검색결과
게시물 키워드""에 대한 9079개의 검색결과를 찾았습니다.
태아의 뇌신경 형성 과정에서 뇌세포의 성장 및 두뇌 크기 조절 메커니즘 밝혔다
- KIST 오우택 소장 연구팀, 염소이온 채널 ‘아녹타민1’의 뇌 형성에서의 역할 규명 - 뇌세포의 분포 및 두뇌의 크기에 영향, 뇌 발달과 관련된 질병 이해 증진 한국과학기술연구원(KIST, 원장 이병권) 뇌과학연구소 오우택 소장, 홍규상 박사팀은 신경줄기세포*의 염소이온채널** ‘아녹타민1’이 태아의 신경 발달과정에서 대뇌의 뇌세포를 특정 위치로 이동시키고 두뇌의 크기를 조절한다고 밝혔다. *신경줄기세포(Neural Stem Cell): 자가 증식이 가능한 세포로 신경계통의 모든 세포로의 분화능력을 가짐 **염소이온채널(Chloride Ion Channel): 세포막에 존재하여 세포의 안·밖으로 염소 이온을 통과시키는 막단백질 선천적 뇌 신경세포의 발달 장애는 인지능력 저하, 운동기능 저하, 틱장애, 자폐증과 같은 다양한 뇌 관련 질병을 야기한다. 하지만 대뇌의 발달과정은 정밀하게 조절되고, 다양한 유전자와 환경 인자가 관여하기 때문에 그 원인을 알기가 어려운 실정이다. 최근 KIST 연구진은 태아의 신경 발달과정에서 신경줄기세포가 조절되는 메커니즘을 규명하여 신경발달장애의 근원을 이해하고, 두뇌가 어떻게 발달하는 지를 밝혔다. 신경줄기세포는 배아의 뇌에서 뉴런(신경세포)을 증식 시킬 뿐만 아니라 뇌 피질의 정확한 위치에 이동시켜 두뇌 형성 과정 전체를 조절하는 역할을 한다. 이 과정은 매우 정교하게 처리되는데, 신경줄기세포는 섬모라 불리는 긴 팔(긴 섬모)을 뇌의 끝부분까지 뻗고, 뉴런은 이 긴 팔을 마치 사다리처럼 타고 가서 제자리를 찾아가게 된다고 알려져 있다. 그러나 지금까지는 이러한 신경줄기세포가 뻗는 긴 섬모의 연장에 따른 뉴런의 이동 및 두뇌와의 연관성이 명확하게 규명되지 않았다. KIST 오우택·홍규상 박사팀은 전기 생리학, 면역학, 생화학적인 다양한 기법을 활용하여 ‘아녹타민1’ 유전자가 뇌신경세포의 발달과정 중 신경줄기세포에서 발현이 많이 되었음을 확인하였다. ‘아녹타민1’ 채널이 활성화되면 그 신호에 의해 신경줄기세포의 증식뿐만 아니라, 긴 섬모의 길이가 연장되고, 뇌신경 발달과정에서 대뇌 피질 내에 존재하는 뉴런들의 위치와 두뇌의 크기도 조절한다는 사실을 규명하였다. KIST 연구진은 ‘아녹타민1’이 결핍된 생쥐의 신경줄기세포의 섬모의 길이가 정상 생쥐보다 짧은 것을 확인하였고, 신경세포의 정상적 발달을 저해하여 최종 두뇌의 크기도 정상 생쥐에 비해 작아지는 것을 발견하였다. KIST 오우택 소장은 “뇌신경세포의 형성 과정 중 신경줄기세포에서 아녹타민1 이온채널의 역할을 재조명하였고, 동물의 뇌신경 형성 과정에서 생리학적인 이해의 범위를 한층 넓힐 수 있었다”며, “‘아녹타민1’ 이온채널 유전자의 역할을 명확하게 밝힌 연구를 통하여 두뇌 형성 과정에서의 오류로 인한 자폐증, 조현병 그리고 간질과 같은 뇌 질병을 이해하고, 그 치료를 위한 초석이 되는데 역할을 할 것이라 사료된다”고 연구의 의의를 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민) 지원으로 한국연구재단 뇌과학원천기술개발사업, 리더연구자사업을 통해 수행되었으며, 연구결과는 미국 국립과학원 회보(PNAS, Proceedings of National Academy of Sciences, U.S.A.) (IF : 9.504, JCR 상위 : 7.031 % ) 최신호에 게재되었다. * (논문명) ANO1/TMEM16A regulates process maturation in radial glial cells in the developing brain - (제1저자) KIST 신경과학연구단 홍규상 선임연구원 중앙대학교 약학대학 이성훈 조교수 - (교신저자) KIST 뇌과학연구소 오우택 책임연구원 <그림설명> [그림 1] +/+: 일반마우스의 두뇌에서의 뉴런들 분포 -/- : 아녹타민1 녹아웃 마우스의 두뇌에서의 뉴런들 분포 일반마우스는 CUX1/NOR1로 표시된 레이어 마커안에 잘 분포되어 있으나, 아녹타민1이 결핍된 마우스는 경계없이 퍼져있는 것으로 확인되어, 제대로 뉴런들이 있어야할 곳에 위치되지 않았음 [그림 2] +/+: 일반마우스의 두뇌 크기(평균치) +/- 부모 중 한쪽의 염색체에만 아녹타민1 이 결핍된 경우 -/- : 부모 양쪽 모두 아녹타민1 결핍된 경우 +/-, -/- 모두 스탠다드 에러(일반적으로 정상으로 인정되는 오류의 범위)를 벗어난 두뇌 크기를 보여줌 [그림 3] 대표적 신경줄기세포인 Radil gila cell의 두뇌에서의 발달과정. BDNF 성장인자(BDNF가 TrkB리셉터에 결합하면 세포 내부에 칼슘이 생성되고 아녹타민1 이 활성화됨) 에 의한 아녹타민1의 활성화와 이에 따른 신경줄기세포 섬모의 조절 모식도.
