검색결과
게시물 키워드""에 대한 9079개의 검색결과를 찾았습니다.
친환경 에너지 기술인 인공광합성, 고성능 대면적 전극 시스템 개발
- 산호 형태의 은 나노 촉매 전극을 고효율·대면적으로 개발 - 기체 상태에서의 전기화학적 이산화탄소 전환시스템 상용화 기틀 마련 한국과학기술연구원(KIST, 원장 직무대행 윤석진) 국가기반기술연구본부 청정에너지연구센터의 오형석, 이웅희 박사 연구팀은 베를린공과대학과(TU-Berlin)의 공동 연구를 통해 인공광합성의 주요 연구분야인 전기화학적 이산화탄소 전환 시스템에서 높은 효율로 일산화탄소를 얻을 수 있는 나노 크기의 산호 형태를 지닌 은 촉매 전극 및 대면적 시스템을 개발했다고 밝혔다. 인공광합성 시스템은 지구온난화의 원인이 되는 이산화탄소를 고부가가치를 갖고 있는 화학 물질로 전환하는 기술로, 환경오염 없이 이산화탄소를 제거하고 유용한 화학물질을 얻을 수 있다. 특히, 최근에는 전기화학적 이산화탄소 전환 시스템 분야가 높은 관심을 받고 있다. 기존 이산화탄소 전환 연구는 액체 상태(액상)에서 주로 진행되어 왔다. 하지만 액상에서는 전극을 물에 담근 형태로 성능을 측정하는데, 이산화탄소가 물에 잘 녹지않아 투입 에너지 대비 충분한 효율을 얻지 못하고 있었다. 최근 액체가 아닌 기체 상태에서 이산화탄소를 전환하는 시스템이 개발되어 효율을 높일 수 있을 것이라는 기대가 있었지만, 시스템에 적용할 수 있는 촉매, 전극에 개발에 대한 연구는 아직 미진한 편이었다. KIST-TU Berlin 공동 연구진은 일산화탄소 생성 효율이 높은 기체상태(기상)에서의 이산화탄소 전환 시스템용으로 나노크기의 산호형태 모양을 지닌 은 촉매 전극을 개발하였다. 해당 촉매는 기존 은 촉매에 비해 반응에 필요한 에너지가 적으며, 기존 액상 시스템에 비해 100배 이상의 일산화탄소를 생성할 수 있었다. 또한, 이산화탄소환원 시스템의 전극을 실험실 규모를 벗어나 실용화될 수 있도록 대면적화(50 cm)에 성공했다. KIST 연구진은 다양한 실시간 분석(Operando analysis)을 통해 촉매를 개발할 수 있었다. 실시간 X-선 흡수 분석법으로 염소이온을 통해 제조된 산호 형태의 은 나노 전극 촉매가 높은 표면적 및 다공성 구조로 인해 높은 물질 전달 능력을 보이는 것을 확인했다. 이는 높은 이산화탄소 전환 효율을 보임을 뜻한다. 그리고 이산화탄소 전환 반응 시 소수성(hydrophobicity)이 없을 경우 이산화탄소 전환 효율이 감소함을 확인하여 향후 이산화탄소 전환전극 개발 시 소수성의 필요성을 밝혀냈다. 본 연구를 진행한 KIST 오형석 박사는 “나노미터 크기의 산호 형태 은 촉매 전극의 개발을 통해 전기화학적 이산화탄소 전환 시스템의 전류 밀도 및 성능을 크게 향상시키고 추후 연구 방향을 제시하였다” 라며, “본 연구를 통해 전기화학적 이산화탄소 전환 시스템 연구 개발에 크게 기여할 것으로 기대한다.” 라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영)의 지원을 받아 KIST 주요사업 및 기후변화대응기술개발사업 수행되었으며 이번 연구결과는 에너지 환경 분야 국제 저널인 「Nano Energy」 (IF: 15.548, JCR 분야 상위 3.716%) 최신 호에 게재되었다. * (논문명) Highly Selective and Scalable CO2 to CO - Electrolysis using Coral-Nanostructured Ag Catalysts in zero-gap configuration - (제 1저자) 한국과학기술연구원 이웅희 박사후연구원 - (교신저자) 한국과학기술연구원 오형석 선임연구원 - (교신저자) 베를린공과대학 Peter strasser 교수 <그림설명> [그림 1] 산호 형태 은 전극을 이용한 이산화탄소 전환 시스템 개요도 [그림 2] 실시간 X-선 흡수 분석법을 통한 산호형태의 은 촉매 전극에서의 전기화학적 이산화탄소 환원 반응에 대한 전기장 효과 분석 개요도 [그림 3] 나노미터 크기의 산호 형태를 지닌 은 촉매 전극의 주사 전자 현미경(SEM) 사진
친환경 에너지 기술인 인공광합성, 고성능 대면적 전극 시스템 개발
- 산호 형태의 은 나노 촉매 전극을 고효율·대면적으로 개발 - 기체 상태에서의 전기화학적 이산화탄소 전환시스템 상용화 기틀 마련 한국과학기술연구원(KIST, 원장 직무대행 윤석진) 국가기반기술연구본부 청정에너지연구센터의 오형석, 이웅희 박사 연구팀은 베를린공과대학과(TU-Berlin)의 공동 연구를 통해 인공광합성의 주요 연구분야인 전기화학적 이산화탄소 전환 시스템에서 높은 효율로 일산화탄소를 얻을 수 있는 나노 크기의 산호 형태를 지닌 은 촉매 전극 및 대면적 시스템을 개발했다고 밝혔다. 인공광합성 시스템은 지구온난화의 원인이 되는 이산화탄소를 고부가가치를 갖고 있는 화학 물질로 전환하는 기술로, 환경오염 없이 이산화탄소를 제거하고 유용한 화학물질을 얻을 수 있다. 특히, 최근에는 전기화학적 이산화탄소 전환 시스템 분야가 높은 관심을 받고 있다. 