며 화학적 코팅 방식과 함께 활용 시 더 큰 혈관 회복 효과를 기대할 수 있다고 밝혔다. 우리나라가 초고령 사회로의 진입을 앞둔 가운데, 고령 인구의 혈관질환 발생이 늘어나고 있다. 이에 따라 좁아지거나 막힌 혈관을 확장해 혈류를 원활히 하는 관 모양의 의료기기인 치료용 스텐트의 중요성이 커지고 있다. 그러나 기존 금속 스텐트의 경우, 혈관 확장을 물리적으로 유지하지만 1개월 후 평활근 세포의 과도한 증식으로 재협착이 발생할 수 있다. 이를 해결하기 위해 약물 방출형 스텐트가 가장 많이 사용되고 있으나 혈관 재내피화를 억제해 혈전이 쌓일 위험을 높여 환자가 혈전용해제를 복용해야 하는 불편함이 있었다. 이러한 단점을 극복하기 위해 스텐트 표면에 단백질이나 핵산 등 활성 분자를 코팅하는 방식의 연구가 활발히 진행 중이다. 그러나 이러한 활성 분자들은 개별적인 기능만을 수행하기 때문에 혈관 내피세포를 빠르게 증식시키는 데 한계가 있다. 연구팀은 평활근 세포의 성장은 억제하면서 혈관 내피화를 촉진하기 위해 나노초 레이저 텍스처링 기술로 니켈-티타늄 합금 표면에 나노‧마이크로 주름 패턴을 형성했다. 스텐트 시술로 손상된 혈관 내벽에서 평활근 세포가 혈관 안으로 이동하는 과정에서 형태가 변하게 되는데, 레이저로 만든 주름 패턴은 평활근 세포의 길쭉한 형태를 유지할 수 있어 재협착을 방지한다. 또한, 주름 패턴의 영향으로 세포 간의 부착이 증가해 혈관 내벽을 재형성하는 재내피화까지 촉진할 수 있었다. 연구진은 혈관 기능의 회복 효과를 검증하기 위해 혈관 세포 및 태아 동물 뼈를 활용한 신생혈관 분석을 수행했다. 레이저 텍스처링으로 가공된 금속 표면이 혈관 내피세포의 증식 환경을 조성하면서 평활근 세포의 탈분화 반응과 과도한 증식이 효과적으로 억제됐다. 특히, 주름 표면 위에서 평활근 세포가 자라는 정도가 약 75% 감소했으며, 신생혈관 생성 정도는 2배 이상 증가하는 것을 확인했다. 이번에 개발한 표면 패턴 기술은 금속 스텐트는 물론 생분해성 스텐트에도 적용할 수 있을 것으로 기대된다. 생분해성 스텐트에 적용하면 녹기 전에 재협착을 예방하고 내피화를 촉진해 환자의 치료를 돕고 합병증 위험을 줄일 수 있다. 레이저 패터닝 기술을 실제 치료 현장에 적용하기 위해 장기적 안전성과 효능 검증에 대한 임상시험을 추진할 계획이다. KIST 전호정 센터장은 “이번 연구는 표면 패턴을 통해 약물 없이도 혈관 세포 반응을 선택적으로 제어할 가능성을 확인한 연구”라며, “산업용으로 널리 활용되는 나노초 레이저를 사용해 스텐트 표면을 빠르고 정밀하게 가공할 수 있어 실용화와 공정 효율성을 높이는 데 장점이 있다”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 유상임) 지원으로 KIST 주요사업과 미래유망융합기술파이오니아사업(RS-2023-00302145)으로 수행됐다. 이번 연구 결과는 국제 학술지 「Bioactive Materials」 (IF: 18.0, JCR 분야 상위 0.9%)에 게재됐다. * (논문명) Exploring the potential of laser-textured metal alloys: Fine-tuning vascular cells responses through in vitro and ex vivo analysis [그림 1] 금속 스텐트가 삽입된 혈관의 모식도 확장된 스텐트는 막힌 혈관 벽을 물리적으로 확장시키기에, 금속 표면과 혈관 구성 세포 간의 상호작용에 따라 치유가 촉진되거나 부작용이 발생할 수 있음 [그림 2] 나노초 레이저 텍스처링 조건에 따른 금속 표면의 나노/마이크로 구조 제어 파장 1064 nm, 펄스폭 4 ns, 펄스 반복횟수 800 kHz의 레이저를 0.5 m/s의 속도로 의료용 금속 표면에 조사를 하게 되면 반복 횟수에 따라 나노미터에서부터 마이크로미터 거칠기의 주름을 갖는 표면 구조를 생성할 수 있음 [그림 3] 나노초 레이저 텍스처링된 금속 표면에서의 탈분화 및 증식이 억제되는 평활근 세포 나노초 레이저 텍스처링 조건에 따른 금속 표면의 나노/마이크로 구조 제어를 통해 일반 금속 스텐트와 혈관 구성세포간의 상호작용을 제어할 수 있음. 평활근 세포의 탈분화를 억제하여 이동 및 증식을 억제할 수 있음 [그림 4] 태아 마우스 중족골 분석을 통해 나노초 레이저 텍스처링된 금속 표면에서의 신생혈관 형성 분석 나노초 레이저 텍스처링 조건에 따른 금속 표면의 나노/마이크로 구조 제어를 통해 일반 금속 스텐트와 혈관 구성세포간의 상호작용을 제어할 수 있음. 신생혈관 형성을 촉진함
심혈관 질환의 스텐트 시술 부작용, 새로운 레이저 패터닝 기술만으로 해결한다.