태양광 이용한 그린수소 생산 경제성 사전에 예측하는 내구성 평가기술 개발
- 태양광 출력 변동성 반영 그린수소 생산 장치 내구성 평가기술 개발 - 그린수소 생산용 수전해 장치 핵심 소재부품 개발 지침 제시 미래의 청정에너지 운반체로 그린수소가 주목받으면서 어떤 재생에너지를 에너지원으로 활용할 것인지에 대한 문제 역시 중요해지고 있다. 그중 태양광은 지구 어디에나 존재하는 태양을 이용하기 때문에 자연 지형의 의존성이 낮은 장점이 있다. 그러나 계절 및 날씨 등에 따른 태양광 출력과 발전량 변화는 전력의 상승과 하강을 반복적으로 유발해 생산 장치의 부품을 손상시키는 문제가 있어 최적의 부품 교체 시기 및 신소재 개발을 위해서는 장치의 내구성을 정밀하게 평가할 수 있는 기술이 중요하다. 한국과학기술연구원(KIST, 원장 윤석진) 수소·연료전지연구센터 서보라 박사 연구팀은 실제 태양의 조도 데이터를 활용해 1초 단위의 단계 지속시간을 갖는 그린수소 생산 장치의 내구성 평가기술을 개발했다고 밝혔다. 이는 현재까지 개발된 기술 중 가장 짧은 단계 지속시간을 적용한 것으로 실제 태양광 에너지의 출력 변동성을 가장 유사하게 시뮬레이션할 수 있다. 태양광 기반 그린수소 생산 장치의 성능저하 원인이 파악되더라도 이를 개선하기 위해서는 신뢰도가 높은 내구성 평가기술 확보가 필요하다. 하지만 지금까지는 단순히 전류를 순환하거나 일정하게 유지하는 방법으로 평가를 수행해 태양광 출력 변동성을 정밀하게 반영하지 못했다. 그뿐만 아니라 전력 변동 조건에서 우수한 내구성을 갖는 핵심 소재 개발을 위한 수전해 장치의 내구성 평가 기준도 없었다. 연구팀은 태양광 패널에서 얻은 실제 태양 조도 데이터와 수전해 스택 데이터를 활용해 조도 값을 전류밀도로 변환하는 시뮬레이션 방법을 최초로 개발했다. 이를 통해 순환전압전류법 등 기존 내구성 평가기술에서는 10초에서 3분까지 소요되던 단계 지속시간을 1초 단위로 획기적으로 단축해 태양광 출력 변동성을 실제와 유사하게 반영할 수 있게 됐다. 또한, 새롭게 개발한 내구성 평가기술을 바탕으로 수전해 장치의 소재 개발에 대한 핵심 지표를 제시했다. 전력 변동 조건에서의 촉매, 전해질막 등 소재의 성능저하 정도를 파악할 수 있는 표준화된 분석법과 촉매 용출량, 불소 배출량, 산화막 두께 등 성능저하 지표를 새롭게 제안했다. 이는 내구성 및 성능개선을 위한 그린수소 생산 장치의 소재 및 부품 개발 지침으로 활용될 수 있다. 이번에 개발된 내구성 평가기술은 태양광을 활용하는 그린수소 생산 장치의 정확한 상태진단 및 잔여 수명을 예측해 설비교체나 운영연장 여부 등을 판단할 수 있다. 해당 기술은 해상풍력, 조력발전 등 다른 신재생에너지 기반 그린수소 생산 장치의 성능을 평가하는 데에도 적용이 가능할 것으로 기대된다. KIST 서보라 박사는 “이번 연구 성과는 태양광 출력 변동성을 현실에 가장 가깝게 반영해 그린수소 생산 장치의 내구성을 평가한 첫 번째 시도”라며, “이를 통해 그린수소 생산 시스템에 대한 효율적인 설비투자와 소재·부품 경쟁력 강화에 기여할 수 있을 것”이라고 말했다. 본 연구는 과학기술정보통신부(장관 이종호)의 지원으로 KIST 주요사업과 산업통상자원부(장관 안덕근)의 소재부품기술개발사업(20022451)으로 수행됐다. 이번 연구 성과는 환경 에너지 분야 국제 저명 학술지 「Energy & Environmental Science」 (IF 32.5, JCR 상위 0.4%)에 게재됐다. * 논문명 : Systematic degradation analysis in renewable energy-powered proton exchange membrane water electrolysis [그림 1] 태양광 기반 내구성 평가 기술과 정전류법 및 순환전류법 내구성 평가 기술 비교 태양광 패널에서 얻은 태양 조도 데이터를 바탕으로 도출한 내구성 평가 기술을 적용하여 장기 운전하는 동안 수전해 시스템의 성능 변화를 추적하였다. 특히, 기존에 보고된 정전류법 및 순환전류법 기반 내구성 평가 기술을 적용하였을 때 결과와 비교 분석하여 기존 내구성 평가 기술로는 그린수소 생산 장치의 수명을 예측하는 데 실효성에 한계가 있음을 확인하였다. [그림 2] 태양광 기반 내구성 평가 전/후 수전해 핵심소재 열화분석 태양광 기반 내구성 평가 전/후 수전해 핵심소재(전해질막, 촉매, 확산체) 성능 저하 정도를 파악할 수 있는 표준화된 분석법 및 성능 저하 지표를 내구성 평가 조건별로 비교 분석하여 그린수소 생산 장치에 적합한 소재 개발 지침을 제시하였다.
태양광 이용한 그린수소 생산 경제성 사전에 예측하는 내구성 평가기술 개발
- 태양광 출력 변동성 반영 그린수소 생산 장치 내구성 평가기술 개발 - 그린수소 생산용 수전해 장치 핵심 소재부품 개발 지침 제시 미래의 청정에너지 운반체로 그린수소가 주목받으면서 어떤 재생에너지를 에너지원으로 활용할 것인지에 대한 문제 역시 중요해지고 있다. 그중 태양광은 지구 어디에나 존재하는 태양을 이용하기 때문에 자연 지형의 의존성이 낮은 장점이 있다. 그러나 계절 및 날씨 등에 따른 태양광 출력과 발전량 변화는 전력의 상승과 하강을 반복적으로 유발해 생산 장치의 부품을 손상시키는 문제가 있어 최적의 부품 교체 시기 및 신소재 개발을 위해서는 장치의 내구성을 정밀하게 평가할 수 있는 기술이 중요하다. 한국과학기술연구원(KIST, 원장 윤석진) 수소·연료전지연구센터 서보라 박사 연구팀은 실제 태양의 조도 데이터를 활용해 1초 단위의 단계 지속시간을 갖는 그린수소 생산 장치의 내구성 평가기술을 개발했다고 밝혔다. 이는 현재까지 개발된 기술 중 가장 짧은 단계 지속시간을 적용한 것으로 실제 태양광 에너지의 출력 변동성을 가장 유사하게 시뮬레이션할 수 있다. 태양광 기반 그린수소 생산 장치의 성능저하 원인이 파악되더라도 이를 개선하기 위해서는 신뢰도가 높은 내구성 평가기술 확보가 필요하다. 하지만 지금까지는 단순히 전류를 순환하거나 일정하게 유지하는 방법으로 평가를 수행해 태양광 출력 변동성을 정밀하게 반영하지 못했다. 그뿐만 아니라 전력 변동 조건에서 우수한 내구성을 갖는 핵심 소재 개발을 위한 수전해 장치의 내구성 평가 기준도 없었다. 연구팀은 태양광 패널에서 얻은 실제 태양 조도 데이터와 수전해 스택 데이터를 활용해 조도 값을 전류밀도로 변환하는 시뮬레이션 방법을 최초로 개발했다. 이를 통해 순환전압전류법 등 기존 내구성 평가기술에서는 10초에서 3분까지 소요되던 단계 지속시간을 1초 단위로 획기적으로 단축해 태양광 출력 변동성을 실제와 유사하게 반영할 수 있게 됐다. 또한, 새롭게 개발한 내구성 평가기술을 바탕으로 수전해 장치의 소재 개발에 대한 핵심 지표를 제시했다. 전력 변동 조건에서의 촉매, 전해질막 등 소재의 성능저하 정도를 파악할 수 있는 표준화된 분석법과 촉매 용출량, 불소 배출량, 산화막 두께 등 성능저하 지표를 새롭게 제안했다. 