기존 이산화탄소 전환 연구는 액체 상태(액상)에서 주로 진행되어 왔다. 하지만 액상에서는 전극을 물에 담근 형태로 성능을 측정하는데, 이산화탄소가 물에 잘 녹지않아 투입 에너지 대비 충분한 효율을 얻지 못하고 있었다. 최근 액체가 아닌 기체 상태에서 이산화탄소를 전환하는 시스템이 개발되어 효율을 높일 수 있을 것이라는 기대가 있었지만, 시스템에 적용할 수 있는 촉매, 전극에 개발에 대한 연구는 아직 미진한 편이었다. KIST-TU Berlin 공동 연구진은 일산화탄소 생성 효율이 높은 기체상태(기상)에서의 이산화탄소 전환 시스템용으로 나노크기의 산호형태 모양을 지닌 은 촉매 전극을 개발하였다. 해당 촉매는 기존 은 촉매에 비해 반응에 필요한 에너지가 적으며, 기존 액상 시스템에 비해 100배 이상의 일산화탄소를 생성할 수 있었다. 또한, 이산화탄소환원 시스템의 전극을 실험실 규모를 벗어나 실용화될 수 있도록 대면적화(50 cm)에 성공했다. KIST 연구진은 다양한 실시간 분석(Operando analysis)을 통해 촉매를 개발할 수 있었다. 실시간 X-선 흡수 분석법으로 염소이온을 통해 제조된 산호 형태의 은 나노 전극 촉매가 높은 표면적 및 다공성 구조로 인해 높은 물질 전달 능력을 보이는 것을 확인했다. 이는 높은 이산화탄소 전환 효율을 보임을 뜻한다. 그리고 이산화탄소 전환 반응 시 소수성(hydrophobicity)이 없을 경우 이산화탄소 전환 효율이 감소함을 확인하여 향후 이산화탄소 전환전극 개발 시 소수성의 필요성을 밝혀냈다. 본 연구를 진행한 KIST 오형석 박사는 “나노미터 크기의 산호 형태 은 촉매 전극의 개발을 통해 전기화학적 이산화탄소 전환 시스템의 전류 밀도 및 성능을 크게 향상시키고 추후 연구 방향을 제시하였다” 라며, “본 연구를 통해 전기화학적 이산화탄소 전환 시스템 연구 개발에 크게 기여할 것으로 기대한다.” 라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영)의 지원을 받아 KIST 주요사업 및 기후변화대응기술개발사업 수행되었으며 이번 연구결과는 에너지 환경 분야 국제 저널인 「Nano Energy」 (IF: 15.548, JCR 분야 상위 3.716%) 최신 호에 게재되었다. * (논문명) Highly Selective and Scalable CO2 to CO - Electrolysis using Coral-Nanostructured Ag Catalysts in zero-gap configuration - (제 1저자) 한국과학기술연구원 이웅희 박사후연구원 - (교신저자) 한국과학기술연구원 오형석 선임연구원 - (교신저자) 베를린공과대학 Peter strasser 교수 <그림설명> [그림 1] 산호 형태 은 전극을 이용한 이산화탄소 전환 시스템 개요도 [그림 2] 실시간 X-선 흡수 분석법을 통한 산호형태의 은 촉매 전극에서의 전기화학적 이산화탄소 환원 반응에 대한 전기장 효과 분석 개요도 [그림 3] 나노미터 크기의 산호 형태를 지닌 은 촉매 전극의 주사 전자 현미경(SEM) 사진
친환경 에너지 기술인 인공광합성, 고성능 대면적 전극 시스템 개발
- 산호 형태의 은 나노 촉매 전극을 고효율·대면적으로 개발 - 기체 상태에서의 전기화학적 이산화탄소 전환시스템 상용화 기틀 마련 한국과학기술연구원(KIST, 원장 직무대행 윤석진) 국가기반기술연구본부 청정에너지연구센터의 오형석, 이웅희 박사 연구팀은 베를린공과대학과(TU-Berlin)의 공동 연구를 통해 인공광합성의 주요 연구분야인 전기화학적 이산화탄소 전환 시스템에서 높은 효율로 일산화탄소를 얻을 수 있는 나노 크기의 산호 형태를 지닌 은 촉매 전극 및 대면적 시스템을 개발했다고 밝혔다. 인공광합성 시스템은 지구온난화의 원인이 되는 이산화탄소를 고부가가치를 갖고 있는 화학 물질로 전환하는 기술로, 환경오염 없이 이산화탄소를 제거하고 유용한 화학물질을 얻을 수 있다. 특히, 최근에는 전기화학적 이산화탄소 전환 시스템 분야가 높은 관심을 받고 있다. 기존 이산화탄소 전환 연구는 액체 상태(액상)에서 주로 진행되어 왔다. 하지만 액상에서는 전극을 물에 담근 형태로 성능을 측정하는데, 이산화탄소가 물에 잘 녹지않아 투입 에너지 대비 충분한 효율을 얻지 못하고 있었다. 최근 액체가 아닌 기체 상태에서 이산화탄소를 전환하는 시스템이 개발되어 효율을 높일 수 있을 것이라는 기대가 있었지만, 시스템에 적용할 수 있는 촉매, 전극에 개발에 대한 연구는 아직 미진한 편이었다. KIST-TU Berlin 공동 연구진은 일산화탄소 생성 효율이 높은 기체상태(기상)에서의 이산화탄소 전환 시스템용으로 나노크기의 산호형태 모양을 지닌 은 촉매 전극을 개발하였다. 해당 촉매는 기존 은 촉매에 비해 반응에 필요한 에너지가 적으며, 기존 액상 시스템에 비해 100배 이상의 일산화탄소를 생성할 수 있었다. 또한, 이산화탄소환원 시스템의 전극을 실험실 규모를 벗어나 실용화될 수 있도록 대면적화(50 cm)에 성공했다. KIST 연구진은 다양한 실시간 분석(Operando analysis)을 통해 촉매를 개발할 수 있었다. 