검색결과
게시물 키워드""에 대한 9074개의 검색결과를 찾았습니다.
페인트처럼 칠해서 만들 수 있는 태양전지, 실험실 밖으로 나온다
- 대면적 용액공정 태양전지 핵심 소재 설계를 위한 원리 규명 - 향후 플라스틱 기반의 태양전지 페인트 기술로 활용 기대 국내 연구진이 태양전지 원료의 용액을 코팅 후 고체화되는 속도를 제어하는 방법으로 고효율 용액공정 유기태양전지의 대면적화에 성공했다. 한국과학기술연구원(KIST, 원장 윤석진) 광전하이브리드연구센터 손해정 박사팀은 용액 공정상에서 유기태양전지 소재의 작은 면적과 큰 면적에서 필름 형성 기작의 차이점을 규명하고 이를 공정 기술상의 해결을 통해 고효율 유기태양전지 대면적화 기술을 개발했다고 밝혔다. 태양전지 소재를 페인트처럼 만들어 건물이나 자동차 등 원하는 공간에 칠하는 방식으로 쉽게 만들고, 전기를 자급자족하게 할 수 있다면 세계 에너지 빈곤층에 저가의 친환경에너지 공급이 가능해질 것이다. 그뿐만 아니라 도심 건물에 태양광 설치를 위한 공간 활용이 쉬워지고, 이상적으로는 필요시에 페인트를 덧바르는 형태로 태양전지 패널을 유지 보수할 수 있다. 이러한 태양전지 소재의 용액을 코팅하는 방식을 이용한 태양전지 생산 기술인 용액공정 태양전지는 전기를 생산하는 활성 영역이 매우 작은(0.1㎠ 이하) 실험실 수준에 머물러 있다. 실질적으로 전력생산이 가능한 넓은 면적으로 적용하면 소재와 공정에서 오는 한계로 태양전지의 성능감소와 재현성 문제가 있어 상용화에 걸림돌이 되고 있다. KIST 손해정 박사팀은 상용화된 유기 소재가 쉽게 결정화되는 성질을 갖고 있어 대면적 용액공정에 부적합하다는 사실을 밝혔다. 산업용으로 쓰이는 대면적 용액공정은 태양전지 소재가 녹아 있는 용매가 증발하여 필름이 형성되는 속도가 느리기 때문에, 뭉침 등의 현상이 일어나 태양전지의 효율이 떨어지게 된다. 반면에 실험실 연구 단위에서 쓰이는 작은 면적용 공정인 스핀 코팅 방법의 경우 필름 형성 과정에서 필름을 빠르게 회전시켜 용매의 증발을 빠르게 진행시키기 때문에 이런 문제점 없이 고효율의 필름을 형성할 수 있다. KIST 연구진은 위 사실을 바탕으로 대면적 용액공정 방식에서 코팅 공정 후 용매의 증발속도를 제어하여 태양전지 성능에 최적화된 필름을 형성, 고성능 대면적 유기태양전지를 개발했다. 그 결과, 기존보다 태양전지 광전변환효율이 30% 상승한 9.6%의 고효율 대면적 유기태양전지 기술을 구현하였다. KIST 손해정 박사는 “고품질의 대면적 용액공정이 가능한 태양전지 소재의 핵심 디자인 원리를 제안함으로써 향후 용액공정 태양전지 개발이 가속화될 것으로 예상된다.”라고 말하며, “차세대 용액공정 태양전지의 고효율화뿐만 아니라 상용화에 필요한 대면적 제조를 위한 태양전지 소재의 핵심기술 개발에 기여하였다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 연구재단 중견연구자지원사업으로 수행되었으며, 연구 결과는 에너지 분야의 국제학술지 ‘Nano Energy’(IF: 16.602, JCR 분야 상위 4.088%) 최신 호에 게재되었다. * (논문명) ‘Development of highly efficient large area organic photovoltaic module: Effects of non-fullerene acceptor’ - (제 1저자) 한국과학기술연구원 박소현 학생연구원 - (제 1저자) 한국과학기술연구원 박성민 박사후연구원 - (교신저자) 한국과학기술연구원 손해정 책임연구원 <그림설명>
페인트처럼 칠해서 만들 수 있는 태양전지, 실험실 밖으로 나온다