이는 내구성 및 성능개선을 위한 그린수소 생산 장치의 소재 및 부품 개발 지침으로 활용될 수 있다. 이번에 개발된 내구성 평가기술은 태양광을 활용하는 그린수소 생산 장치의 정확한 상태진단 및 잔여 수명을 예측해 설비교체나 운영연장 여부 등을 판단할 수 있다. 해당 기술은 해상풍력, 조력발전 등 다른 신재생에너지 기반 그린수소 생산 장치의 성능을 평가하는 데에도 적용이 가능할 것으로 기대된다. KIST 서보라 박사는 “이번 연구 성과는 태양광 출력 변동성을 현실에 가장 가깝게 반영해 그린수소 생산 장치의 내구성을 평가한 첫 번째 시도”라며, “이를 통해 그린수소 생산 시스템에 대한 효율적인 설비투자와 소재·부품 경쟁력 강화에 기여할 수 있을 것”이라고 말했다. 본 연구는 과학기술정보통신부(장관 이종호)의 지원으로 KIST 주요사업과 산업통상자원부(장관 안덕근)의 소재부품기술개발사업(20022451)으로 수행됐다. 이번 연구 성과는 환경 에너지 분야 국제 저명 학술지 「Energy & Environmental Science」 (IF 32.5, JCR 상위 0.4%)에 게재됐다. * 논문명 : Systematic degradation analysis in renewable energy-powered proton exchange membrane water electrolysis [그림 1] 태양광 기반 내구성 평가 기술과 정전류법 및 순환전류법 내구성 평가 기술 비교 태양광 패널에서 얻은 태양 조도 데이터를 바탕으로 도출한 내구성 평가 기술을 적용하여 장기 운전하는 동안 수전해 시스템의 성능 변화를 추적하였다. 특히, 기존에 보고된 정전류법 및 순환전류법 기반 내구성 평가 기술을 적용하였을 때 결과와 비교 분석하여 기존 내구성 평가 기술로는 그린수소 생산 장치의 수명을 예측하는 데 실효성에 한계가 있음을 확인하였다. [그림 2] 태양광 기반 내구성 평가 전/후 수전해 핵심소재 열화분석 태양광 기반 내구성 평가 전/후 수전해 핵심소재(전해질막, 촉매, 확산체) 성능 저하 정도를 파악할 수 있는 표준화된 분석법 및 성능 저하 지표를 내구성 평가 조건별로 비교 분석하여 그린수소 생산 장치에 적합한 소재 개발 지침을 제시하였다.
태양광 이용한 그린수소 생산 경제성 사전에 예측하는 내구성 평가기술 개발
- 태양광 출력 변동성 반영 그린수소 생산 장치 내구성 평가기술 개발 - 그린수소 생산용 수전해 장치 핵심 소재부품 개발 지침 제시 미래의 청정에너지 운반체로 그린수소가 주목받으면서 어떤 재생에너지를 에너지원으로 활용할 것인지에 대한 문제 역시 중요해지고 있다. 그중 태양광은 지구 어디에나 존재하는 태양을 이용하기 때문에 자연 지형의 의존성이 낮은 장점이 있다. 그러나 계절 및 날씨 등에 따른 태양광 출력과 발전량 변화는 전력의 상승과 하강을 반복적으로 유발해 생산 장치의 부품을 손상시키는 문제가 있어 최적의 부품 교체 시기 및 신소재 개발을 위해서는 장치의 내구성을 정밀하게 평가할 수 있는 기술이 중요하다. 한국과학기술연구원(KIST, 원장 윤석진) 수소·연료전지연구센터 서보라 박사 연구팀은 실제 태양의 조도 데이터를 활용해 1초 단위의 단계 지속시간을 갖는 그린수소 생산 장치의 내구성 평가기술을 개발했다고 밝혔다. 이는 현재까지 개발된 기술 중 가장 짧은 단계 지속시간을 적용한 것으로 실제 태양광 에너지의 출력 변동성을 가장 유사하게 시뮬레이션할 수 있다. 태양광 기반 그린수소 생산 장치의 성능저하 원인이 파악되더라도 이를 개선하기 위해서는 신뢰도가 높은 내구성 평가기술 확보가 필요하다. 하지만 지금까지는 단순히 전류를 순환하거나 일정하게 유지하는 방법으로 평가를 수행해 태양광 출력 변동성을 정밀하게 반영하지 못했다. 그뿐만 아니라 전력 변동 조건에서 우수한 내구성을 갖는 핵심 소재 개발을 위한 수전해 장치의 내구성 평가 기준도 없었다. 연구팀은 태양광 패널에서 얻은 실제 태양 조도 데이터와 수전해 스택 데이터를 활용해 조도 값을 전류밀도로 변환하는 시뮬레이션 방법을 최초로 개발했다. 이를 통해 순환전압전류법 등 기존 내구성 평가기술에서는 10초에서 3분까지 소요되던 단계 지속시간을 1초 단위로 획기적으로 단축해 태양광 출력 변동성을 실제와 유사하게 반영할 수 있게 됐다. 또한, 새롭게 개발한 내구성 평가기술을 바탕으로 수전해 장치의 소재 개발에 대한 핵심 지표를 제시했다. 전력 변동 조건에서의 촉매, 전해질막 등 소재의 성능저하 정도를 파악할 수 있는 표준화된 분석법과 촉매 용출량, 불소 배출량, 산화막 두께 등 성능저하 지표를 새롭게 제안했다. 이는 내구성 및 성능개선을 위한 그린수소 생산 장치의 소재 및 부품 개발 지침으로 활용될 수 있다. 이번에 개발된 내구성 평가기술은 태양광을 활용하는 그린수소 생산 장치의 정확한 상태진단 및 잔여 수명을 예측해 설비교체나 운영연장 여부 등을 판단할 수 있다. 해당 기술은 해상풍력, 조력발전 등 다른 신재생에너지 기반 그린수소 생산 장치의 성능을 평가하는 데에도 적용이 가능할 것으로 기대된다. KIST 서보라 박사는 “이번 연구 성과는 태양광 출력 변동성을 현실에 가장 가깝게 반영해 그린수소 생산 장치의 내구성을 평가한 첫 번째 시도”라며, “이를 통해 그린수소 생산 시스템에 대한 효율적인 설비투자와 소재·부품 경쟁력 강화에 기여할 수 있을 것”이라고 말했다. 본 연구는 과학기술정보통신부(장관 이종호)의 지원으로 KIST 주요사업과 산업통상자원부(장관 안덕근)의 소재부품기술개발사업(20022451)으로 수행됐다. 이번 연구 성과는 환경 에너지 분야 국제 저명 학술지 「Energy & Environmental Science」 (IF 32.5, JCR 상위 0.4%)에 게재됐다. * 논문명 : Systematic degradation analysis in renewable energy-powered proton exchange membrane water electrolysis [그림 1] 태양광 기반 내구성 평가 기술과 정전류법 및 순환전류법 내구성 평가 기술 비교 태양광 패널에서 얻은 태양 조도 데이터를 바탕으로 도출한 내구성 평가 기술을 적용하여 장기 운전하는 동안 수전해 시스템의 성능 변화를 추적하였다. 특히, 기존에 보고된 정전류법 및 순환전류법 기반 내구성 평가 기술을 적용하였을 때 결과와 비교 분석하여 기존 내구성 평가 기술로는 그린수소 생산 장치의 수명을 예측하는 데 실효성에 한계가 있음을 확인하였다. [그림 2] 태양광 기반 내구성 평가 전/후 수전해 핵심소재 열화분석 태양광 기반 내구성 평가 전/후 수전해 핵심소재(전해질막, 촉매, 확산체) 성능 저하 정도를 파악할 수 있는 표준화된 분석법 및 성능 저하 지표를 내구성 평가 조건별로 비교 분석하여 그린수소 생산 장치에 적합한 소재 개발 지침을 제시하였다.