실시간 X-선 흡수 분석법으로 염소이온을 통해 제조된 산호 형태의 은 나노 전극 촉매가 높은 표면적 및 다공성 구조로 인해 높은 물질 전달 능력을 보이는 것을 확인했다. 이는 높은 이산화탄소 전환 효율을 보임을 뜻한다. 그리고 이산화탄소 전환 반응 시 소수성(hydrophobicity)이 없을 경우 이산화탄소 전환 효율이 감소함을 확인하여 향후 이산화탄소 전환전극 개발 시 소수성의 필요성을 밝혀냈다. 본 연구를 진행한 KIST 오형석 박사는 “나노미터 크기의 산호 형태 은 촉매 전극의 개발을 통해 전기화학적 이산화탄소 전환 시스템의 전류 밀도 및 성능을 크게 향상시키고 추후 연구 방향을 제시하였다” 라며, “본 연구를 통해 전기화학적 이산화탄소 전환 시스템 연구 개발에 크게 기여할 것으로 기대한다.” 라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영)의 지원을 받아 KIST 주요사업 및 기후변화대응기술개발사업 수행되었으며 이번 연구결과는 에너지 환경 분야 국제 저널인 「Nano Energy」 (IF: 15.548, JCR 분야 상위 3.716%) 최신 호에 게재되었다. * (논문명) Highly Selective and Scalable CO2 to CO - Electrolysis using Coral-Nanostructured Ag Catalysts in zero-gap configuration - (제 1저자) 한국과학기술연구원 이웅희 박사후연구원 - (교신저자) 한국과학기술연구원 오형석 선임연구원 - (교신저자) 베를린공과대학 Peter strasser 교수 <그림설명> [그림 1] 산호 형태 은 전극을 이용한 이산화탄소 전환 시스템 개요도 [그림 2] 실시간 X-선 흡수 분석법을 통한 산호형태의 은 촉매 전극에서의 전기화학적 이산화탄소 환원 반응에 대한 전기장 효과 분석 개요도 [그림 3] 나노미터 크기의 산호 형태를 지닌 은 촉매 전극의 주사 전자 현미경(SEM) 사진
친환경 에너지 기술인 인공광합성, 고성능 대면적 전극 시스템 개발
- 산호 형태의 은 나노 촉매 전극을 고효율·대면적으로 개발 - 기체 상태에서의 전기화학적 이산화탄소 전환시스템 상용화 기틀 마련 한국과학기술연구원(KIST, 원장 직무대행 윤석진) 국가기반기술연구본부 청정에너지연구센터의 오형석, 이웅희 박사 연구팀은 베를린공과대학과(TU-Berlin)의 공동 연구를 통해 인공광합성의 주요 연구분야인 전기화학적 이산화탄소 전환 시스템에서 높은 효율로 일산화탄소를 얻을 수 있는 나노 크기의 산호 형태를 지닌 은 촉매 전극 및 대면적 시스템을 개발했다고 밝혔다. 인공광합성 시스템은 지구온난화의 원인이 되는 이산화탄소를 고부가가치를 갖고 있는 화학 물질로 전환하는 기술로, 환경오염 없이 이산화탄소를 제거하고 유용한 화학물질을 얻을 수 있다. 특히, 최근에는 전기화학적 이산화탄소 전환 시스템 분야가 높은 관심을 받고 있다. 기존 이산화탄소 전환 연구는 액체 상태(액상)에서 주로 진행되어 왔다. 하지만 액상에서는 전극을 물에 담근 형태로 성능을 측정하는데, 이산화탄소가 물에 잘 녹지않아 투입 에너지 대비 충분한 효율을 얻지 못하고 있었다. 최근 액체가 아닌 기체 상태에서 이산화탄소를 전환하는 시스템이 개발되어 효율을 높일 수 있을 것이라는 기대가 있었지만, 시스템에 적용할 수 있는 촉매, 전극에 개발에 대한 연구는 아직 미진한 편이었다. KIST-TU Berlin 공동 연구진은 일산화탄소 생성 효율이 높은 기체상태(기상)에서의 이산화탄소 전환 시스템용으로 나노크기의 산호형태 모양을 지닌 은 촉매 전극을 개발하였다. 해당 촉매는 기존 은 촉매에 비해 반응에 필요한 에너지가 적으며, 기존 액상 시스템에 비해 100배 이상의 일산화탄소를 생성할 수 있었다. 또한, 이산화탄소환원 시스템의 전극을 실험실 규모를 벗어나 실용화될 수 있도록 대면적화(50 cm)에 성공했다. KIST 연구진은 다양한 실시간 분석(Operando analysis)을 통해 촉매를 개발할 수 있었다. 실시간 X-선 흡수 분석법으로 염소이온을 통해 제조된 산호 형태의 은 나노 전극 촉매가 높은 표면적 및 다공성 구조로 인해 높은 물질 전달 능력을 보이는 것을 확인했다. 이는 높은 이산화탄소 전환 효율을 보임을 뜻한다. 그리고 이산화탄소 전환 반응 시 소수성(hydrophobicity)이 없을 경우 이산화탄소 전환 효율이 감소함을 확인하여 향후 이산화탄소 전환전극 개발 시 소수성의 필요성을 밝혀냈다. 본 연구를 진행한 KIST 오형석 박사는 “나노미터 크기의 산호 형태 은 촉매 전극의 개발을 통해 전기화학적 이산화탄소 전환 시스템의 전류 밀도 및 성능을 크게 향상시키고 추후 연구 방향을 제시하였다” 라며, “본 연구를 통해 전기화학적 이산화탄소 전환 시스템 연구 개발에 크게 기여할 것으로 기대한다.” 