- 대면적 용액공정 태양전지 핵심 소재 설계를 위한 원리 규명 - 향후 플라스틱 기반의 태양전지 페인트 기술로 활용 기대 국내 연구진이 태양전지 원료의 용액을 코팅 후 고체화되는 속도를 제어하는 방법으로 고효율 용액공정 유기태양전지의 대면적화에 성공했다. 한국과학기술연구원(KIST, 원장 윤석진) 광전하이브리드연구센터 손해정 박사팀은 용액 공정상에서 유기태양전지 소재의 작은 면적과 큰 면적에서 필름 형성 기작의 차이점을 규명하고 이를 공정 기술상의 해결을 통해 고효율 유기태양전지 대면적화 기술을 개발했다고 밝혔다. 태양전지 소재를 페인트처럼 만들어 건물이나 자동차 등 원하는 공간에 칠하는 방식으로 쉽게 만들고, 전기를 자급자족하게 할 수 있다면 세계 에너지 빈곤층에 저가의 친환경에너지 공급이 가능해질 것이다. 그뿐만 아니라 도심 건물에 태양광 설치를 위한 공간 활용이 쉬워지고, 이상적으로는 필요시에 페인트를 덧바르는 형태로 태양전지 패널을 유지 보수할 수 있다. 이러한 태양전지 소재의 용액을 코팅하는 방식을 이용한 태양전지 생산 기술인 용액공정 태양전지는 전기를 생산하는 활성 영역이 매우 작은(0.1㎠ 이하) 실험실 수준에 머물러 있다. 실질적으로 전력생산이 가능한 넓은 면적으로 적용하면 소재와 공정에서 오는 한계로 태양전지의 성능감소와 재현성 문제가 있어 상용화에 걸림돌이 되고 있다. KIST 손해정 박사팀은 상용화된 유기 소재가 쉽게 결정화되는 성질을 갖고 있어 대면적 용액공정에 부적합하다는 사실을 밝혔다. 산업용으로 쓰이는 대면적 용액공정은 태양전지 소재가 녹아 있는 용매가 증발하여 필름이 형성되는 속도가 느리기 때문에, 뭉침 등의 현상이 일어나 태양전지의 효율이 떨어지게 된다. 반면에 실험실 연구 단위에서 쓰이는 작은 면적용 공정인 스핀 코팅 방법의 경우 필름 형성 과정에서 필름을 빠르게 회전시켜 용매의 증발을 빠르게 진행시키기 때문에 이런 문제점 없이 고효율의 필름을 형성할 수 있다. KIST 연구진은 위 사실을 바탕으로 대면적 용액공정 방식에서 코팅 공정 후 용매의 증발속도를 제어하여 태양전지 성능에 최적화된 필름을 형성, 고성능 대면적 유기태양전지를 개발했다. 그 결과, 기존보다 태양전지 광전변환효율이 30% 상승한 9.6%의 고효율 대면적 유기태양전지 기술을 구현하였다. KIST 손해정 박사는 “고품질의 대면적 용액공정이 가능한 태양전지 소재의 핵심 디자인 원리를 제안함으로써 향후 용액공정 태양전지 개발이 가속화될 것으로 예상된다.”라고 말하며, “차세대 용액공정 태양전지의 고효율화뿐만 아니라 상용화에 필요한 대면적 제조를 위한 태양전지 소재의 핵심기술 개발에 기여하였다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 연구재단 중견연구자지원사업으로 수행되었으며, 연구 결과는 에너지 분야의 국제학술지 ‘Nano Energy’(IF: 16.602, JCR 분야 상위 4.088%) 최신 호에 게재되었다. * (논문명) ‘Development of highly efficient large area organic photovoltaic module: Effects of non-fullerene acceptor’ - (제 1저자) 한국과학기술연구원 박소현 학생연구원 - (제 1저자) 한국과학기술연구원 박성민 박사후연구원 - (교신저자) 한국과학기술연구원 손해정 책임연구원 <그림설명>
페인트처럼 칠해서 만들 수 있는 태양전지, 실험실 밖으로 나온다
- 대면적 용액공정 태양전지 핵심 소재 설계를 위한 원리 규명 - 향후 플라스틱 기반의 태양전지 페인트 기술로 활용 기대 국내 연구진이 태양전지 원료의 용액을 코팅 후 고체화되는 속도를 제어하는 방법으로 고효율 용액공정 유기태양전지의 대면적화에 성공했다. 한국과학기술연구원(KIST, 원장 윤석진) 광전하이브리드연구센터 손해정 박사팀은 용액 공정상에서 유기태양전지 소재의 작은 면적과 큰 면적에서 필름 형성 기작의 차이점을 규명하고 이를 공정 기술상의 해결을 통해 고효율 유기태양전지 대면적화 기술을 개발했다고 밝혔다. 태양전지 소재를 페인트처럼 만들어 건물이나 자동차 등 원하는 공간에 칠하는 방식으로 쉽게 만들고, 전기를 자급자족하게 할 수 있다면 세계 에너지 빈곤층에 저가의 친환경에너지 공급이 가능해질 것이다. 그뿐만 아니라 도심 건물에 태양광 설치를 위한 공간 활용이 쉬워지고, 이상적으로는 필요시에 페인트를 덧바르는 형태로 태양전지 패널을 유지 보수할 수 있다. 이러한 태양전지 소재의 용액을 코팅하는 방식을 이용한 태양전지 생산 기술인 용액공정 태양전지는 전기를 생산하는 활성 영역이 매우 작은(0.1㎠ 이하) 실험실 수준에 머물러 있다. 