심혈관 질환의 스텐트 시술 부작용, 새로운 레이저 패터닝 기술만으로 해결한다. - 약물 부작용 없이 혈관 내 세포 반응을 제어하는 혁신적 스텐트 표면 기술 - 레이저 가공 기술을 활용한 금속 소재 정밀 패턴 가공 및 빠른 실용화 가능 한국과학기술연구원(KIST, 원장 오상록) 생체재료연구센터 전호정 센터장, 한형섭 박사, KIST유럽연구소 전인동 박사 공동연구팀은 레이저 패터닝 기술로 혈관 내피세포의 성장을 촉진하고 평활근 세포의 탈분화를 억제하는 새로운 스텐트 표면처리 기술을 개발했다. 이 기술은 세포 종류별로 나노 패턴에 대한 반응 차이를 조절할 수 있으며 화학적 코팅 방식과 함께 활용 시 더 큰 혈관 회복 효과를 기대할 수 있다고 밝혔다. 우리나라가 초고령 사회로의 진입을 앞둔 가운데, 고령 인구의 혈관질환 발생이 늘어나고 있다. 이에 따라 좁아지거나 막힌 혈관을 확장해 혈류를 원활히 하는 관 모양의 의료기기인 치료용 스텐트의 중요성이 커지고 있다. 그러나 기존 금속 스텐트의 경우, 혈관 확장을 물리적으로 유지하지만 1개월 후 평활근 세포의 과도한 증식으로 재협착이 발생할 수 있다. 이를 해결하기 위해 약물 방출형 스텐트가 가장 많이 사용되고 있으나 혈관 재내피화를 억제해 혈전이 쌓일 위험을 높여 환자가 혈전용해제를 복용해야 하는 불편함이 있었다. 이러한 단점을 극복하기 위해 스텐트 표면에 단백질이나 핵산 등 활성 분자를 코팅하는 방식의 연구가 활발히 진행 중이다. 그러나 이러한 활성 분자들은 개별적인 기능만을 수행하기 때문에 혈관 내피세포를 빠르게 증식시키는 데 한계가 있다. 연구팀은 평활근 세포의 성장은 억제하면서 혈관 내피화를 촉진하기 위해 나노초 레이저 텍스처링 기술로 니켈-티타늄 합금 표면에 나노‧마이크로 주름 패턴을 형성했다. 스텐트 시술로 손상된 혈관 내벽에서 평활근 세포가 혈관 안으로 이동하는 과정에서 형태가 변하게 되는데, 레이저로 만든 주름 패턴은 평활근 세포의 길쭉한 형태를 유지할 수 있어 재협착을 방지한다. 또한, 주름 패턴의 영향으로 세포 간의 부착이 증가해 혈관 내벽을 재형성하는 재내피화까지 촉진할 수 있었다. 연구진은 혈관 기능의 회복 효과를 검증하기 위해 혈관 세포 및 태아 동물 뼈를 활용한 신생혈관 분석을 수행했다. 레이저 텍스처링으로 가공된 금속 표면이 혈관 내피세포의 증식 환경을 조성하면서 평활근 세포의 탈분화 반응과 과도한 증식이 효과적으로 억제됐다. 특히, 주름 표면 위에서 평활근 세포가 자라는 정도가 약 75% 감소했으며, 신생혈관 생성 정도는 2배 이상 증가하는 것을 확인했다. 이번에 개발한 표면 패턴 기술은 금속 스텐트는 물론 생분해성 스텐트에도 적용할 수 있을 것으로 기대된다. 생분해성 스텐트에 적용하면 녹기 전에 재협착을 예방하고 내피화를 촉진해 환자의 치료를 돕고 합병증 위험을 줄일 수 있다. 레이저 패터닝 기술을 실제 치료 현장에 적용하기 위해 장기적 안전성과 효능 검증에 대한 임상시험을 추진할 계획이다. KIST 전호정 센터장은 “이번 연구는 표면 패턴을 통해 약물 없이도 혈관 세포 반응을 선택적으로 제어할 가능성을 확인한 연구”라며, “산업용으로 널리 활용되는 나노초 레이저를 사용해 스텐트 표면을 빠르고 정밀하게 가공할 수 있어 실용화와 공정 효율성을 높이는 데 장점이 있다”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 유상임) 지원으로 KIST 주요사업과 미래유망융합기술파이오니아사업(RS-2023-00302145)으로 수행됐다. 이번 연구 결과는 국제 학술지 「Bioactive Materials」 (IF: 18.0, JCR 분야 상위 0.9%)에 게재됐다. * (논문명) Exploring the potential of laser-textured metal alloys: Fine-tuning vascular cells responses through in vitro and ex vivo analysis [그림 1] 금속 스텐트가 삽입된 혈관의 모식도 확장된 스텐트는 막힌 혈관 벽을 물리적으로 확장시키기에, 금속 표면과 혈관 구성 세포 간의 상호작용에 따라 치유가 촉진되거나 부작용이 발생할 수 있음 [그림 2] 나노초 레이저 텍스처링 조건에 따른 금속 표면의 나노/마이크로 구조 제어 파장 1064 nm, 펄스폭 4 ns, 펄스 반복횟수 800 kHz의 레이저를 0.5 m/s의 속도로 의료용 금속 표면에 조사를 하게 되면 반복 횟수에 따라 나노미터에서부터 마이크로미터 거칠기의 주름을 갖는 표면 구조를 생성할 수 있음 [그림 3] 나노초 레이저 텍스처링된 금속 표면에서의 탈분화 및 증식이 억제되는 평활근 세포 나노초 레이저 텍스처링 조건에 따른 금속 표면의 나노/마이크로 구조 제어를 통해 일반 금속 스텐트와 혈관 구성세포간의 상호작용을 제어할 수 있음. 평활근 세포의 탈분화를 억제하여 이동 및 증식을 억제할 수 있음 [그림 4] 태아 마우스 중족골 분석을 통해 나노초 레이저 텍스처링된 금속 표면에서의 신생혈관 형성 분석 나노초 레이저 텍스처링 조건에 따른 금속 표면의 나노/마이크로 구조 제어를 통해 일반 금속 스텐트와 혈관 구성세포간의 상호작용을 제어할 수 있음. 신생혈관 형성을 촉진함
심혈관 질환의 스텐트 시술 부작용, 새로운 레이저 패터닝 기술만으로 해결한다.