라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영)의 지원을 받아 KIST 주요사업 및 기후변화대응기술개발사업 수행되었으며 이번 연구결과는 에너지 환경 분야 국제 저널인 「Nano Energy」 (IF: 15.548, JCR 분야 상위 3.716%) 최신 호에 게재되었다. * (논문명) Highly Selective and Scalable CO2 to CO - Electrolysis using Coral-Nanostructured Ag Catalysts in zero-gap configuration - (제 1저자) 한국과학기술연구원 이웅희 박사후연구원 - (교신저자) 한국과학기술연구원 오형석 선임연구원 - (교신저자) 베를린공과대학 Peter strasser 교수 <그림설명> [그림 1] 산호 형태 은 전극을 이용한 이산화탄소 전환 시스템 개요도 [그림 2] 실시간 X-선 흡수 분석법을 통한 산호형태의 은 촉매 전극에서의 전기화학적 이산화탄소 환원 반응에 대한 전기장 효과 분석 개요도 [그림 3] 나노미터 크기의 산호 형태를 지닌 은 촉매 전극의 주사 전자 현미경(SEM) 사진
친환경 에너지 기술인 인공광합성, 고성능 대면적 전극 시스템 개발
- 산호 형태의 은 나노 촉매 전극을 고효율·대면적으로 개발 - 기체 상태에서의 전기화학적 이산화탄소 전환시스템 상용화 기틀 마련 한국과학기술연구원(KIST, 원장 직무대행 윤석진) 국가기반기술연구본부 청정에너지연구센터의 오형석, 이웅희 박사 연구팀은 베를린공과대학과(TU-Berlin)의 공동 연구를 통해 인공광합성의 주요 연구분야인 전기화학적 이산화탄소 전환 시스템에서 높은 효율로 일산화탄소를 얻을 수 있는 나노 크기의 산호 형태를 지닌 은 촉매 전극 및 대면적 시스템을 개발했다고 밝혔다. 인공광합성 시스템은 지구온난화의 원인이 되는 이산화탄소를 고부가가치를 갖고 있는 화학 물질로 전환하는 기술로, 환경오염 없이 이산화탄소를 제거하고 유용한 화학물질을 얻을 수 있다. 특히, 최근에는 전기화학적 이산화탄소 전환 시스템 분야가 높은 관심을 받고 있다. 기존 이산화탄소 전환 연구는 액체 상태(액상)에서 주로 진행되어 왔다. 하지만 액상에서는 전극을 물에 담근 형태로 성능을 측정하는데, 이산화탄소가 물에 잘 녹지않아 투입 에너지 대비 충분한 효율을 얻지 못하고 있었다. 최근 액체가 아닌 기체 상태에서 이산화탄소를 전환하는 시스템이 개발되어 효율을 높일 수 있을 것이라는 기대가 있었지만, 시스템에 적용할 수 있는 촉매, 전극에 개발에 대한 연구는 아직 미진한 편이었다. KIST-TU Berlin 공동 연구진은 일산화탄소 생성 효율이 높은 기체상태(기상)에서의 이산화탄소 전환 시스템용으로 나노크기의 산호형태 모양을 지닌 은 촉매 전극을 개발하였다. 해당 촉매는 기존 은 촉매에 비해 반응에 필요한 에너지가 적으며, 기존 액상 시스템에 비해 100배 이상의 일산화탄소를 생성할 수 있었다. 또한, 이산화탄소환원 시스템의 전극을 실험실 규모를 벗어나 실용화될 수 있도록 대면적화(50 cm)에 성공했다. KIST 연구진은 다양한 실시간 분석(Operando analysis)을 통해 촉매를 개발할 수 있었다. 실시간 X-선 흡수 분석법으로 염소이온을 통해 제조된 산호 형태의 은 나노 전극 촉매가 높은 표면적 및 다공성 구조로 인해 높은 물질 전달 능력을 보이는 것을 확인했다. 이는 높은 이산화탄소 전환 효율을 보임을 뜻한다. 그리고 이산화탄소 전환 반응 시 소수성(hydrophobicity)이 없을 경우 이산화탄소 전환 효율이 감소함을 확인하여 향후 이산화탄소 전환전극 개발 시 소수성의 필요성을 밝혀냈다. 본 연구를 진행한 KIST 오형석 박사는 “나노미터 크기의 산호 형태 은 촉매 전극의 개발을 통해 전기화학적 이산화탄소 전환 시스템의 전류 밀도 및 성능을 크게 향상시키고 추후 연구 방향을 제시하였다” 라며, “본 연구를 통해 전기화학적 이산화탄소 전환 시스템 연구 개발에 크게 기여할 것으로 기대한다.” 라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영)의 지원을 받아 KIST 주요사업 및 기후변화대응기술개발사업 수행되었으며 이번 연구결과는 에너지 환경 분야 국제 저널인 「Nano Energy」 (IF: 15.548, JCR 분야 상위 3.716%) 최신 호에 게재되었다. * (논문명) Highly Selective and Scalable CO2 to CO - Electrolysis using Coral-Nanostructured Ag Catalysts in zero-gap configuration - (제 1저자) 한국과학기술연구원 이웅희 박사후연구원 - (교신저자) 한국과학기술연구원 오형석 선임연구원 - (교신저자) 베를린공과대학 Peter strasser 교수 <그림설명> [그림 1] 산호 형태 은 전극을 이용한 이산화탄소 전환 시스템 개요도 [그림 2] 실시간 X-선 흡수 분석법을 통한 산호형태의 은 촉매 전극에서의 전기화학적 이산화탄소 환원 반응에 대한 전기장 효과 분석 개요도 [그림 3] 나노미터 크기의 산호 형태를 지닌 은 촉매 전극의 주사 전자 현미경(SEM) 사진