실질적으로 전력생산이 가능한 넓은 면적으로 적용하면 소재와 공정에서 오는 한계로 태양전지의 성능감소와 재현성 문제가 있어 상용화에 걸림돌이 되고 있다. KIST 손해정 박사팀은 상용화된 유기 소재가 쉽게 결정화되는 성질을 갖고 있어 대면적 용액공정에 부적합하다는 사실을 밝혔다. 산업용으로 쓰이는 대면적 용액공정은 태양전지 소재가 녹아 있는 용매가 증발하여 필름이 형성되는 속도가 느리기 때문에, 뭉침 등의 현상이 일어나 태양전지의 효율이 떨어지게 된다. 반면에 실험실 연구 단위에서 쓰이는 작은 면적용 공정인 스핀 코팅 방법의 경우 필름 형성 과정에서 필름을 빠르게 회전시켜 용매의 증발을 빠르게 진행시키기 때문에 이런 문제점 없이 고효율의 필름을 형성할 수 있다. KIST 연구진은 위 사실을 바탕으로 대면적 용액공정 방식에서 코팅 공정 후 용매의 증발속도를 제어하여 태양전지 성능에 최적화된 필름을 형성, 고성능 대면적 유기태양전지를 개발했다. 그 결과, 기존보다 태양전지 광전변환효율이 30% 상승한 9.6%의 고효율 대면적 유기태양전지 기술을 구현하였다. KIST 손해정 박사는 “고품질의 대면적 용액공정이 가능한 태양전지 소재의 핵심 디자인 원리를 제안함으로써 향후 용액공정 태양전지 개발이 가속화될 것으로 예상된다.”라고 말하며, “차세대 용액공정 태양전지의 고효율화뿐만 아니라 상용화에 필요한 대면적 제조를 위한 태양전지 소재의 핵심기술 개발에 기여하였다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 연구재단 중견연구자지원사업으로 수행되었으며, 연구 결과는 에너지 분야의 국제학술지 ‘Nano Energy’(IF: 16.602, JCR 분야 상위 4.088%) 최신 호에 게재되었다. * (논문명) ‘Development of highly efficient large area organic photovoltaic module: Effects of non-fullerene acceptor’ - (제 1저자) 한국과학기술연구원 박소현 학생연구원 - (제 1저자) 한국과학기술연구원 박성민 박사후연구원 - (교신저자) 한국과학기술연구원 손해정 책임연구원 <그림설명>
페인트처럼 칠해서 만들 수 있는 태양전지, 실험실 밖으로 나온다
- 대면적 용액공정 태양전지 핵심 소재 설계를 위한 원리 규명 - 향후 플라스틱 기반의 태양전지 페인트 기술로 활용 기대 국내 연구진이 태양전지 원료의 용액을 코팅 후 고체화되는 속도를 제어하는 방법으로 고효율 용액공정 유기태양전지의 대면적화에 성공했다. 한국과학기술연구원(KIST, 원장 윤석진) 광전하이브리드연구센터 손해정 박사팀은 용액 공정상에서 유기태양전지 소재의 작은 면적과 큰 면적에서 필름 형성 기작의 차이점을 규명하고 이를 공정 기술상의 해결을 통해 고효율 유기태양전지 대면적화 기술을 개발했다고 밝혔다. 태양전지 소재를 페인트처럼 만들어 건물이나 자동차 등 원하는 공간에 칠하는 방식으로 쉽게 만들고, 전기를 자급자족하게 할 수 있다면 세계 에너지 빈곤층에 저가의 친환경에너지 공급이 가능해질 것이다. 그뿐만 아니라 도심 건물에 태양광 설치를 위한 공간 활용이 쉬워지고, 이상적으로는 필요시에 페인트를 덧바르는 형태로 태양전지 패널을 유지 보수할 수 있다. 이러한 태양전지 소재의 용액을 코팅하는 방식을 이용한 태양전지 생산 기술인 용액공정 태양전지는 전기를 생산하는 활성 영역이 매우 작은(0.1㎠ 이하) 실험실 수준에 머물러 있다. 실질적으로 전력생산이 가능한 넓은 면적으로 적용하면 소재와 공정에서 오는 한계로 태양전지의 성능감소와 재현성 문제가 있어 상용화에 걸림돌이 되고 있다. KIST 손해정 박사팀은 상용화된 유기 소재가 쉽게 결정화되는 성질을 갖고 있어 대면적 용액공정에 부적합하다는 사실을 밝혔다. 산업용으로 쓰이는 대면적 용액공정은 태양전지 소재가 녹아 있는 용매가 증발하여 필름이 형성되는 속도가 느리기 때문에, 뭉침 등의 현상이 일어나 태양전지의 효율이 떨어지게 된다. 반면에 실험실 연구 단위에서 쓰이는 작은 면적용 공정인 스핀 코팅 방법의 경우 필름 형성 과정에서 필름을 빠르게 회전시켜 용매의 증발을 빠르게 진행시키기 때문에 이런 문제점 없이 고효율의 필름을 형성할 수 있다. KIST 연구진은 위 사실을 바탕으로 대면적 용액공정 방식에서 코팅 공정 후 용매의 증발속도를 제어하여 태양전지 성능에 최적화된 필름을 형성, 고성능 대면적 유기태양전지를 개발했다. 