심혈관 질환의 스텐트 시술 부작용, 새로운 레이저 패터닝 기술만으로 해결한다. - 약물 부작용 없이 혈관 내 세포 반응을 제어하는 혁신적 스텐트 표면 기술 - 레이저 가공 기술을 활용한 금속 소재 정밀 패턴 가공 및 빠른 실용화 가능 한국과학기술연구원(KIST, 원장 오상록) 생체재료연구센터 전호정 센터장, 한형섭 박사, KIST유럽연구소 전인동 박사 공동연구팀은 레이저 패터닝 기술로 혈관 내피세포의 성장을 촉진하고 평활근 세포의 탈분화를 억제하는 새로운 스텐트 표면처리 기술을 개발했다. 이 기술은 세포 종류별로 나노 패턴에 대한 반응 차이를 조절할 수 있으며 화학적 코팅 방식과 함께 활용 시 더 큰 혈관 회복 효과를 기대할 수 있다고 밝혔다. 우리나라가 초고령 사회로의 진입을 앞둔 가운데, 고령 인구의 혈관질환 발생이 늘어나고 있다. 이에 따라 좁아지거나 막힌 혈관을 확장해 혈류를 원활히 하는 관 모양의 의료기기인 치료용 스텐트의 중요성이 커지고 있다. 그러나 기존 금속 스텐트의 경우, 혈관 확장을 물리적으로 유지하지만 1개월 후 평활근 세포의 과도한 증식으로 재협착이 발생할 수 있다. 이를 해결하기 위해 약물 방출형 스텐트가 가장 많이 사용되고 있으나 혈관 재내피화를 억제해 혈전이 쌓일 위험을 높여 환자가 혈전용해제를 복용해야 하는 불편함이 있었다. 이러한 단점을 극복하기 위해 스텐트 표면에 단백질이나 핵산 등 활성 분자를 코팅하는 방식의 연구가 활발히 진행 중이다. 그러나 이러한 활성 분자들은 개별적인 기능만을 수행하기 때문에 혈관 내피세포를 빠르게 증식시키는 데 한계가 있다. 연구팀은 평활근 세포의 성장은 억제하면서 혈관 내피화를 촉진하기 위해 나노초 레이저 텍스처링 기술로 니켈-티타늄 합금 표면에 나노‧마이크로 주름 패턴을 형성했다. 스텐트 시술로 손상된 혈관 내벽에서 평활근 세포가 혈관 안으로 이동하는 과정에서 형태가 변하게 되는데, 레이저로 만든 주름 패턴은 평활근 세포의 길쭉한 형태를 유지할 수 있어 재협착을 방지한다. 또한, 주름 패턴의 영향으로 세포 간의 부착이 증가해 혈관 내벽을 재형성하는 재내피화까지 촉진할 수 있었다. 연구진은 혈관 기능의 회복 효과를 검증하기 위해 혈관 세포 및 태아 동물 뼈를 활용한 신생혈관 분석을 수행했다. 레이저 텍스처링으로 가공된 금속 표면이 혈관 내피세포의 증식 환경을 조성하면서 평활근 세포의 탈분화 반응과 과도한 증식이 효과적으로 억제됐다. 특히, 주름 표면 위에서 평활근 세포가 자라는 정도가 약 75% 감소했으며, 신생혈관 생성 정도는 2배 이상 증가하는 것을 확인했다. 이번에 개발한 표면 패턴 기술은 금속 스텐트는 물론 생분해성 스텐트에도 적용할 수 있을 것으로 기대된다. 생분해성 스텐트에 적용하면 녹기 전에 재협착을 예방하고 내피화를 촉진해 환자의 치료를 돕고 합병증 위험을 줄일 수 있다. 레이저 패터닝 기술을 실제 치료 현장에 적용하기 위해 장기적 안전성과 효능 검증에 대한 임상시험을 추진할 계획이다. KIST 전호정 센터장은 “이번 연구는 표면 패턴을 통해 약물 없이도 혈관 세포 반응을 선택적으로 제어할 가능성을 확인한 연구”라며, “산업용으로 널리 활용되는 나노초 레이저를 사용해 스텐트 표면을 빠르고 정밀하게 가공할 수 있어 실용화와 공정 효율성을 높이는 데 장점이 있다”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 유상임) 지원으로 KIST 주요사업과 미래유망융합기술파이오니아사업(RS-2023-00302145)으로 수행됐다. 