친환경 에너지 기술인 인공광합성, 고성능 대면적 전극 시스템 개발
- 산호 형태의 은 나노 촉매 전극을 고효율·대면적으로 개발 - 기체 상태에서의 전기화학적 이산화탄소 전환시스템 상용화 기틀 마련 한국과학기술연구원(KIST, 원장 직무대행 윤석진) 국가기반기술연구본부 청정에너지연구센터의 오형석, 이웅희 박사 연구팀은 베를린공과대학과(TU-Berlin)의 공동 연구를 통해 인공광합성의 주요 연구분야인 전기화학적 이산화탄소 전환 시스템에서 높은 효율로 일산화탄소를 얻을 수 있는 나노 크기의 산호 형태를 지닌 은 촉매 전극 및 대면적 시스템을 개발했다고 밝혔다. 인공광합성 시스템은 지구온난화의 원인이 되는 이산화탄소를 고부가가치를 갖고 있는 화학 물질로 전환하는 기술로, 환경오염 없이 이산화탄소를 제거하고 유용한 화학물질을 얻을 수 있다. 특히, 최근에는 전기화학적 이산화탄소 전환 시스템 분야가 높은 관심을 받고 있다. 기존 이산화탄소 전환 연구는 액체 상태(액상)에서 주로 진행되어 왔다. 하지만 액상에서는 전극을 물에 담근 형태로 성능을 측정하는데, 이산화탄소가 물에 잘 녹지않아 투입 에너지 대비 충분한 효율을 얻지 못하고 있었다. 최근 액체가 아닌 기체 상태에서 이산화탄소를 전환하는 시스템이 개발되어 효율을 높일 수 있을 것이라는 기대가 있었지만, 시스템에 적용할 수 있는 촉매, 전극에 개발에 대한 연구는 아직 미진한 편이었다. KIST-TU Berlin 공동 연구진은 일산화탄소 생성 효율이 높은 기체상태(기상)에서의 이산화탄소 전환 시스템용으로 나노크기의 산호형태 모양을 지닌 은 촉매 전극을 개발하였다. 해당 촉매는 기존 은 촉매에 비해 반응에 필요한 에너지가 적으며, 기존 액상 시스템에 비해 100배 이상의 일산화탄소를 생성할 수 있었다. 또한, 이산화탄소환원 시스템의 전극을 실험실 규모를 벗어나 실용화될 수 있도록 대면적화(50 cm)에 성공했다. KIST 연구진은 다양한 실시간 분석(Operando analysis)을 통해 촉매를 개발할 수 있었다. 실시간 X-선 흡수 분석법으로 염소이온을 통해 제조된 산호 형태의 은 나노 전극 촉매가 높은 표면적 및 다공성 구조로 인해 높은 물질 전달 능력을 보이는 것을 확인했다. 이는 높은 이산화탄소 전환 효율을 보임을 뜻한다. 그리고 이산화탄소 전환 반응 시 소수성(hydrophobicity)이 없을 경우 이산화탄소 전환 효율이 감소함을 확인하여 향후 이산화탄소 전환전극 개발 시 소수성의 필요성을 밝혀냈다. 본 연구를 진행한 KIST 오형석 박사는 “나노미터 크기의 산호 형태 은 촉매 전극의 개발을 통해 전기화학적 이산화탄소 전환 시스템의 전류 밀도 및 성능을 크게 향상시키고 추후 연구 방향을 제시하였다” 라며, “본 연구를 통해 전기화학적 이산화탄소 전환 시스템 연구 개발에 크게 기여할 것으로 기대한다.” 라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영)의 지원을 받아 KIST 주요사업 및 기후변화대응기술개발사업 수행되었으며 이번 연구결과는 에너지 환경 분야 국제 저널인 「Nano Energy」 (IF: 15.548, JCR 분야 상위 3.716%) 최신 호에 게재되었다. * (논문명) Highly Selective and Scalable CO2 to CO - Electrolysis using Coral-Nanostructured Ag Catalysts in zero-gap configuration - (제 1저자) 한국과학기술연구원 이웅희 박사후연구원 - (교신저자) 한국과학기술연구원 오형석 선임연구원 - (교신저자) 베를린공과대학 Peter strasser 교수 <그림설명> [그림 1] 산호 형태 은 전극을 이용한 이산화탄소 전환 시스템 개요도 [그림 2] 실시간 X-선 흡수 분석법을 통한 산호형태의 은 촉매 전극에서의 전기화학적 이산화탄소 환원 반응에 대한 전기장 효과 분석 개요도 [그림 3] 나노미터 크기의 산호 형태를 지닌 은 촉매 전극의 주사 전자 현미경(SEM) 사진
친환경 에너지 기술인 인공광합성, 고성능 대면적 전극 시스템 개발
- 산호 형태의 은 나노 촉매 전극을 고효율·대면적으로 개발 - 기체 상태에서의 전기화학적 이산화탄소 전환시스템 상용화 기틀 마련 한국과학기술연구원(KIST, 원장 직무대행 윤석진) 국가기반기술연구본부 청정에너지연구센터의 오형석, 이웅희 박사 연구팀은 베를린공과대학과(TU-Berlin)의 공동 연구를 통해 인공광합성의 주요 연구분야인 전기화학적 이산화탄소 전환 시스템에서 높은 효율로 일산화탄소를 얻을 수 있는 나노 크기의 산호 형태를 지닌 은 촉매 전극 및 대면적 시스템을 개발했다고 밝혔다. 인공광합성 시스템은 지구온난화의 원인이 되는 이산화탄소를 고부가가치를 갖고 있는 화학 물질로 전환하는 기술로, 환경오염 없이 이산화탄소를 제거하고 유용한 화학물질을 얻을 수 있다. 특히, 최근에는 전기화학적 이산화탄소 전환 시스템 분야가 높은 관심을 받고 있다. 기존 이산화탄소 전환 연구는 액체 상태(액상)에서 주로 진행되어 왔다. 