그 결과, 기존보다 태양전지 광전변환효율이 30% 상승한 9.6%의 고효율 대면적 유기태양전지 기술을 구현하였다. KIST 손해정 박사는 “고품질의 대면적 용액공정이 가능한 태양전지 소재의 핵심 디자인 원리를 제안함으로써 향후 용액공정 태양전지 개발이 가속화될 것으로 예상된다.”라고 말하며, “차세대 용액공정 태양전지의 고효율화뿐만 아니라 상용화에 필요한 대면적 제조를 위한 태양전지 소재의 핵심기술 개발에 기여하였다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 연구재단 중견연구자지원사업으로 수행되었으며, 연구 결과는 에너지 분야의 국제학술지 ‘Nano Energy’(IF: 16.602, JCR 분야 상위 4.088%) 최신 호에 게재되었다. * (논문명) ‘Development of highly efficient large area organic photovoltaic module: Effects of non-fullerene acceptor’ - (제 1저자) 한국과학기술연구원 박소현 학생연구원 - (제 1저자) 한국과학기술연구원 박성민 박사후연구원 - (교신저자) 한국과학기술연구원 손해정 책임연구원 <그림설명>
페인트처럼 칠해서 만들 수 있는 태양전지, 실험실 밖으로 나온다
- 대면적 용액공정 태양전지 핵심 소재 설계를 위한 원리 규명 - 향후 플라스틱 기반의 태양전지 페인트 기술로 활용 기대 국내 연구진이 태양전지 원료의 용액을 코팅 후 고체화되는 속도를 제어하는 방법으로 고효율 용액공정 유기태양전지의 대면적화에 성공했다. 한국과학기술연구원(KIST, 원장 윤석진) 광전하이브리드연구센터 손해정 박사팀은 용액 공정상에서 유기태양전지 소재의 작은 면적과 큰 면적에서 필름 형성 기작의 차이점을 규명하고 이를 공정 기술상의 해결을 통해 고효율 유기태양전지 대면적화 기술을 개발했다고 밝혔다. 태양전지 소재를 페인트처럼 만들어 건물이나 자동차 등 원하는 공간에 칠하는 방식으로 쉽게 만들고, 전기를 자급자족하게 할 수 있다면 세계 에너지 빈곤층에 저가의 친환경에너지 공급이 가능해질 것이다. 그뿐만 아니라 도심 건물에 태양광 설치를 위한 공간 활용이 쉬워지고, 이상적으로는 필요시에 페인트를 덧바르는 형태로 태양전지 패널을 유지 보수할 수 있다. 이러한 태양전지 소재의 용액을 코팅하는 방식을 이용한 태양전지 생산 기술인 용액공정 태양전지는 전기를 생산하는 활성 영역이 매우 작은(0.1㎠ 이하) 실험실 수준에 머물러 있다. 실질적으로 전력생산이 가능한 넓은 면적으로 적용하면 소재와 공정에서 오는 한계로 태양전지의 성능감소와 재현성 문제가 있어 상용화에 걸림돌이 되고 있다. KIST 손해정 박사팀은 상용화된 유기 소재가 쉽게 결정화되는 성질을 갖고 있어 대면적 용액공정에 부적합하다는 사실을 밝혔다. 산업용으로 쓰이는 대면적 용액공정은 태양전지 소재가 녹아 있는 용매가 증발하여 필름이 형성되는 속도가 느리기 때문에, 뭉침 등의 현상이 일어나 태양전지의 효율이 떨어지게 된다. 반면에 실험실 연구 단위에서 쓰이는 작은 면적용 공정인 스핀 코팅 방법의 경우 필름 형성 과정에서 필름을 빠르게 회전시켜 용매의 증발을 빠르게 진행시키기 때문에 이런 문제점 없이 고효율의 필름을 형성할 수 있다. KIST 연구진은 위 사실을 바탕으로 대면적 용액공정 방식에서 코팅 공정 후 용매의 증발속도를 제어하여 태양전지 성능에 최적화된 필름을 형성, 고성능 대면적 유기태양전지를 개발했다. 그 결과, 기존보다 태양전지 광전변환효율이 30% 상승한 9.6%의 고효율 대면적 유기태양전지 기술을 구현하였다. KIST 손해정 박사는 “고품질의 대면적 용액공정이 가능한 태양전지 소재의 핵심 디자인 원리를 제안함으로써 향후 용액공정 태양전지 개발이 가속화될 것으로 예상된다.”