이번 연구 결과는 국제 학술지 「Bioactive Materials」 (IF: 18.0, JCR 분야 상위 0.9%)에 게재됐다. * (논문명) Exploring the potential of laser-textured metal alloys: Fine-tuning vascular cells responses through in vitro and ex vivo analysis [그림 1] 금속 스텐트가 삽입된 혈관의 모식도 확장된 스텐트는 막힌 혈관 벽을 물리적으로 확장시키기에, 금속 표면과 혈관 구성 세포 간의 상호작용에 따라 치유가 촉진되거나 부작용이 발생할 수 있음 [그림 2] 나노초 레이저 텍스처링 조건에 따른 금속 표면의 나노/마이크로 구조 제어 파장 1064 nm, 펄스폭 4 ns, 펄스 반복횟수 800 kHz의 레이저를 0.5 m/s의 속도로 의료용 금속 표면에 조사를 하게 되면 반복 횟수에 따라 나노미터에서부터 마이크로미터 거칠기의 주름을 갖는 표면 구조를 생성할 수 있음 [그림 3] 나노초 레이저 텍스처링된 금속 표면에서의 탈분화 및 증식이 억제되는 평활근 세포 나노초 레이저 텍스처링 조건에 따른 금속 표면의 나노/마이크로 구조 제어를 통해 일반 금속 스텐트와 혈관 구성세포간의 상호작용을 제어할 수 있음. 평활근 세포의 탈분화를 억제하여 이동 및 증식을 억제할 수 있음 [그림 4] 태아 마우스 중족골 분석을 통해 나노초 레이저 텍스처링된 금속 표면에서의 신생혈관 형성 분석 나노초 레이저 텍스처링 조건에 따른 금속 표면의 나노/마이크로 구조 제어를 통해 일반 금속 스텐트와 혈관 구성세포간의 상호작용을 제어할 수 있음. 신생혈관 형성을 촉진함
심혈관 질환의 스텐트 시술 부작용, 새로운 레이저 패터닝 기술만으로 해결한다.
심혈관 질환의 스텐트 시술 부작용, 새로운 레이저 패터닝 기술만으로 해결한다. - 약물 부작용 없이 혈관 내 세포 반응을 제어하는 혁신적 스텐트 표면 기술 - 레이저 가공 기술을 활용한 금속 소재 정밀 패턴 가공 및 빠른 실용화 가능 한국과학기술연구원(KIST, 원장 오상록) 생체재료연구센터 전호정 센터장, 한형섭 박사, KIST유럽연구소 전인동 박사 공동연구팀은 레이저 패터닝 기술로 혈관 내피세포의 성장을 촉진하고 평활근 세포의 탈분화를 억제하는 새로운 스텐트 표면처리 기술을 개발했다. 이 기술은 세포 종류별로 나노 패턴에 대한 반응 차이를 조절할 수 있으며 화학적 코팅 방식과 함께 활용 시 더 큰 혈관 회복 효과를 기대할 수 있다고 밝혔다. 우리나라가 초고령 사회로의 진입을 앞둔 가운데, 고령 인구의 혈관질환 발생이 늘어나고 있다. 이에 따라 좁아지거나 막힌 혈관을 확장해 혈류를 원활히 하는 관 모양의 의료기기인 치료용 스텐트의 중요성이 커지고 있다. 그러나 기존 금속 스텐트의 경우, 혈관 확장을 물리적으로 유지하지만 1개월 후 평활근 세포의 과도한 증식으로 재협착이 발생할 수 있다. 이를 해결하기 위해 약물 방출형 스텐트가 가장 많이 사용되고 있으나 혈관 재내피화를 억제해 혈전이 쌓일 위험을 높여 환자가 혈전용해제를 복용해야 하는 불편함이 있었다. 이러한 단점을 극복하기 위해 스텐트 표면에 단백질이나 핵산 등 활성 분자를 코팅하는 방식의 연구가 활발히 진행 중이다. 그러나 이러한 활성 분자들은 개별적인 기능만을 수행하기 때문에 혈관 내피세포를 빠르게 증식시키는 데 한계가 있다. 연구팀은 평활근 세포의 성장은 억제하면서 혈관 내피화를 촉진하기 위해 나노초 레이저 텍스처링 기술로 니켈-티타늄 합금 표면에 나노‧마이크로 주름 패턴을 형성했다. 스텐트 시술로 손상된 혈관 내벽에서 평활근 세포가 혈관 안으로 이동하는 과정에서 형태가 변하게 되는데, 레이저로 만든 주름 패턴은 평활근 세포의 길쭉한 형태를 유지할 수 있어 재협착을 방지한다. 또한, 주름 패턴의 영향으로 세포 간의 부착이 증가해 혈관 내벽을 재형성하는 재내피화까지 촉진할 수 있었다. 연구진은 혈관 기능의 회복 효과를 검증하기 위해 혈관 세포 및 태아 동물 뼈를 활용한 신생혈관 분석을 수행했다. 레이저 텍스처링으로 가공된 금속 표면이 혈관 내피세포의 증식 환경을 조성하면서 평활근 세포의 탈분화 반응과 과도한 증식이 효과적으로 억제됐다. 특히, 주름 표면 위에서 평활근 세포가 자라는 정도가 약 75% 감소했으며, 신생혈관 생성 정도는 2배 이상 증가하는 것을 확인했다. 이번에 개발한 표면 패턴 기술은 금속 스텐트는 물론 생분해성 스텐트에도 적용할 수 있을 것으로 기대된다. 