태양광 이용한 그린수소 생산 경제성 사전에 예측하는 내구성 평가기술 개발
- 태양광 출력 변동성 반영 그린수소 생산 장치 내구성 평가기술 개발 - 그린수소 생산용 수전해 장치 핵심 소재부품 개발 지침 제시 미래의 청정에너지 운반체로 그린수소가 주목받으면서 어떤 재생에너지를 에너지원으로 활용할 것인지에 대한 문제 역시 중요해지고 있다. 그중 태양광은 지구 어디에나 존재하는 태양을 이용하기 때문에 자연 지형의 의존성이 낮은 장점이 있다. 그러나 계절 및 날씨 등에 따른 태양광 출력과 발전량 변화는 전력의 상승과 하강을 반복적으로 유발해 생산 장치의 부품을 손상시키는 문제가 있어 최적의 부품 교체 시기 및 신소재 개발을 위해서는 장치의 내구성을 정밀하게 평가할 수 있는 기술이 중요하다. 한국과학기술연구원(KIST, 원장 윤석진) 수소·연료전지연구센터 서보라 박사 연구팀은 실제 태양의 조도 데이터를 활용해 1초 단위의 단계 지속시간을 갖는 그린수소 생산 장치의 내구성 평가기술을 개발했다고 밝혔다. 이는 현재까지 개발된 기술 중 가장 짧은 단계 지속시간을 적용한 것으로 실제 태양광 에너지의 출력 변동성을 가장 유사하게 시뮬레이션할 수 있다. 태양광 기반 그린수소 생산 장치의 성능저하 원인이 파악되더라도 이를 개선하기 위해서는 신뢰도가 높은 내구성 평가기술 확보가 필요하다. 하지만 지금까지는 단순히 전류를 순환하거나 일정하게 유지하는 방법으로 평가를 수행해 태양광 출력 변동성을 정밀하게 반영하지 못했다. 그뿐만 아니라 전력 변동 조건에서 우수한 내구성을 갖는 핵심 소재 개발을 위한 수전해 장치의 내구성 평가 기준도 없었다. 연구팀은 태양광 패널에서 얻은 실제 태양 조도 데이터와 수전해 스택 데이터를 활용해 조도 값을 전류밀도로 변환하는 시뮬레이션 방법을 최초로 개발했다. 이를 통해 순환전압전류법 등 기존 내구성 평가기술에서는 10초에서 3분까지 소요되던 단계 지속시간을 1초 단위로 획기적으로 단축해 태양광 출력 변동성을 실제와 유사하게 반영할 수 있게 됐다. 또한, 새롭게 개발한 내구성 평가기술을 바탕으로 수전해 장치의 소재 개발에 대한 핵심 지표를 제시했다. 전력 변동 조건에서의 촉매, 전해질막 등 소재의 성능저하 정도를 파악할 수 있는 표준화된 분석법과 촉매 용출량, 불소 배출량, 산화막 두께 등 성능저하 지표를 새롭게 제안했다. 이는 내구성 및 성능개선을 위한 그린수소 생산 장치의 소재 및 부품 개발 지침으로 활용될 수 있다. 이번에 개발된 내구성 평가기술은 태양광을 활용하는 그린수소 생산 장치의 정확한 상태진단 및 잔여 수명을 예측해 설비교체나 운영연장 여부 등을 판단할 수 있다. 해당 기술은 해상풍력, 조력발전 등 다른 신재생에너지 기반 그린수소 생산 장치의 성능을 평가하는 데에도 적용이 가능할 것으로 기대된다. KIST 서보라 박사는 “이번 연구 성과는 태양광 출력 변동성을 현실에 가장 가깝게 반영해 그린수소 생산 장치의 내구성을 평가한 첫 번째 시도”라며, “이를 통해 그린수소 생산 시스템에 대한 효율적인 설비투자와 소재·부품 경쟁력 강화에 기여할 수 있을 것”이라고 말했다. 본 연구는 과학기술정보통신부(장관 이종호)의 지원으로 KIST 주요사업과 산업통상자원부(장관 안덕근)의 소재부품기술개발사업(20022451)으로 수행됐다. 이번 연구 성과는 환경 에너지 분야 국제 저명 학술지 「Energy & Environmental Science」 (IF 32.5, JCR 상위 0.4%)에 게재됐다. * 논문명 : Systematic degradation analysis in renewable energy-powered proton exchange membrane water electrolysis [그림 1] 태양광 기반 내구성 평가 기술과 정전류법 및 순환전류법 내구성 평가 기술 비교 태양광 패널에서 얻은 태양 조도 데이터를 바탕으로 도출한 내구성 평가 기술을 적용하여 장기 운전하는 동안 수전해 시스템의 성능 변화를 추적하였다. 특히, 기존에 보고된 정전류법 및 순환전류법 기반 내구성 평가 기술을 적용하였을 때 결과와 비교 분석하여 기존 내구성 평가 기술로는 그린수소 생산 장치의 수명을 예측하는 데 실효성에 한계가 있음을 확인하였다. [그림 2] 태양광 기반 내구성 평가 전/후 수전해 핵심소재 열화분석 태양광 기반 내구성 평가 전/후 수전해 핵심소재(전해질막, 촉매, 확산체) 성능 저하 정도를 파악할 수 있는 표준화된 분석법 및 성능 저하 지표를 내구성 평가 조건별로 비교 분석하여 그린수소 생산 장치에 적합한 소재 개발 지침을 제시하였다.