라고 말하며, “차세대 용액공정 태양전지의 고효율화뿐만 아니라 상용화에 필요한 대면적 제조를 위한 태양전지 소재의 핵심기술 개발에 기여하였다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 연구재단 중견연구자지원사업으로 수행되었으며, 연구 결과는 에너지 분야의 국제학술지 ‘Nano Energy’(IF: 16.602, JCR 분야 상위 4.088%) 최신 호에 게재되었다. * (논문명) ‘Development of highly efficient large area organic photovoltaic module: Effects of non-fullerene acceptor’ - (제 1저자) 한국과학기술연구원 박소현 학생연구원 - (제 1저자) 한국과학기술연구원 박성민 박사후연구원 - (교신저자) 한국과학기술연구원 손해정 책임연구원 <그림설명>
페인트처럼 칠해서 만들 수 있는 태양전지, 실험실 밖으로 나온다
- 대면적 용액공정 태양전지 핵심 소재 설계를 위한 원리 규명 - 향후 플라스틱 기반의 태양전지 페인트 기술로 활용 기대 국내 연구진이 태양전지 원료의 용액을 코팅 후 고체화되는 속도를 제어하는 방법으로 고효율 용액공정 유기태양전지의 대면적화에 성공했다. 한국과학기술연구원(KIST, 원장 윤석진) 광전하이브리드연구센터 손해정 박사팀은 용액 공정상에서 유기태양전지 소재의 작은 면적과 큰 면적에서 필름 형성 기작의 차이점을 규명하고 이를 공정 기술상의 해결을 통해 고효율 유기태양전지 대면적화 기술을 개발했다고 밝혔다. 태양전지 소재를 페인트처럼 만들어 건물이나 자동차 등 원하는 공간에 칠하는 방식으로 쉽게 만들고, 전기를 자급자족하게 할 수 있다면 세계 에너지 빈곤층에 저가의 친환경에너지 공급이 가능해질 것이다. 그뿐만 아니라 도심 건물에 태양광 설치를 위한 공간 활용이 쉬워지고, 이상적으로는 필요시에 페인트를 덧바르는 형태로 태양전지 패널을 유지 보수할 수 있다. 이러한 태양전지 소재의 용액을 코팅하는 방식을 이용한 태양전지 생산 기술인 용액공정 태양전지는 전기를 생산하는 활성 영역이 매우 작은(0.1㎠ 이하) 실험실 수준에 머물러 있다. 실질적으로 전력생산이 가능한 넓은 면적으로 적용하면 소재와 공정에서 오는 한계로 태양전지의 성능감소와 재현성 문제가 있어 상용화에 걸림돌이 되고 있다. KIST 손해정 박사팀은 상용화된 유기 소재가 쉽게 결정화되는 성질을 갖고 있어 대면적 용액공정에 부적합하다는 사실을 밝혔다. 산업용으로 쓰이는 대면적 용액공정은 태양전지 소재가 녹아 있는 용매가 증발하여 필름이 형성되는 속도가 느리기 때문에, 뭉침 등의 현상이 일어나 태양전지의 효율이 떨어지게 된다. 반면에 실험실 연구 단위에서 쓰이는 작은 면적용 공정인 스핀 코팅 방법의 경우 필름 형성 과정에서 필름을 빠르게 회전시켜 용매의 증발을 빠르게 진행시키기 때문에 이런 문제점 없이 고효율의 필름을 형성할 수 있다. KIST 연구진은 위 사실을 바탕으로 대면적 용액공정 방식에서 코팅 공정 후 용매의 증발속도를 제어하여 태양전지 성능에 최적화된 필름을 형성, 고성능 대면적 유기태양전지를 개발했다. 그 결과, 기존보다 태양전지 광전변환효율이 30% 상승한 9.6%의 고효율 대면적 유기태양전지 기술을 구현하였다. KIST 손해정 박사는 “고품질의 대면적 용액공정이 가능한 태양전지 소재의 핵심 디자인 원리를 제안함으로써 향후 용액공정 태양전지 개발이 가속화될 것으로 예상된다.”라고 말하며, “차세대 용액공정 태양전지의 고효율화뿐만 아니라 상용화에 필요한 대면적 제조를 위한 태양전지 소재의 핵심기술 개발에 기여하였다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 연구재단 중견연구자지원사업으로 수행되었으며, 연구 결과는 에너지 분야의 국제학술지 ‘Nano Energy’(IF: 16.602, JCR 분야 상위 4.088%) 최신 호에 게재되었다. * (논문명) ‘Development of highly efficient large area organic photovoltaic module: Effects of non-fullerene acceptor’ - (제 1저자) 한국과학기술연구원 박소현 학생연구원 - (제 1저자) 한국과학기술연구원 박성민 박사후연구원 - (교신저자) 한국과학기술연구원 손해정 책임연구원 <그림설명>