생분해성 스텐트에 적용하면 녹기 전에 재협착을 예방하고 내피화를 촉진해 환자의 치료를 돕고 합병증 위험을 줄일 수 있다. 레이저 패터닝 기술을 실제 치료 현장에 적용하기 위해 장기적 안전성과 효능 검증에 대한 임상시험을 추진할 계획이다. KIST 전호정 센터장은 “이번 연구는 표면 패턴을 통해 약물 없이도 혈관 세포 반응을 선택적으로 제어할 가능성을 확인한 연구”라며, “산업용으로 널리 활용되는 나노초 레이저를 사용해 스텐트 표면을 빠르고 정밀하게 가공할 수 있어 실용화와 공정 효율성을 높이는 데 장점이 있다”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 유상임) 지원으로 KIST 주요사업과 미래유망융합기술파이오니아사업(RS-2023-00302145)으로 수행됐다. 이번 연구 결과는 국제 학술지 「Bioactive Materials」 (IF: 18.0, JCR 분야 상위 0.9%)에 게재됐다. * (논문명) Exploring the potential of laser-textured metal alloys: Fine-tuning vascular cells responses through in vitro and ex vivo analysis [그림 1] 금속 스텐트가 삽입된 혈관의 모식도 확장된 스텐트는 막힌 혈관 벽을 물리적으로 확장시키기에, 금속 표면과 혈관 구성 세포 간의 상호작용에 따라 치유가 촉진되거나 부작용이 발생할 수 있음 [그림 2] 나노초 레이저 텍스처링 조건에 따른 금속 표면의 나노/마이크로 구조 제어 파장 1064 nm, 펄스폭 4 ns, 펄스 반복횟수 800 kHz의 레이저를 0.5 m/s의 속도로 의료용 금속 표면에 조사를 하게 되면 반복 횟수에 따라 나노미터에서부터 마이크로미터 거칠기의 주름을 갖는 표면 구조를 생성할 수 있음 [그림 3] 나노초 레이저 텍스처링된 금속 표면에서의 탈분화 및 증식이 억제되는 평활근 세포 나노초 레이저 텍스처링 조건에 따른 금속 표면의 나노/마이크로 구조 제어를 통해 일반 금속 스텐트와 혈관 구성세포간의 상호작용을 제어할 수 있음. 평활근 세포의 탈분화를 억제하여 이동 및 증식을 억제할 수 있음 [그림 4] 태아 마우스 중족골 분석을 통해 나노초 레이저 텍스처링된 금속 표면에서의 신생혈관 형성 분석 나노초 레이저 텍스처링 조건에 따른 금속 표면의 나노/마이크로 구조 제어를 통해 일반 금속 스텐트와 혈관 구성세포간의 상호작용을 제어할 수 있음. 신생혈관 형성을 촉진함
심혈관 질환의 스텐트 시술 부작용, 새로운 레이저 패터닝 기술만으로 해결한다.
심혈관 질환의 스텐트 시술 부작용, 새로운 레이저 패터닝 기술만으로 해결한다. - 약물 부작용 없이 혈관 내 세포 반응을 제어하는 혁신적 스텐트 표면 기술 - 레이저 가공 기술을 활용한 금속 소재 정밀 패턴 가공 및 빠른 실용화 가능 한국과학기술연구원(KIST, 원장 오상록) 생체재료연구센터 전호정 센터장, 한형섭 박사, KIST유럽연구소 전인동 박사 공동연구팀은 레이저 패터닝 기술로 혈관 내피세포의 성장을 촉진하고 평활근 세포의 탈분화를 억제하는 새로운 스텐트 표면처리 기술을 개발했다. 이 기술은 세포 종류별로 나노 패턴에 대한 반응 차이를 조절할 수 있으며 화학적 코팅 방식과 함께 활용 시 더 큰 혈관 회복 효과를 기대할 수 있다고 밝혔다. 우리나라가 초고령 사회로의 진입을 앞둔 가운데, 고령 인구의 혈관질환 발생이 늘어나고 있다. 이에 따라 좁아지거나 막힌 혈관을 확장해 혈류를 원활히 하는 관 모양의 의료기기인 치료용 스텐트의 중요성이 커지고 있다. 그러나 기존 금속 스텐트의 경우, 혈관 확장을 물리적으로 유지하지만 1개월 후 평활근 세포의 과도한 증식으로 재협착이 발생할 수 있다. 이를 해결하기 위해 약물 방출형 스텐트가 가장 많이 사용되고 있으나 혈관 재내피화를 억제해 혈전이 쌓일 위험을 높여 환자가 혈전용해제를 복용해야 하는 불편함이 있었다. 