하지만 액상에서는 전극을 물에 담근 형태로 성능을 측정하는데, 이산화탄소가 물에 잘 녹지않아 투입 에너지 대비 충분한 효율을 얻지 못하고 있었다. 최근 액체가 아닌 기체 상태에서 이산화탄소를 전환하는 시스템이 개발되어 효율을 높일 수 있을 것이라는 기대가 있었지만, 시스템에 적용할 수 있는 촉매, 전극에 개발에 대한 연구는 아직 미진한 편이었다. KIST-TU Berlin 공동 연구진은 일산화탄소 생성 효율이 높은 기체상태(기상)에서의 이산화탄소 전환 시스템용으로 나노크기의 산호형태 모양을 지닌 은 촉매 전극을 개발하였다. 해당 촉매는 기존 은 촉매에 비해 반응에 필요한 에너지가 적으며, 기존 액상 시스템에 비해 100배 이상의 일산화탄소를 생성할 수 있었다. 또한, 이산화탄소환원 시스템의 전극을 실험실 규모를 벗어나 실용화될 수 있도록 대면적화(50 cm)에 성공했다. KIST 연구진은 다양한 실시간 분석(Operando analysis)을 통해 촉매를 개발할 수 있었다. 실시간 X-선 흡수 분석법으로 염소이온을 통해 제조된 산호 형태의 은 나노 전극 촉매가 높은 표면적 및 다공성 구조로 인해 높은 물질 전달 능력을 보이는 것을 확인했다. 이는 높은 이산화탄소 전환 효율을 보임을 뜻한다. 그리고 이산화탄소 전환 반응 시 소수성(hydrophobicity)이 없을 경우 이산화탄소 전환 효율이 감소함을 확인하여 향후 이산화탄소 전환전극 개발 시 소수성의 필요성을 밝혀냈다. 본 연구를 진행한 KIST 오형석 박사는 “나노미터 크기의 산호 형태 은 촉매 전극의 개발을 통해 전기화학적 이산화탄소 전환 시스템의 전류 밀도 및 성능을 크게 향상시키고 추후 연구 방향을 제시하였다” 라며, “본 연구를 통해 전기화학적 이산화탄소 전환 시스템 연구 개발에 크게 기여할 것으로 기대한다.” 라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영)의 지원을 받아 KIST 주요사업 및 기후변화대응기술개발사업 수행되었으며 이번 연구결과는 에너지 환경 분야 국제 저널인 「Nano Energy」 (IF: 15.548, JCR 분야 상위 3.716%) 최신 호에 게재되었다. * (논문명) Highly Selective and Scalable CO2 to CO - Electrolysis using Coral-Nanostructured Ag Catalysts in zero-gap configuration - (제 1저자) 한국과학기술연구원 이웅희 박사후연구원 - (교신저자) 한국과학기술연구원 오형석 선임연구원 - (교신저자) 베를린공과대학 Peter strasser 교수 <그림설명> [그림 1] 산호 형태 은 전극을 이용한 이산화탄소 전환 시스템 개요도 [그림 2] 실시간 X-선 흡수 분석법을 통한 산호형태의 은 촉매 전극에서의 전기화학적 이산화탄소 환원 반응에 대한 전기장 효과 분석 개요도 [그림 3] 나노미터 크기의 산호 형태를 지닌 은 촉매 전극의 주사 전자 현미경(SEM) 사진
친환경 에너지 기술인 인공광합성, 고성능 대면적 전극 시스템 개발
- 산호 형태의 은 나노 촉매 전극을 고효율·대면적으로 개발 - 기체 상태에서의 전기화학적 이산화탄소 전환시스템 상용화 기틀 마련 한국과학기술연구원(KIST, 원장 직무대행 윤석진) 국가기반기술연구본부 청정에너지연구센터의 오형석, 이웅희 박사 연구팀은 베를린공과대학과(TU-Berlin)의 공동 연구를 통해 인공광합성의 주요 연구분야인 전기화학적 이산화탄소 전환 시스템에서 높은 효율로 일산화탄소를 얻을 수 있는 나노 크기의 산호 형태를 지닌 은 촉매 전극 및 대면적 시스템을 개발했다고 밝혔다. 인공광합성 시스템은 지구온난화의 원인이 되는 이산화탄소를 고부가가치를 갖고 있는 화학 물질로 전환하는 기술로, 환경오염 없이 이산화탄소를 제거하고 유용한 화학물질을 얻을 수 있다. 특히, 최근에는 전기화학적 이산화탄소 전환 시스템 분야가 높은 관심을 받고 있다. 기존 이산화탄소 전환 연구는 액체 상태(액상)에서 주로 진행되어 왔다. 하지만 액상에서는 전극을 물에 담근 형태로 성능을 측정하는데, 이산화탄소가 물에 잘 녹지않아 투입 에너지 대비 충분한 효율을 얻지 못하고 있었다. 최근 액체가 아닌 기체 상태에서 이산화탄소를 전환하는 시스템이 개발되어 효율을 높일 수 있을 것이라는 기대가 있었지만, 시스템에 적용할 수 있는 촉매, 전극에 개발에 대한 연구는 아직 미진한 편이었다. KIST-TU Berlin 공동 연구진은 일산화탄소 생성 효율이 높은 기체상태(기상)에서의 이산화탄소 전환 시스템용으로 나노크기의 산호형태 모양을 지닌 은 촉매 전극을 개발하였다. 해당 촉매는 기존 은 촉매에 비해 반응에 필요한 에너지가 적으며, 기존 액상 시스템에 비해 100배 이상의 일산화탄소를 생성할 수 있었다. 또한, 이산화탄소환원 시스템의 전극을 실험실 규모를 벗어나 실용화될 수 있도록 대면적화(50 cm)에 성공했다. KIST 연구진은 다양한 실시간 분석(Operando analysis)을 통해 촉매를 개발할 수 있었다. 