페인트처럼 칠해서 만들 수 있는 태양전지, 실험실 밖으로 나온다
- 대면적 용액공정 태양전지 핵심 소재 설계를 위한 원리 규명 - 향후 플라스틱 기반의 태양전지 페인트 기술로 활용 기대 국내 연구진이 태양전지 원료의 용액을 코팅 후 고체화되는 속도를 제어하는 방법으로 고효율 용액공정 유기태양전지의 대면적화에 성공했다. 한국과학기술연구원(KIST, 원장 윤석진) 광전하이브리드연구센터 손해정 박사팀은 용액 공정상에서 유기태양전지 소재의 작은 면적과 큰 면적에서 필름 형성 기작의 차이점을 규명하고 이를 공정 기술상의 해결을 통해 고효율 유기태양전지 대면적화 기술을 개발했다고 밝혔다. 태양전지 소재를 페인트처럼 만들어 건물이나 자동차 등 원하는 공간에 칠하는 방식으로 쉽게 만들고, 전기를 자급자족하게 할 수 있다면 세계 에너지 빈곤층에 저가의 친환경에너지 공급이 가능해질 것이다. 그뿐만 아니라 도심 건물에 태양광 설치를 위한 공간 활용이 쉬워지고, 이상적으로는 필요시에 페인트를 덧바르는 형태로 태양전지 패널을 유지 보수할 수 있다. 이러한 태양전지 소재의 용액을 코팅하는 방식을 이용한 태양전지 생산 기술인 용액공정 태양전지는 전기를 생산하는 활성 영역이 매우 작은(0.1㎠ 이하) 실험실 수준에 머물러 있다. 실질적으로 전력생산이 가능한 넓은 면적으로 적용하면 소재와 공정에서 오는 한계로 태양전지의 성능감소와 재현성 문제가 있어 상용화에 걸림돌이 되고 있다. KIST 손해정 박사팀은 상용화된 유기 소재가 쉽게 결정화되는 성질을 갖고 있어 대면적 용액공정에 부적합하다는 사실을 밝혔다. 산업용으로 쓰이는 대면적 용액공정은 태양전지 소재가 녹아 있는 용매가 증발하여 필름이 형성되는 속도가 느리기 때문에, 뭉침 등의 현상이 일어나 태양전지의 효율이 떨어지게 된다. 반면에 실험실 연구 단위에서 쓰이는 작은 면적용 공정인 스핀 코팅 방법의 경우 필름 형성 과정에서 필름을 빠르게 회전시켜 용매의 증발을 빠르게 진행시키기 때문에 이런 문제점 없이 고효율의 필름을 형성할 수 있다. KIST 연구진은 위 사실을 바탕으로 대면적 용액공정 방식에서 코팅 공정 후 용매의 증발속도를 제어하여 태양전지 성능에 최적화된 필름을 형성, 고성능 대면적 유기태양전지를 개발했다. 그 결과, 기존보다 태양전지 광전변환효율이 30% 상승한 9.6%의 고효율 대면적 유기태양전지 기술을 구현하였다. KIST 손해정 박사는 “고품질의 대면적 용액공정이 가능한 태양전지 소재의 핵심 디자인 원리를 제안함으로써 향후 용액공정 태양전지 개발이 가속화될 것으로 예상된다.”라고 말하며, “차세대 용액공정 태양전지의 고효율화뿐만 아니라 상용화에 필요한 대면적 제조를 위한 태양전지 소재의 핵심기술 개발에 기여하였다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 연구재단 중견연구자지원사업으로 수행되었으며, 연구 결과는 에너지 분야의 국제학술지 ‘Nano Energy’(IF: 16.602, JCR 분야 상위 4.088%) 최신 호에 게재되었다. * (논문명) ‘Development of highly efficient large area organic photovoltaic module: Effects of non-fullerene acceptor’ - (제 1저자) 한국과학기술연구원 박소현 학생연구원 - (제 1저자) 한국과학기술연구원 박성민 박사후연구원 - (교신저자) 한국과학기술연구원 손해정 책임연구원 <그림설명>
폐기물 ‘0’(제로), 지속가능한 스마트 고분자 소재 개발
폐기물 ‘0’(제로), 지속가능한 스마트 고분자 소재 개발 - 손상을 색 변화로 감지하고 스스로 회복할 수 있는 형상 기억 소재 - 폐기 시 원재료로 회수가 가능하여 생산 및 폐기 비용 절감 실현 플라스틱은 단량체라고 불리는 작은 분자가 길게 연결된 구조를 가진 고분자 소재로, 가볍고 견고하며 유연하게 설계할 수 있다는 장점 덕분에 일상생활과 산업 전반에서 폭넓게 활용되고 있다. 하지만 매년 약 5,200만 톤에 달하는 플라스틱 쓰레기가 발생하면서, 폐플라스틱이 환경 오염의 대표적인 문제로 떠올랐다. 