이러한 단점을 극복하기 위해 스텐트 표면에 단백질이나 핵산 등 활성 분자를 코팅하는 방식의 연구가 활발히 진행 중이다. 그러나 이러한 활성 분자들은 개별적인 기능만을 수행하기 때문에 혈관 내피세포를 빠르게 증식시키는 데 한계가 있다. 연구팀은 평활근 세포의 성장은 억제하면서 혈관 내피화를 촉진하기 위해 나노초 레이저 텍스처링 기술로 니켈-티타늄 합금 표면에 나노‧마이크로 주름 패턴을 형성했다. 스텐트 시술로 손상된 혈관 내벽에서 평활근 세포가 혈관 안으로 이동하는 과정에서 형태가 변하게 되는데, 레이저로 만든 주름 패턴은 평활근 세포의 길쭉한 형태를 유지할 수 있어 재협착을 방지한다. 또한, 주름 패턴의 영향으로 세포 간의 부착이 증가해 혈관 내벽을 재형성하는 재내피화까지 촉진할 수 있었다. 연구진은 혈관 기능의 회복 효과를 검증하기 위해 혈관 세포 및 태아 동물 뼈를 활용한 신생혈관 분석을 수행했다. 레이저 텍스처링으로 가공된 금속 표면이 혈관 내피세포의 증식 환경을 조성하면서 평활근 세포의 탈분화 반응과 과도한 증식이 효과적으로 억제됐다. 특히, 주름 표면 위에서 평활근 세포가 자라는 정도가 약 75% 감소했으며, 신생혈관 생성 정도는 2배 이상 증가하는 것을 확인했다. 이번에 개발한 표면 패턴 기술은 금속 스텐트는 물론 생분해성 스텐트에도 적용할 수 있을 것으로 기대된다. 생분해성 스텐트에 적용하면 녹기 전에 재협착을 예방하고 내피화를 촉진해 환자의 치료를 돕고 합병증 위험을 줄일 수 있다. 레이저 패터닝 기술을 실제 치료 현장에 적용하기 위해 장기적 안전성과 효능 검증에 대한 임상시험을 추진할 계획이다. KIST 전호정 센터장은 “이번 연구는 표면 패턴을 통해 약물 없이도 혈관 세포 반응을 선택적으로 제어할 가능성을 확인한 연구”라며, “산업용으로 널리 활용되는 나노초 레이저를 사용해 스텐트 표면을 빠르고 정밀하게 가공할 수 있어 실용화와 공정 효율성을 높이는 데 장점이 있다”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 유상임) 지원으로 KIST 주요사업과 미래유망융합기술파이오니아사업(RS-2023-00302145)으로 수행됐다. 이번 연구 결과는 국제 학술지 「Bioactive Materials」 (IF: 18.0, JCR 분야 상위 0.9%)에 게재됐다. * (논문명) Exploring the potential of laser-textured metal alloys: Fine-tuning vascular cells responses through in vitro and ex vivo analysis [그림 1] 금속 스텐트가 삽입된 혈관의 모식도 확장된 스텐트는 막힌 혈관 벽을 물리적으로 확장시키기에, 금속 표면과 혈관 구성 세포 간의 상호작용에 따라 치유가 촉진되거나 부작용이 발생할 수 있음 [그림 2] 나노초 레이저 텍스처링 조건에 따른 금속 표면의 나노/마이크로 구조 제어 파장 1064 nm, 펄스폭 4 ns, 펄스 반복횟수 800 kHz의 레이저를 0.5 m/s의 속도로 의료용 금속 표면에 조사를 하게 되면 반복 횟수에 따라 나노미터에서부터 마이크로미터 거칠기의 주름을 갖는 표면 구조를 생성할 수 있음 [그림 3] 나노초 레이저 텍스처링된 금속 표면에서의 탈분화 및 증식이 억제되는 평활근 세포 나노초 레이저 텍스처링 조건에 따른 금속 표면의 나노/마이크로 구조 제어를 통해 일반 금속 스텐트와 혈관 구성세포간의 상호작용을 제어할 수 있음. 평활근 세포의 탈분화를 억제하여 이동 및 증식을 억제할 수 있음 [그림 4] 태아 마우스 중족골 분석을 통해 나노초 레이저 텍스처링된 금속 표면에서의 신생혈관 형성 분석 나노초 레이저 텍스처링 조건에 따른 금속 표면의 나노/마이크로 구조 제어를 통해 일반 금속 스텐트와 혈관 구성세포간의 상호작용을 제어할 수 있음. 신생혈관 형성을 촉진함
심혈관 질환의 스텐트 시술 부작용, 새로운 레이저 패터닝 기술만으로 해결한다.