실시간 X-선 흡수 분석법으로 염소이온을 통해 제조된 산호 형태의 은 나노 전극 촉매가 높은 표면적 및 다공성 구조로 인해 높은 물질 전달 능력을 보이는 것을 확인했다. 이는 높은 이산화탄소 전환 효율을 보임을 뜻한다. 그리고 이산화탄소 전환 반응 시 소수성(hydrophobicity)이 없을 경우 이산화탄소 전환 효율이 감소함을 확인하여 향후 이산화탄소 전환전극 개발 시 소수성의 필요성을 밝혀냈다. 본 연구를 진행한 KIST 오형석 박사는 “나노미터 크기의 산호 형태 은 촉매 전극의 개발을 통해 전기화학적 이산화탄소 전환 시스템의 전류 밀도 및 성능을 크게 향상시키고 추후 연구 방향을 제시하였다” 라며, “본 연구를 통해 전기화학적 이산화탄소 전환 시스템 연구 개발에 크게 기여할 것으로 기대한다.” 라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영)의 지원을 받아 KIST 주요사업 및 기후변화대응기술개발사업 수행되었으며 이번 연구결과는 에너지 환경 분야 국제 저널인 「Nano Energy」 (IF: 15.548, JCR 분야 상위 3.716%) 최신 호에 게재되었다. * (논문명) Highly Selective and Scalable CO2 to CO - Electrolysis using Coral-Nanostructured Ag Catalysts in zero-gap configuration - (제 1저자) 한국과학기술연구원 이웅희 박사후연구원 - (교신저자) 한국과학기술연구원 오형석 선임연구원 - (교신저자) 베를린공과대학 Peter strasser 교수 <그림설명> [그림 1] 산호 형태 은 전극을 이용한 이산화탄소 전환 시스템 개요도 [그림 2] 실시간 X-선 흡수 분석법을 통한 산호형태의 은 촉매 전극에서의 전기화학적 이산화탄소 환원 반응에 대한 전기장 효과 분석 개요도 [그림 3] 나노미터 크기의 산호 형태를 지닌 은 촉매 전극의 주사 전자 현미경(SEM) 사진
친환경 에너지 기술인 인공광합성, 고성능 대면적 전극 시스템 개발
- 산호 형태의 은 나노 촉매 전극을 고효율·대면적으로 개발 - 기체 상태에서의 전기화학적 이산화탄소 전환시스템 상용화 기틀 마련 한국과학기술연구원(KIST, 원장 직무대행 윤석진) 국가기반기술연구본부 청정에너지연구센터의 오형석, 이웅희 박사 연구팀은 베를린공과대학과(TU-Berlin)의 공동 연구를 통해 인공광합성의 주요 연구분야인 전기화학적 이산화탄소 전환 시스템에서 높은 효율로 일산화탄소를 얻을 수 있는 나노 크기의 산호 형태를 지닌 은 촉매 전극 및 대면적 시스템을 개발했다고 밝혔다. 인공광합성 시스템은 지구온난화의 원인이 되는 이산화탄소를 고부가가치를 갖고 있는 화학 물질로 전환하는 기술로, 환경오염 없이 이산화탄소를 제거하고 유용한 화학물질을 얻을 수 있다. 특히, 최근에는 전기화학적 이산화탄소 전환 시스템 분야가 높은 관심을 받고 있다. 기존 이산화탄소 전환 연구는 액체 상태(액상)에서 주로 진행되어 왔다. 하지만 액상에서는 전극을 물에 담근 형태로 성능을 측정하는데, 이산화탄소가 물에 잘 녹지않아 투입 에너지 대비 충분한 효율을 얻지 못하고 있었다. 최근 액체가 아닌 기체 상태에서 이산화탄소를 전환하는 시스템이 개발되어 효율을 높일 수 있을 것이라는 기대가 있었지만, 시스템에 적용할 수 있는 촉매, 전극에 개발에 대한 연구는 아직 미진한 편이었다. KIST-TU Berlin 공동 연구진은 일산화탄소 생성 효율이 높은 기체상태(기상)에서의 이산화탄소 전환 시스템용으로 나노크기의 산호형태 모양을 지닌 은 촉매 전극을 개발하였다. 해당 촉매는 기존 은 촉매에 비해 반응에 필요한 에너지가 적으며, 기존 액상 시스템에 비해 100배 이상의 일산화탄소를 생성할 수 있었다. 또한, 이산화탄소환원 시스템의 전극을 실험실 규모를 벗어나 실용화될 수 있도록 대면적화(50 cm)에 성공했다. KIST 연구진은 다양한 실시간 분석(Operando analysis)을 통해 촉매를 개발할 수 있었다. 실시간 X-선 흡수 분석법으로 염소이온을 통해 제조된 산호 형태의 은 나노 전극 촉매가 높은 표면적 및 다공성 구조로 인해 높은 물질 전달 능력을 보이는 것을 확인했다. 이는 높은 이산화탄소 전환 효율을 보임을 뜻한다. 그리고 이산화탄소 전환 반응 시 소수성(hydrophobicity)이 없을 경우 이산화탄소 전환 효율이 감소함을 확인하여 향후 이산화탄소 전환전극 개발 시 소수성의 필요성을 밝혀냈다. 본 연구를 진행한 KIST 오형석 박사는 “나노미터 크기의 산호 형태 은 촉매 전극의 개발을 통해 전기화학적 이산화탄소 전환 시스템의 전류 밀도 및 성능을 크게 향상시키고 추후 연구 방향을 제시하였다” 라며, “본 연구를 통해 전기화학적 이산화탄소 전환 시스템 연구 개발에 크게 기여할 것으로 기대한다.” 