이러한 문제를 해결하기 위해 지속 가능한 고분자 소재를 만들려는 연구가 전 세계적으로 진행되고 있다. 그러나 지금까지 개발된 소재들은 복잡한 합성 과정을 거쳐야 하거나, 폐기물로 처리될 때 다른 고분자와 섞이면 분리수거가 어렵다는 한계를 가지고 있었다. 한국과학기술연구원(KIST, 원장 오상록) 전자파솔루션융합연구단 김태안 박사 연구팀은 이러한 한계를 극복하기 위해 자가 회복 기능과 높은 재활용성을 갖춘 새로운 고분자 소재를 개발했다고 밝혔다. 연구팀은 단량체와 고분자로 자유롭게 전환이 가능한 독특한 오각고리 구조의 분자를 설계했으며, 이 분자는 열, 빛, 기계적 힘을 이용해 붙었다 떨어지는 성질을 가진다. 이를 통해 고무줄처럼 유연하거나 유리병처럼 단단한, 다양한 물성을 가진 고분자 소재를 제조할 수 있다. 이번에 개발된 고분자 소재는 손상된 부위를 형광으로 식별할 수 있어 관리가 용이하며, 열과 빛을 가하면 스스로 복구되는 자가 회복 기능을 제공한다. 이 소재는 폐기물로 배출될 경우 기존 플라스틱과 혼합된 상태에서도 선택적으로 단량체를 분리해낼 수 있으며, 회수된 단량체를 활용해 원래 특성을 유지한 고분자를 다시 제조할 수 있다. 이러한 특성은 지속 가능성과 재활용성을 동시에 충족시키는 혁신적인 해결책을 제시한다. 또한, 이 고분자 소재는 열, 빛, 기계적 힘에 반응하여 열적, 기계적, 광학적 특성을 유동적으로 변화시킬 수 있다. 특히 보호용 코팅재로 활용 시 기존 상용 에폭시 코팅제보다 최대 3배 높은 경도와 2배 이상의 탄성계수를 보여 성능 면에서 탁월한 장점을 제공한다. 또한, 자외선을 조사하면 분자 구조가 강화돼 특정 형상을 유지할 수 있는 형상 기억 특성도 확인되어, 이를 통해 스마트 의류, 웨어러블 기기 등 다양한 응용 가능성이 기대된다. 결과적으로, 이 고분자 소재는 높은 강도, 손상 감지, 자가 회복, 선택적 재활용 기능을 갖추고 있다. 이러한 특징은 폐플라스틱의 분류 및 처리에 드는 경제적 비용을 절감하는 동시에, 산업용 코팅제를 대체해 유지 보수 비용을 줄이고 환경 오염을 완화하는 데 크게 기여할 것으로 전망된다. KIST 김태안 박사는 “본 연구는 화학적 재활용이 가능한 기존 플라스틱 소재의 열적·기계적 한계를 극복하면서도, 손상감지와 자가회복 등 자율적 기능을 포함한 소재를 설계할 수 있는 새로운 접근 방향을 제시하였다.”라고 말하며, “해당 소재의 도료화 과정을 통해 자발적인 기능으로 장기 유지 보수 비용이 들지 않으면서도 폐기물을 남기지 않는 친환경 기능성 코팅 소재 시장을 개척하기 위해 노력 중이다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 유상임) 국가과학기술연구회(NST) 미래선도형 융합연구단 사업(CRC22033-230)과 한국연구재단 국가전략기술소재개발 사업(RS-2024-00448445)의 지원을 받아 수행됐다. 이번 연구 성과는 재료과학 분야 국제 학술지인 「Advanced Functional Materials」 (IF 18.5, JCR 분야 상위 4.329%) 최신호에 게재됐으며, Back Cover로 선정됐다. * (논문명) High-Performance Dynamic Photo-Responsive Polymers With Superior Closed-Loop Recyclability [그림 1] 손상 감지 및 자가 회복, 다중 형상 기억 특성을 지닌 스마트 플라스틱 소재의 구성 및 작동 원리 [그림 2] (좌) 새로 개발된 원료만으로 진행된 고분자 소재의 중합, 해중합 처리 절차. (우) 혼합 플라스틱 폐기물 속에서 선택적으로 분리, 정제되어 다시 얻어진 원료들. [그림 3] (상) 형광 발현을 이용한 손상 감지 및 자가 치유 능력에 대한 관찰 이미지. (하) 다중 형상 기억 특성 발현에 대한 관찰 이미지. [그림 4] Back Cover 선정 참고 이미지
폐기물 ‘0’(제로), 지속가능한 스마트 고분자 소재 개발