심혈관 질환의 스텐트 시술 부작용, 새로운 레이저 패터닝 기술만으로 해결한다. - 약물 부작용 없이 혈관 내 세포 반응을 제어하는 혁신적 스텐트 표면 기술 - 레이저 가공 기술을 활용한 금속 소재 정밀 패턴 가공 및 빠른 실용화 가능 한국과학기술연구원(KIST, 원장 오상록) 생체재료연구센터 전호정 센터장, 한형섭 박사, KIST유럽연구소 전인동 박사 공동연구팀은 레이저 패터닝 기술로 혈관 내피세포의 성장을 촉진하고 평활근 세포의 탈분화를 억제하는 새로운 스텐트 표면처리 기술을 개발했다. 이 기술은 세포 종류별로 나노 패턴에 대한 반응 차이를 조절할 수 있으며 화학적 코팅 방식과 함께 활용 시 더 큰 혈관 회복 효과를 기대할 수 있다고 밝혔다. 우리나라가 초고령 사회로의 진입을 앞둔 가운데, 고령 인구의 혈관질환 발생이 늘어나고 있다. 이에 따라 좁아지거나 막힌 혈관을 확장해 혈류를 원활히 하는 관 모양의 의료기기인 치료용 스텐트의 중요성이 커지고 있다. 그러나 기존 금속 스텐트의 경우, 혈관 확장을 물리적으로 유지하지만 1개월 후 평활근 세포의 과도한 증식으로 재협착이 발생할 수 있다. 이를 해결하기 위해 약물 방출형 스텐트가 가장 많이 사용되고 있으나 혈관 재내피화를 억제해 혈전이 쌓일 위험을 높여 환자가 혈전용해제를 복용해야 하는 불편함이 있었다. 이러한 단점을 극복하기 위해 스텐트 표면에 단백질이나 핵산 등 활성 분자를 코팅하는 방식의 연구가 활발히 진행 중이다. 그러나 이러한 활성 분자들은 개별적인 기능만을 수행하기 때문에 혈관 내피세포를 빠르게 증식시키는 데 한계가 있다. 연구팀은 평활근 세포의 성장은 억제하면서 혈관 내피화를 촉진하기 위해 나노초 레이저 텍스처링 기술로 니켈-티타늄 합금 표면에 나노‧마이크로 주름 패턴을 형성했다. 스텐트 시술로 손상된 혈관 내벽에서 평활근 세포가 혈관 안으로 이동하는 과정에서 형태가 변하게 되는데, 레이저로 만든 주름 패턴은 평활근 세포의 길쭉한 형태를 유지할 수 있어 재협착을 방지한다. 또한, 주름 패턴의 영향으로 세포 간의 부착이 증가해 혈관 내벽을 재형성하는 재내피화까지 촉진할 수 있었다. 연구진은 혈관 기능의 회복 효과를 검증하기 위해 혈관 세포 및 태아 동물 뼈를 활용한 신생혈관 분석을 수행했다. 레이저 텍스처링으로 가공된 금속 표면이 혈관 내피세포의 증식 환경을 조성하면서 평활근 세포의 탈분화 반응과 과도한 증식이 효과적으로 억제됐다. 특히, 주름 표면 위에서 평활근 세포가 자라는 정도가 약 75% 감소했으며, 신생혈관 생성 정도는 2배 이상 증가하는 것을 확인했다. 이번에 개발한 표면 패턴 기술은 금속 스텐트는 물론 생분해성 스텐트에도 적용할 수 있을 것으로 기대된다. 생분해성 스텐트에 적용하면 녹기 전에 재협착을 예방하고 내피화를 촉진해 환자의 치료를 돕고 합병증 위험을 줄일 수 있다. 레이저 패터닝 기술을 실제 치료 현장에 적용하기 위해 장기적 안전성과 효능 검증에 대한 임상시험을 추진할 계획이다. KIST 전호정 센터장은 “이번 연구는 표면 패턴을 통해 약물 없이도 혈관 세포 반응을 선택적으로 제어할 가능성을 확인한 연구”라며, “산업용으로 널리 활용되는 나노초 레이저를 사용해 스텐트 표면을 빠르고 정밀하게 가공할 수 있어 실용화와 공정 효율성을 높이는 데 장점이 있다”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 유상임) 지원으로 KIST 주요사업과 미래유망융합기술파이오니아사업(RS-2023-00302145)으로 수행됐다. 이번 연구 결과는 국제 학술지 「Bioactive Materials」 (IF: 18.0, JCR 분야 상위 0.9%)에 게재됐다. * (논문명) Exploring the potential of laser-textured metal alloys: Fine-tuning vascular cells responses through in vitro and ex vivo analysis [그림 1] 금속 스텐트가 삽입된 혈관의 모식도 확장된 스텐트는 막힌 혈관 벽을 물리적으로 확장시키기에, 금속 표면과 혈관 구성 세포 간의 상호작용에 따라 치유가 촉진되거나 부작용이 발생할 수 있음 [그림 2] 나노초 레이저 텍스처링 조건에 따른 금속 표면의 나노/마이크로 구조 제어 파장 1064 nm, 펄스폭 4 ns, 펄스 반복횟수 800 kHz의 레이저를 0.5 m/s의 속도로 의료용 금속 표면에 조사를 하게 되면 반복 횟수에 따라 나노미터에서부터 마이크로미터 거칠기의 주름을 갖는 표면 구조를 생성할 수 있음 [그림 3] 나노초 레이저 텍스처링된 금속 표면에서의 탈분화 및 증식이 억제되는 평활근 세포 나노초 레이저 텍스처링 조건에 따른 금속 표면의 나노/마이크로 구조 제어를 통해 일반 금속 스텐트와 혈관 구성세포간의 상호작용을 제어할 수 있음. 평활근 세포의 탈분화를 억제하여 이동 및 증식을 억제할 수 있음 [그림 4] 태아 마우스 중족골 분석을 통해 나노초 레이저 텍스처링된 금속 표면에서의 신생혈관 형성 분석 나노초 레이저 텍스처링 조건에 따른 금속 표면의 나노/마이크로 구조 제어를 통해 일반 금속 스텐트와 혈관 구성세포간의 상호작용을 제어할 수 있음. 신생혈관 형성을 촉진함