라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영)의 지원을 받아 KIST 주요사업 및 기후변화대응기술개발사업 수행되었으며 이번 연구결과는 에너지 환경 분야 국제 저널인 「Nano Energy」 (IF: 15.548, JCR 분야 상위 3.716%) 최신 호에 게재되었다. * (논문명) Highly Selective and Scalable CO2 to CO - Electrolysis using Coral-Nanostructured Ag Catalysts in zero-gap configuration - (제 1저자) 한국과학기술연구원 이웅희 박사후연구원 - (교신저자) 한국과학기술연구원 오형석 선임연구원 - (교신저자) 베를린공과대학 Peter strasser 교수 <그림설명> [그림 1] 산호 형태 은 전극을 이용한 이산화탄소 전환 시스템 개요도 [그림 2] 실시간 X-선 흡수 분석법을 통한 산호형태의 은 촉매 전극에서의 전기화학적 이산화탄소 환원 반응에 대한 전기장 효과 분석 개요도 [그림 3] 나노미터 크기의 산호 형태를 지닌 은 촉매 전극의 주사 전자 현미경(SEM) 사진
친환경 합성화학의 새로운 장 열다! 전이금속 없이 유기실란 합성 성공
친환경 합성화학의 새로운 장 열다! 전이금속 없이 유기실란 합성 성공 - KIST, 친환경적이고 경제적인 유기실란 합성법 개발 금속 촉매 없는 혁신적인 합성법 개발로 화학 산업의 지속가능성 높여 유기실란은 규소와 탄소가 결합돼 이루어진 실리콘 화합물로, 의약품 개발, 신소재 제조, 반도체 재료 등에 핵심 원료로 폭넓게 활용된다. 그러나 유기실란 합성 시 실란의 반응성을 높이기 위해 전이금속을 사용하거나 공기와 수분에서 불안정한 중간체 합성이 필수적이었다. 이러한 기존 방식은 합성 후 금속 촉매 폐기물이 발생해 환경적, 경제적 부담이 있었다. 한국과학기술연구원(KIST, 원장 오상록) 화학생명융합연구센터 한서정 박사 연구팀은 고온, 고압이 아닌 온화한 조건에서 전이금속 없이도 유기실란 화합물을 합성하는 반응을 개발했다고 밝혔다. 이번 연구는 기존과 달리 고가의 리튬, 니켈, 팔라듐과 같은 금속 촉매를 전혀 사용하지 않아 환경 보호와 생산비용 절감을 동시에 실현할 수 있는 혁신적인 합성법을 제시했다. 연구팀은 유기실란을 합성하기 위해 분자 구조 자체를 활용해 실란의 반응성을 높이는 방법을 개발했다. 이를 위해 아라인, 포스파이트, 플루오로실란의 삼성분 짝지음 반응을 활용함으로써 금속 촉매 없이 분자 구조만으로 실란을 활성화하는 데 성공했다. 특히, 플루오로실란의 실리콘과 플루오린 결합은 강력한 결합 세기 때문에 반응성이 낮아 이를 활성화하는 게 매우 어렵다. 이를 해결하기 위해 분자 내에 포스포늄 루이스산을 도입해 플루오라이드 이온과 상호 작용하게 함으로써 강한 실리콘과 플루오린 결합을 활성화해 실란의 반응성을 높였다. 연구팀이 개발한 합성법은 실험실 수준을 넘어 산업적 활용이 가능한 그램 스케일(gram-scale)에서도 유기실란 화합물을 안정적으로 합성하는 것으로 확인됐다. 또한, 이 방법으로 합성한 유기실란을 용도에 맞게 물리적, 화학적 성질을 개선하는 데 필요한 산화반응 및 치환반응에서도 안정적인 성능을 보였다. 이번 연구는 친환경성과 경제성을 동시에 충족하는 합성 기술을 통해 화학 산업의 지속가능성을 한 단계 끌어올릴 것으로 기대된다. 특히, 폐수와 폐기물 처리 과정에서 환경 오염의 주요 원인으로 지목되는 금속 촉매를 사용하지 않는 장점이 있다. 또한, 매장량이 한정적이어서 가격 변동성이 큰 금속 자원에 대한 의존도를 낮출 수 있어 환경 보호와 생산 비용 절감이라는 두 가지 과제를 동시에 해결했다는 점에서 의의가 있다. KIST 한서정 박사는 "이번 합성법은 고가의 금속 촉매를 대체함으로써 제조 비용을 크게 절감하고, 대량 생산에도 적합한 기술로 검증돼 산업적 활용 가능성을 입증했다"라며, "이 기술은 의약품, 농업, 신소재 등 다양한 산업 분야에서 활용될 수 있으며 지속가능한 화학 산업으로의 전환을 앞당길 중요한 발판이 될 것"이라고 말했다. 본 연구는 과학기술정보통신부(장관 유상임)의 지원을 받아 KIST 주요사업 및 국가신약개발사업 (RS-2022-DD123827), 창의형 융합연구사업 (CAP23011-100) 등으로 수행됐다. 이번 연구 성과는 국제 학술지 「Angewandte Chemie International Edition」 (IF 16.1, JCR 분야 5.8%)에 게재됐으며 Back Cover 이미지로 선정됐다. * 논문명 : Cleavage of the Robust Silicon–Fluorine σ-Bond Allows Silicon–Carbon Bond Formation: Synthetic Strategies Toward Ortho-Silyl Aryl Phosphonates [그림 1] 삼성분 짝지음 반응 도식 삼성분 짝지음 반응의 진행 방식을 그림으로 표현함 [그림 2] 오쏘-실릴아릴 포스포네이트의 X-ray 구조 합성한 오쏘-실리아릴 포스포네이트와 그 X-ray 구조 [그림 3] Angewandte Chemie International Edition Back Cover 이미지 Angewandte Chemie International Edition의 최근 호 Back Cover 표지로 선정된 이미지