태양광 이용한 그린수소 생산 경제성 사전에 예측하는 내구성 평가기술 개발
- 태양광 출력 변동성 반영 그린수소 생산 장치 내구성 평가기술 개발 - 그린수소 생산용 수전해 장치 핵심 소재부품 개발 지침 제시 미래의 청정에너지 운반체로 그린수소가 주목받으면서 어떤 재생에너지를 에너지원으로 활용할 것인지에 대한 문제 역시 중요해지고 있다. 그중 태양광은 지구 어디에나 존재하는 태양을 이용하기 때문에 자연 지형의 의존성이 낮은 장점이 있다. 그러나 계절 및 날씨 등에 따른 태양광 출력과 발전량 변화는 전력의 상승과 하강을 반복적으로 유발해 생산 장치의 부품을 손상시키는 문제가 있어 최적의 부품 교체 시기 및 신소재 개발을 위해서는 장치의 내구성을 정밀하게 평가할 수 있는 기술이 중요하다. 한국과학기술연구원(KIST, 원장 윤석진) 수소·연료전지연구센터 서보라 박사 연구팀은 실제 태양의 조도 데이터를 활용해 1초 단위의 단계 지속시간을 갖는 그린수소 생산 장치의 내구성 평가기술을 개발했다고 밝혔다. 이는 현재까지 개발된 기술 중 가장 짧은 단계 지속시간을 적용한 것으로 실제 태양광 에너지의 출력 변동성을 가장 유사하게 시뮬레이션할 수 있다. 태양광 기반 그린수소 생산 장치의 성능저하 원인이 파악되더라도 이를 개선하기 위해서는 신뢰도가 높은 내구성 평가기술 확보가 필요하다. 하지만 지금까지는 단순히 전류를 순환하거나 일정하게 유지하는 방법으로 평가를 수행해 태양광 출력 변동성을 정밀하게 반영하지 못했다. 그뿐만 아니라 전력 변동 조건에서 우수한 내구성을 갖는 핵심 소재 개발을 위한 수전해 장치의 내구성 평가 기준도 없었다. 연구팀은 태양광 패널에서 얻은 실제 태양 조도 데이터와 수전해 스택 데이터를 활용해 조도 값을 전류밀도로 변환하는 시뮬레이션 방법을 최초로 개발했다. 이를 통해 순환전압전류법 등 기존 내구성 평가기술에서는 10초에서 3분까지 소요되던 단계 지속시간을 1초 단위로 획기적으로 단축해 태양광 출력 변동성을 실제와 유사하게 반영할 수 있게 됐다. 또한, 새롭게 개발한 내구성 평가기술을 바탕으로 수전해 장치의 소재 개발에 대한 핵심 지표를 제시했다. 전력 변동 조건에서의 촉매, 전해질막 등 소재의 성능저하 정도를 파악할 수 있는 표준화된 분석법과 촉매 용출량, 불소 배출량, 산화막 두께 등 성능저하 지표를 새롭게 제안했다. 이는 내구성 및 성능개선을 위한 그린수소 생산 장치의 소재 및 부품 개발 지침으로 활용될 수 있다. 이번에 개발된 내구성 평가기술은 태양광을 활용하는 그린수소 생산 장치의 정확한 상태진단 및 잔여 수명을 예측해 설비교체나 운영연장 여부 등을 판단할 수 있다. 해당 기술은 해상풍력, 조력발전 등 다른 신재생에너지 기반 그린수소 생산 장치의 성능을 평가하는 데에도 적용이 가능할 것으로 기대된다. KIST 서보라 박사는 “이번 연구 성과는 태양광 출력 변동성을 현실에 가장 가깝게 반영해 그린수소 생산 장치의 내구성을 평가한 첫 번째 시도”라며, “이를 통해 그린수소 생산 시스템에 대한 효율적인 설비투자와 소재·부품 경쟁력 강화에 기여할 수 있을 것”이라고 말했다. 본 연구는 과학기술정보통신부(장관 이종호)의 지원으로 KIST 주요사업과 산업통상자원부(장관 안덕근)의 소재부품기술개발사업(20022451)으로 수행됐다. 이번 연구 성과는 환경 에너지 분야 국제 저명 학술지 「Energy & Environmental Science」 (IF 32.5, JCR 상위 0.4%)에 게재됐다. * 논문명 : Systematic degradation analysis in renewable energy-powered proton exchange membrane water electrolysis [그림 1] 태양광 기반 내구성 평가 기술과 정전류법 및 순환전류법 내구성 평가 기술 비교 태양광 패널에서 얻은 태양 조도 데이터를 바탕으로 도출한 내구성 평가 기술을 적용하여 장기 운전하는 동안 수전해 시스템의 성능 변화를 추적하였다. 특히, 기존에 보고된 정전류법 및 순환전류법 기반 내구성 평가 기술을 적용하였을 때 결과와 비교 분석하여 기존 내구성 평가 기술로는 그린수소 생산 장치의 수명을 예측하는 데 실효성에 한계가 있음을 확인하였다. [그림 2] 태양광 기반 내구성 평가 전/후 수전해 핵심소재 열화분석 태양광 기반 내구성 평가 전/후 수전해 핵심소재(전해질막, 촉매, 확산체) 성능 저하 정도를 파악할 수 있는 표준화된 분석법 및 성능 저하 지표를 내구성 평가 조건별로 비교 분석하여 그린수소 생산 장치에 적합한 소재 개발 지침을 제시하였다.