폐기물 ‘0’(제로), 지속가능한 스마트 고분자 소재 개발 - 손상을 색 변화로 감지하고 스스로 회복할 수 있는 형상 기억 소재 - 폐기 시 원재료로 회수가 가능하여 생산 및 폐기 비용 절감 실현 플라스틱은 단량체라고 불리는 작은 분자가 길게 연결된 구조를 가진 고분자 소재로, 가볍고 견고하며 유연하게 설계할 수 있다는 장점 덕분에 일상생활과 산업 전반에서 폭넓게 활용되고 있다. 하지만 매년 약 5,200만 톤에 달하는 플라스틱 쓰레기가 발생하면서, 폐플라스틱이 환경 오염의 대표적인 문제로 떠올랐다. 이러한 문제를 해결하기 위해 지속 가능한 고분자 소재를 만들려는 연구가 전 세계적으로 진행되고 있다. 그러나 지금까지 개발된 소재들은 복잡한 합성 과정을 거쳐야 하거나, 폐기물로 처리될 때 다른 고분자와 섞이면 분리수거가 어렵다는 한계를 가지고 있었다. 한국과학기술연구원(KIST, 원장 오상록) 전자파솔루션융합연구단 김태안 박사 연구팀은 이러한 한계를 극복하기 위해 자가 회복 기능과 높은 재활용성을 갖춘 새로운 고분자 소재를 개발했다고 밝혔다. 연구팀은 단량체와 고분자로 자유롭게 전환이 가능한 독특한 오각고리 구조의 분자를 설계했으며, 이 분자는 열, 빛, 기계적 힘을 이용해 붙었다 떨어지는 성질을 가진다. 이를 통해 고무줄처럼 유연하거나 유리병처럼 단단한, 다양한 물성을 가진 고분자 소재를 제조할 수 있다. 이번에 개발된 고분자 소재는 손상된 부위를 형광으로 식별할 수 있어 관리가 용이하며, 열과 빛을 가하면 스스로 복구되는 자가 회복 기능을 제공한다. 이 소재는 폐기물로 배출될 경우 기존 플라스틱과 혼합된 상태에서도 선택적으로 단량체를 분리해낼 수 있으며, 회수된 단량체를 활용해 원래 특성을 유지한 고분자를 다시 제조할 수 있다. 이러한 특성은 지속 가능성과 재활용성을 동시에 충족시키는 혁신적인 해결책을 제시한다. 또한, 이 고분자 소재는 열, 빛, 기계적 힘에 반응하여 열적, 기계적, 광학적 특성을 유동적으로 변화시킬 수 있다. 특히 보호용 코팅재로 활용 시 기존 상용 에폭시 코팅제보다 최대 3배 높은 경도와 2배 이상의 탄성계수를 보여 성능 면에서 탁월한 장점을 제공한다. 또한, 자외선을 조사하면 분자 구조가 강화돼 특정 형상을 유지할 수 있는 형상 기억 특성도 확인되어, 이를 통해 스마트 의류, 웨어러블 기기 등 다양한 응용 가능성이 기대된다. 결과적으로, 이 고분자 소재는 높은 강도, 손상 감지, 자가 회복, 선택적 재활용 기능을 갖추고 있다. 이러한 특징은 폐플라스틱의 분류 및 처리에 드는 경제적 비용을 절감하는 동시에, 산업용 코팅제를 대체해 유지 보수 비용을 줄이고 환경 오염을 완화하는 데 크게 기여할 것으로 전망된다. KIST 김태안 박사는 “본 연구는 화학적 재활용이 가능한 기존 플라스틱 소재의 열적·기계적 한계를 극복하면서도, 손상감지와 자가회복 등 자율적 기능을 포함한 소재를 설계할 수 있는 새로운 접근 방향을 제시하였다.”라고 말하며, “해당 소재의 도료화 과정을 통해 자발적인 기능으로 장기 유지 보수 비용이 들지 않으면서도 폐기물을 남기지 않는 친환경 기능성 코팅 소재 시장을 개척하기 위해 노력 중이다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 유상임) 국가과학기술연구회(NST) 미래선도형 융합연구단 사업(CRC22033-230)과 한국연구재단 국가전략기술소재개발 사업(RS-2024-00448445)의 지원을 받아 수행됐다. 이번 연구 성과는 재료과학 분야 국제 학술지인 「Advanced Functional Materials」 (IF 18.5, JCR 분야 상위 4.329%) 최신호에 게재됐으며, Back Cover로 선정됐다. * (논문명) High-Performance Dynamic Photo-Responsive Polymers With Superior Closed-Loop Recyclability [그림 1] 손상 감지 및 자가 회복, 다중 형상 기억 특성을 지닌 스마트 플라스틱 소재의 구성 및 작동 원리 [그림 2] (좌) 새로 개발된 원료만으로 진행된 고분자 소재의 중합, 해중합 처리 절차. (우) 혼합 플라스틱 폐기물 속에서 선택적으로 분리, 정제되어 다시 얻어진 원료들. [그림 3] (상) 형광 발현을 이용한 손상 감지 및 자가 치유 능력에 대한 관찰 이미지. (하) 다중 형상 기억 특성 발현에 대한 관찰 이미지. [그림 4] Back Cover 선정 참고 이미지