물에 떠 있는 미세 플라스틱, 수상 드론으로 잡는다
물에 떠 있는 미세 플라스틱, 수상 드론으로 잡는다 - 친수 톱니 기술 접목 수상 드론 이용한 미세 플라스틱 회수 기술 개발 양식장, 가정용 수처리 등 확장 가능성으로 다양한 활용 기대 최근 수돗물과 생수병은 물론, 강, 호수, 바다 등에서 미세 플라스틱이 검출되며 그 심각성이 널리 알려졌다. 기존의 수처리용 필터링 기술은 크기와 모양이 다양한 미세 플라스틱을 효과적으로 걸러 내기 어렵고, 쉽게 막히는 문제가 있다. 게다가 필터가 막히지 않더라도 작은 입자를 회수하려면 필터망을 매우 촘촘하게 설계해서 차압이 크게 발생하게 되어, 필터 효율이 지나치게 낮아지는 문제가 발생한다. 더욱이 미세플라스틱 오염이 심해지고 있는 호수, 강이나 바다와 같은 열린 공간에서는 사용할 수 없다는 단점을 가져서 실효성이 많이 떨어졌다. 한국과학기술연구원(KIST) 극한소재연구센터 김성진·문명운 박사 연구팀은 새로운 차원의 미세 플라스틱 제거 기술을 개발해, 문제 해결에 중요한 전환점을 제시했다. 이들은 물의 표면장력을 활용한 친수성 톱니 구조를 기반으로 미세 플라스틱을 효율적으로 제거할 수 있는 수상 드론 기술을 구현했다. 연구팀이 개발한 기술의 핵심은 친수성 톱니 구조에 있다. 이 구조는 물과의 친화력으로 인해 톱니 구조 사이에 형성되는 물막(Water bridge)을 생성하며, 물의 표면장력을 극대화시켜 미세 플라스틱을 톱니 사이에 부착시키는 역할을 한다. 이 원리를 활용하면 1마이크로미터(μm)에서 최대 4mm 크기까지 다양한 크기와 밀도의 미세 플라스틱을 걸러낼 수 있다. 이를 통해 기존의 필터링 기술이 크기와 모양의 한계로 인해 효과적으로 작동하지 못했던 문제를 개선하며, 필터의 막힘 현상 없이 안정적인 제거가 가능해진다. 이 기술은 다양한 미세 플라스틱(Expanded Polystyrene, Polypropylene, Polyethylene 등)을 대상으로 80% 이상의 회수 효율을 보였다. 특히, 수상 드론에 친수성 톱니 구조를 접목해 바다, 호수, 강 등 넓은 수역에서도 실시간으로 미세 플라스틱을 제거할 수 있다. 드론은 가정용 로봇청소기처럼 자율적으로 이동하며 수질을 정화할 수 있어, 기존 고정형 시스템의 한계를 넘어선 활용성을 보여준다. 문명운 박사는 "이번 기술은 수상 드론뿐만 아니라 양식장 수처리 필터와 같은 고정형 시스템에도 적용 가능하다"며, "가정용 수처리 필터 장치로 확장해 개인이 일상에서 사용할 수 있는 형태로도 개발할 수 있다"고 밝혔다. 본 연구는 과학기술정보통신부(장관 유상임)의 지원을 받아 KIST 주요사업 및 해양경찰청사업(KIMST-20210584)으로 수행됐다. 이번 연구 성과는 국제 학술지 「Advanced science」 (IF 14.3, JCR 분야 8.2%)에 최신 호에 게재됐다. * (논문명) Capillary skimming of floating microplastics via a water-bridged ratchet [그림 1] MP (MP, 마이크로 플라스틱) 볼에 대한 친수성 톱니의 스키밍 메커니즘 인접한 오목한 meniscus의 존재는 치리오스 효과를 유발하여 MP 볼이 자발적으로 톱니 쪽으로 끌리게 만듭니다. 도식에서는 물 meniscus의 주기적인 변형과 함께 MP 볼의 스키밍 과정을 보여줍니다. 스키밍된 MP 볼은 이후 모세관 접착력에 의해 물로 연결된 톱니 내에 (water bridge에 의해) 단단히 고정됩니다. [그림 2] 다양한 유형의 MP 회수를 위한 톱니 드럼의 프로토타입 (A) 실험 이미지에서는 P = H = 6mm, 드럼 직경이 60mm인 톱니 구조 드럼을 사용한 MP 스키밍 과정을 보여줍니다. 이 드럼은 밀리미터 크기의 PE 펠릿과 마이크로미터 크기의 PE 입자를 스키밍합니다. (B) 톱니 구조 드럼이 수조 오른쪽에 위치한 모든 MP를 제거한 후, MP가 i) 크기 2-4 mm의 PE 펠릿이든, ii) 1-2000 μm 범위의 PE 입자(C)이든 관계없이 이를 왼쪽으로 방출하는 모습을 보여줍니다. (D) 톱니 구조 드럼이 다섯 가지 다른 MP에 대해 세 가지 드럼 회전 속도에서 보이는 회수율을 나타냅니다. [그림 3] 친수 톱니 기술이 접목된 수상 드론 (해양 로봇 청소기 프로토타입) 연속 이미지는 톱니 드럼이 장착된 실험실 규모의 프로토타입이 전진하면서 다양한 크기의 MP를 스키밍하는 모습을 보여줍니다. (아래, 왼쪽 이미지) 개방된 바다를 항해하기 위한 수상 드론형 해양 로봇 청소기. (아래, 오른쪽 이미지) 선착장이나 해안가와 가까운 지역을 수동으로 청소하기 위한 핸드-헬드 (수동형,휴대용) 타입.