태양광 이용한 그린수소 생산 경제성 사전에 예측하는 내구성 평가기술 개발
- 태양광 출력 변동성 반영 그린수소 생산 장치 내구성 평가기술 개발 - 그린수소 생산용 수전해 장치 핵심 소재부품 개발 지침 제시 미래의 청정에너지 운반체로 그린수소가 주목받으면서 어떤 재생에너지를 에너지원으로 활용할 것인지에 대한 문제 역시 중요해지고 있다. 그중 태양광은 지구 어디에나 존재하는 태양을 이용하기 때문에 자연 지형의 의존성이 낮은 장점이 있다. 그러나 계절 및 날씨 등에 따른 태양광 출력과 발전량 변화는 전력의 상승과 하강을 반복적으로 유발해 생산 장치의 부품을 손상시키는 문제가 있어 최적의 부품 교체 시기 및 신소재 개발을 위해서는 장치의 내구성을 정밀하게 평가할 수 있는 기술이 중요하다. 한국과학기술연구원(KIST, 원장 윤석진) 수소·연료전지연구센터 서보라 박사 연구팀은 실제 태양의 조도 데이터를 활용해 1초 단위의 단계 지속시간을 갖는 그린수소 생산 장치의 내구성 평가기술을 개발했다고 밝혔다. 이는 현재까지 개발된 기술 중 가장 짧은 단계 지속시간을 적용한 것으로 실제 태양광 에너지의 출력 변동성을 가장 유사하게 시뮬레이션할 수 있다. 태양광 기반 그린수소 생산 장치의 성능저하 원인이 파악되더라도 이를 개선하기 위해서는 신뢰도가 높은 내구성 평가기술 확보가 필요하다. 하지만 지금까지는 단순히 전류를 순환하거나 일정하게 유지하는 방법으로 평가를 수행해 태양광 출력 변동성을 정밀하게 반영하지 못했다. 그뿐만 아니라 전력 변동 조건에서 우수한 내구성을 갖는 핵심 소재 개발을 위한 수전해 장치의 내구성 평가 기준도 없었다. 연구팀은 태양광 패널에서 얻은 실제 태양 조도 데이터와 수전해 스택 데이터를 활용해 조도 값을 전류밀도로 변환하는 시뮬레이션 방법을 최초로 개발했다. 이를 통해 순환전압전류법 등 기존 내구성 평가기술에서는 10초에서 3분까지 소요되던 단계 지속시간을 1초 단위로 획기적으로 단축해 태양광 출력 변동성을 실제와 유사하게 반영할 수 있게 됐다. 또한, 새롭게 개발한 내구성 평가기술을 바탕으로 수전해 장치의 소재 개발에 대한 핵심 지표를 제시했다. 전력 변동 조건에서의 촉매, 전해질막 등 소재의 성능저하 정도를 파악할 수 있는 표준화된 분석법과 촉매 용출량, 불소 배출량, 산화막 두께 등 성능저하 지표를 새롭게 제안했다. 이는 내구성 및 성능개선을 위한 그린수소 생산 장치의 소재 및 부품 개발 지침으로 활용될 수 있다. 이번에 개발된 내구성 평가기술은 태양광을 활용하는 그린수소 생산 장치의 정확한 상태진단 및 잔여 수명을 예측해 설비교체나 운영연장 여부 등을 판단할 수 있다. 해당 기술은 해상풍력, 조력발전 등 다른 신재생에너지 기반 그린수소 생산 장치의 성능을 평가하는 데에도 적용이 가능할 것으로 기대된다. KIST 서보라 박사는 “이번 연구 성과는 태양광 출력 변동성을 현실에 가장 가깝게 반영해 그린수소 생산 장치의 내구성을 평가한 첫 번째 시도”라며, “이를 통해 그린수소 생산 시스템에 대한 효율적인 설비투자와 소재·부품 경쟁력 강화에 기여할 수 있을 것”이라고 말했다. 본 연구는 과학기술정보통신부(장관 이종호)의 지원으로 KIST 주요사업과 산업통상자원부(장관 안덕근)의 소재부품기술개발사업(20022451)으로 수행됐다. 이번 연구 성과는 환경 에너지 분야 국제 저명 학술지 「Energy & Environmental Science」 (IF 32.5, JCR 상위 0.4%)에 게재됐다. * 논문명 : Systematic degradation analysis in renewable energy-powered proton exchange membrane water electrolysis [그림 1] 태양광 기반 내구성 평가 기술과 정전류법 및 순환전류법 내구성 평가 기술 비교 태양광 패널에서 얻은 태양 조도 데이터를 바탕으로 도출한 내구성 평가 기술을 적용하여 장기 운전하는 동안 수전해 시스템의 성능 변화를 추적하였다. 특히, 기존에 보고된 정전류법 및 순환전류법 기반 내구성 평가 기술을 적용하였을 때 결과와 비교 분석하여 기존 내구성 평가 기술로는 그린수소 생산 장치의 수명을 예측하는 데 실효성에 한계가 있음을 확인하였다. [그림 2] 태양광 기반 내구성 평가 전/후 수전해 핵심소재 열화분석 태양광 기반 내구성 평가 전/후 수전해 핵심소재(전해질막, 촉매, 확산체) 성능 저하 정도를 파악할 수 있는 표준화된 분석법 및 성능 저하 지표를 내구성 평가 조건별로 비교 분석하여 그린수소 생산 장치에 적합한 소재 개발 지침을 제시하였다.
태양광 이용한 그린수소 생산 경제성 사전에 예측하는 내구성 평가기술 개발
- 태양광 출력 변동성 반영 그린수소 생산 장치 내구성 평가기술 개발 - 그린수소 생산용 수전해 장치 핵심 소재부품 개발 지침 제시 미래의 청정에너지 운반체로 그린수소가 주목받으면서 어떤 재생에너지를 에너지원으로 활용할 것인지에 대한 문제 역시 중요해지고 있다. 그중 태양광은 지구 어디에나 존재하는 태양을 이용하기 때문에 자연 지형의 의존성이 낮은 장점이 있다. 그러나 계절 및 날씨 등에 따른 태양광 출력과 발전량 변화는 전력의 상승과 하강을 반복적으로 유발해 생산 장치의 부품을 손상시키는 문제가 있어 최적의 부품 교체 시기 및 신소재 개발을 위해서는 장치의 내구성을 정밀하게 평가할 수 있는 기술이 중요하다. 한국과학기술연구원(KIST, 원장 윤석진) 수소·연료전지연구센터 서보라 박사 연구팀은 실제 태양의 조도 데이터를 활용해 1초 단위의 단계 지속시간을 갖는 그린수소 생산 장치의 내구성 평가기술을 개발했다고 밝혔다. 이는 현재까지 개발된 기술 중 가장 짧은 단계 지속시간을 적용한 것으로 실제 태양광 에너지의 출력 변동성을 가장 유사하게 시뮬레이션할 수 있다. 태양광 기반 그린수소 생산 장치의 성능저하 원인이 파악되더라도 이를 개선하기 위해서는 신뢰도가 높은 내구성 평가기술 확보가 필요하다. 하지만 지금까지는 단순히 전류를 순환하거나 일정하게 유지하는 방법으로 평가를 수행해 태양광 출력 변동성을 정밀하게 반영하지 못했다. 그뿐만 아니라 전력 변동 조건에서 우수한 내구성을 갖는 핵심 소재 개발을 위한 수전해 장치의 내구성 평가 기준도 없었다. 연구팀은 태양광 패널에서 얻은 실제 태양 조도 데이터와 수전해 스택 데이터를 활용해 조도 값을 전류밀도로 변환하는 시뮬레이션 방법을 최초로 개발했다. 이를 통해 순환전압전류법 등 기존 내구성 평가기술에서는 10초에서 3분까지 소요되던 단계 지속시간을 1초 단위로 획기적으로 단축해 태양광 출력 변동성을 실제와 유사하게 반영할 수 있게 됐다. 또한, 새롭게 개발한 내구성 평가기술을 바탕으로 수전해 장치의 소재 개발에 대한 핵심 지표를 제시했다. 전력 변동 조건에서의 촉매, 전해질막 등 소재의 성능저하 정도를 파악할 수 있는 표준화된 분석법과 촉매 용출량, 불소 배출량, 산화막 두께 등 성능저하 지표를 새롭게 제안했다. 이는 내구성 및 성능개선을 위한 그린수소 생산 장치의 소재 및 부품 개발 지침으로 활용될 수 있다. 이번에 개발된 내구성 평가기술은 태양광을 활용하는 그린수소 생산 장치의 정확한 상태진단 및 잔여 수명을 예측해 설비교체나 운영연장 여부 등을 판단할 수 있다. 해당 기술은 해상풍력, 조력발전 등 다른 신재생에너지 기반 그린수소 생산 장치의 성능을 평가하는 데에도 적용이 가능할 것으로 기대된다. KIST 서보라 박사는 “이번 연구 성과는 태양광 출력 변동성을 현실에 가장 가깝게 반영해 그린수소 생산 장치의 내구성을 평가한 첫 번째 시도”라며, “이를 통해 그린수소 생산 시스템에 대한 효율적인 설비투자와 소재·부품 경쟁력 강화에 기여할 수 있을 것”이라고 말했다. 본 연구는 과학기술정보통신부(장관 이종호)의 지원으로 KIST 주요사업과 산업통상자원부(장관 안덕근)의 소재부품기술개발사업(20022451)으로 수행됐다. 이번 연구 성과는 환경 에너지 분야 국제 저명 학술지 「Energy & Environmental Science」 (IF 32.5, JCR 상위 0.4%)에 게재됐다. * 논문명 : Systematic degradation analysis in renewable energy-powered proton exchange membrane water electrolysis [그림 1] 태양광 기반 내구성 평가 기술과 정전류법 및 순환전류법 내구성 평가 기술 비교 태양광 패널에서 얻은 태양 조도 데이터를 바탕으로 도출한 내구성 평가 기술을 적용하여 장기 운전하는 동안 수전해 시스템의 성능 변화를 추적하였다. 특히, 기존에 보고된 정전류법 및 순환전류법 기반 내구성 평가 기술을 적용하였을 때 결과와 비교 분석하여 기존 내구성 평가 기술로는 그린수소 생산 장치의 수명을 예측하는 데 실효성에 한계가 있음을 확인하였다. [그림 2] 태양광 기반 내구성 평가 전/후 수전해 핵심소재 열화분석 태양광 기반 내구성 평가 전/후 수전해 핵심소재(전해질막, 촉매, 확산체) 성능 저하 정도를 파악할 수 있는 표준화된 분석법 및 성능 저하 지표를 내구성 평가 조건별로 비교 분석하여 그린수소 생산 장치에 적합한 소재 개발 지침을 제시하였다.
태양광 이용한 그린수소 생산 경제성 사전에 예측하는 내구성 평가기술 개발
- 태양광 출력 변동성 반영 그린수소 생산 장치 내구성 평가기술 개발 - 그린수소 생산용 수전해 장치 핵심 소재부품 개발 지침 제시 미래의 청정에너지 운반체로 그린수소가 주목받으면서 어떤 재생에너지를 에너지원으로 활용할 것인지에 대한 문제 역시 중요해지고 있다. 그중 태양광은 지구 어디에나 존재하는 태양을 이용하기 때문에 자연 지형의 의존성이 낮은 장점이 있다. 그러나 계절 및 날씨 등에 따른 태양광 출력과 발전량 변화는 전력의 상승과 하강을 반복적으로 유발해 생산 장치의 부품을 손상시키는 문제가 있어 최적의 부품 교체 시기 및 신소재 개발을 위해서는 장치의 내구성을 정밀하게 평가할 수 있는 기술이 중요하다. 한국과학기술연구원(KIST, 원장 윤석진) 수소·연료전지연구센터 서보라 박사 연구팀은 실제 태양의 조도 데이터를 활용해 1초 단위의 단계 지속시간을 갖는 그린수소 생산 장치의 내구성 평가기술을 개발했다고 밝혔다. 이는 현재까지 개발된 기술 중 가장 짧은 단계 지속시간을 적용한 것으로 실제 태양광 에너지의 출력 변동성을 가장 유사하게 시뮬레이션할 수 있다. 태양광 기반 그린수소 생산 장치의 성능저하 원인이 파악되더라도 이를 개선하기 위해서는 신뢰도가 높은 내구성 평가기술 확보가 필요하다. 하지만 지금까지는 단순히 전류를 순환하거나 일정하게 유지하는 방법으로 평가를 수행해 태양광 출력 변동성을 정밀하게 반영하지 못했다. 그뿐만 아니라 전력 변동 조건에서 우수한 내구성을 갖는 핵심 소재 개발을 위한 수전해 장치의 내구성 평가 기준도 없었다. 연구팀은 태양광 패널에서 얻은 실제 태양 조도 데이터와 수전해 스택 데이터를 활용해 조도 값을 전류밀도로 변환하는 시뮬레이션 방법을 최초로 개발했다. 이를 통해 순환전압전류법 등 기존 내구성 평가기술에서는 10초에서 3분까지 소요되던 단계 지속시간을 1초 단위로 획기적으로 단축해 태양광 출력 변동성을 실제와 유사하게 반영할 수 있게 됐다. 또한, 새롭게 개발한 내구성 평가기술을 바탕으로 수전해 장치의 소재 개발에 대한 핵심 지표를 제시했다. 전력 변동 조건에서의 촉매, 전해질막 등 소재의 성능저하 정도를 파악할 수 있는 표준화된 분석법과 촉매 용출량, 불소 배출량, 산화막 두께 등 성능저하 지표를 새롭게 제안했다. 이는 내구성 및 성능개선을 위한 그린수소 생산 장치의 소재 및 부품 개발 지침으로 활용될 수 있다. 이번에 개발된 내구성 평가기술은 태양광을 활용하는 그린수소 생산 장치의 정확한 상태진단 및 잔여 수명을 예측해 설비교체나 운영연장 여부 등을 판단할 수 있다. 해당 기술은 해상풍력, 조력발전 등 다른 신재생에너지 기반 그린수소 생산 장치의 성능을 평가하는 데에도 적용이 가능할 것으로 기대된다. KIST 서보라 박사는 “이번 연구 성과는 태양광 출력 변동성을 현실에 가장 가깝게 반영해 그린수소 생산 장치의 내구성을 평가한 첫 번째 시도”라며, “이를 통해 그린수소 생산 시스템에 대한 효율적인 설비투자와 소재·부품 경쟁력 강화에 기여할 수 있을 것”이라고 말했다. 본 연구는 과학기술정보통신부(장관 이종호)의 지원으로 KIST 주요사업과 산업통상자원부(장관 안덕근)의 소재부품기술개발사업(20022451)으로 수행됐다. 이번 연구 성과는 환경 에너지 분야 국제 저명 학술지 「Energy & Environmental Science」 (IF 32.5, JCR 상위 0.4%)에 게재됐다. * 논문명 : Systematic degradation analysis in renewable energy-powered proton exchange membrane water electrolysis [그림 1] 태양광 기반 내구성 평가 기술과 정전류법 및 순환전류법 내구성 평가 기술 비교 태양광 패널에서 얻은 태양 조도 데이터를 바탕으로 도출한 내구성 평가 기술을 적용하여 장기 운전하는 동안 수전해 시스템의 성능 변화를 추적하였다. 특히, 기존에 보고된 정전류법 및 순환전류법 기반 내구성 평가 기술을 적용하였을 때 결과와 비교 분석하여 기존 내구성 평가 기술로는 그린수소 생산 장치의 수명을 예측하는 데 실효성에 한계가 있음을 확인하였다. [그림 2] 태양광 기반 내구성 평가 전/후 수전해 핵심소재 열화분석 태양광 기반 내구성 평가 전/후 수전해 핵심소재(전해질막, 촉매, 확산체) 성능 저하 정도를 파악할 수 있는 표준화된 분석법 및 성능 저하 지표를 내구성 평가 조건별로 비교 분석하여 그린수소 생산 장치에 적합한 소재 개발 지침을 제시하였다.
태양광 이용한 그린수소 생산 경제성 사전에 예측하는 내구성 평가기술 개발
- 태양광 출력 변동성 반영 그린수소 생산 장치 내구성 평가기술 개발 - 그린수소 생산용 수전해 장치 핵심 소재부품 개발 지침 제시 미래의 청정에너지 운반체로 그린수소가 주목받으면서 어떤 재생에너지를 에너지원으로 활용할 것인지에 대한 문제 역시 중요해지고 있다. 그중 태양광은 지구 어디에나 존재하는 태양을 이용하기 때문에 자연 지형의 의존성이 낮은 장점이 있다. 그러나 계절 및 날씨 등에 따른 태양광 출력과 발전량 변화는 전력의 상승과 하강을 반복적으로 유발해 생산 장치의 부품을 손상시키는 문제가 있어 최적의 부품 교체 시기 및 신소재 개발을 위해서는 장치의 내구성을 정밀하게 평가할 수 있는 기술이 중요하다. 한국과학기술연구원(KIST, 원장 윤석진) 수소·연료전지연구센터 서보라 박사 연구팀은 실제 태양의 조도 데이터를 활용해 1초 단위의 단계 지속시간을 갖는 그린수소 생산 장치의 내구성 평가기술을 개발했다고 밝혔다. 이는 현재까지 개발된 기술 중 가장 짧은 단계 지속시간을 적용한 것으로 실제 태양광 에너지의 출력 변동성을 가장 유사하게 시뮬레이션할 수 있다. 태양광 기반 그린수소 생산 장치의 성능저하 원인이 파악되더라도 이를 개선하기 위해서는 신뢰도가 높은 내구성 평가기술 확보가 필요하다. 하지만 지금까지는 단순히 전류를 순환하거나 일정하게 유지하는 방법으로 평가를 수행해 태양광 출력 변동성을 정밀하게 반영하지 못했다. 그뿐만 아니라 전력 변동 조건에서 우수한 내구성을 갖는 핵심 소재 개발을 위한 수전해 장치의 내구성 평가 기준도 없었다. 연구팀은 태양광 패널에서 얻은 실제 태양 조도 데이터와 수전해 스택 데이터를 활용해 조도 값을 전류밀도로 변환하는 시뮬레이션 방법을 최초로 개발했다. 이를 통해 순환전압전류법 등 기존 내구성 평가기술에서는 10초에서 3분까지 소요되던 단계 지속시간을 1초 단위로 획기적으로 단축해 태양광 출력 변동성을 실제와 유사하게 반영할 수 있게 됐다. 또한, 새롭게 개발한 내구성 평가기술을 바탕으로 수전해 장치의 소재 개발에 대한 핵심 지표를 제시했다. 전력 변동 조건에서의 촉매, 전해질막 등 소재의 성능저하 정도를 파악할 수 있는 표준화된 분석법과 촉매 용출량, 불소 배출량, 산화막 두께 등 성능저하 지표를 새롭게 제안했다. 이는 내구성 및 성능개선을 위한 그린수소 생산 장치의 소재 및 부품 개발 지침으로 활용될 수 있다. 이번에 개발된 내구성 평가기술은 태양광을 활용하는 그린수소 생산 장치의 정확한 상태진단 및 잔여 수명을 예측해 설비교체나 운영연장 여부 등을 판단할 수 있다. 해당 기술은 해상풍력, 조력발전 등 다른 신재생에너지 기반 그린수소 생산 장치의 성능을 평가하는 데에도 적용이 가능할 것으로 기대된다. KIST 서보라 박사는 “이번 연구 성과는 태양광 출력 변동성을 현실에 가장 가깝게 반영해 그린수소 생산 장치의 내구성을 평가한 첫 번째 시도”라며, “이를 통해 그린수소 생산 시스템에 대한 효율적인 설비투자와 소재·부품 경쟁력 강화에 기여할 수 있을 것”이라고 말했다. 본 연구는 과학기술정보통신부(장관 이종호)의 지원으로 KIST 주요사업과 산업통상자원부(장관 안덕근)의 소재부품기술개발사업(20022451)으로 수행됐다. 이번 연구 성과는 환경 에너지 분야 국제 저명 학술지 「Energy & Environmental Science」 (IF 32.5, JCR 상위 0.4%)에 게재됐다. * 논문명 : Systematic degradation analysis in renewable energy-powered proton exchange membrane water electrolysis [그림 1] 태양광 기반 내구성 평가 기술과 정전류법 및 순환전류법 내구성 평가 기술 비교 태양광 패널에서 얻은 태양 조도 데이터를 바탕으로 도출한 내구성 평가 기술을 적용하여 장기 운전하는 동안 수전해 시스템의 성능 변화를 추적하였다. 특히, 기존에 보고된 정전류법 및 순환전류법 기반 내구성 평가 기술을 적용하였을 때 결과와 비교 분석하여 기존 내구성 평가 기술로는 그린수소 생산 장치의 수명을 예측하는 데 실효성에 한계가 있음을 확인하였다. [그림 2] 태양광 기반 내구성 평가 전/후 수전해 핵심소재 열화분석 태양광 기반 내구성 평가 전/후 수전해 핵심소재(전해질막, 촉매, 확산체) 성능 저하 정도를 파악할 수 있는 표준화된 분석법 및 성능 저하 지표를 내구성 평가 조건별로 비교 분석하여 그린수소 생산 장치에 적합한 소재 개발 지침을 제시하였다.