검색결과
게시물 키워드""에 대한 9083개의 검색결과를 찾았습니다.
초강력 초음파로 수술없이 암, 종양 파괴한다
- 집속 초음파 기술에서 주변 조직을 파괴하는 2차 미세 기포 생성 원리 규명 - 타겟 생체 조직만을 정밀하게 제거할 수 있는 기반 마련 초음파 에너지를 신체 내 원하는 타겟 위치에 모아 고열을 발생 시키면 외과적 수술 없이 조직을 태워 괴사 시킬 수 있다. 현재 이러한 방법은 자궁근종, 전립선비대증, 전립선암, 전이성 골종양 등에서 종양을 열을 이용해 파괴하는 치료 방법으로 임상에서 다양하게 사용되고 있다. 하지만 고열을 통해 조직을 태우다보니 열확산 현상에 의해서 종양 주변 조직까지도 태울 수 있는 문제가 있다. 한국과학기술연구원(KIST, 원장 윤석진)은 바이오닉스연구센터 박기주 박사팀은 2019년에 기존 초음파 기술보다 수십 배 더 강력한 수십 메가파스칼(MPa)의 음향 압력 세기를 갖는 초음파, 즉 고강도 집속초음파를 이용하면 열에 의한 신체의 손상없이 칼로 자른 듯 종양을 깨끗하게 파괴할 수 있음을 확인하고, 그 원리를 밝혀낸 바 있다.(※Ultrasonics Sonochemistry. 2019, 53, 164-177) 열을 이용하지 않고 물리적으로 조직을 파괴하는 이 기술에서 강력한 초음파를 받은 목표 지점에는 수증기 기포가 생겨나는데, 발생되는 1차 기포의 운동에너지에 의해서 목표한 종양 조직을 물리적으로 파괴할 수 있다. 하지만 목표 지점뿐만이 아니라 그 주변에서도 순차적으로 주변에 2차로 여러 미세 기포들이 동시 다발적으로 생성되어 원치 않는 부위까지 파괴될 수 있어 이들의 생성 원인을 파악하고 발생 위치를 정확히 예측해야 할 필요가 있었다. KIST 연구팀은 후속연구를 통해 집속초음파를 이용하여 종양조직을 제거 할 때 생성되는 2차 미세 기포의 발생 원리를 밝히기 위해 수학 모델을 개발 하고, 초음파에 의해 생긴 1차 수증기 기포가 초음파 진행에 미치는 영향을 연구했다. 그 결과, 수증기 기포에 의해서 전방위로 퍼져나가는 초음파와 지속적으로 입사되는 집속 초음파의 간섭이 그 원인이고 간섭되는 범위에서 2차 기포가 발생한다는 사실을 밝혀냈다. 초고속카메라를 이용하여 촬영한 결과와 비교하였더니, 초음파가 간섭되는 범위와 2차 미세기포가 실제 생성되는 위치가 일치하는 것을 확인하였다. 이 연구 결과는 2차 미세 기포가 생성되는 원리를 설명 하는 것뿐만 아니라, 그 범위를 예측함으로써 보다 안전하게 타겟 조직만을 정밀하게 제거 할 수 있는 가능성을 제시하였다. KIST 박기주 박사는 “이번 연구는 초음파 초점에서 수증기 기포 발생 후에 초음파 산란효과에 의해서 미세 기포들이 순차적으로 생성된다는 것을 규명한 것으로, 개발된 수학 모델을 이용하면 기포의 발생 위치 및 파괴되는 종양 조직의 범위를 사전에 예측 하는 것이 가능할 전망이다.”라고 말하며, “개발하고 있는 초음파 기술이 외과적인 수술 없이 종양조직만의 물리적 파쇄가 가능한 초정밀 집속 초음파 수술 기술로 발전되어 향후 임상에서 적용되길 기대한다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업 및 국가과학기술연구회 창의형융합연구사업 지원으로 수행되었으며, 연구결과는 음향(Acoustics) 분야 권위지인 ‘Ultrasonics Sonochemistry’ (IF: 6.513, JCR 분야 상위 1.562%) 최신호에 게재되었다. * (논문명) The interaction of shockwaves with a vapour bubble in boiling histotripsy: The shock scattering effect - (제 1저자, 교신저자) 한국과학기술연구원 박기주 선임연구원 <그림설명> [그림1] 고강도 집속초음파 기반 생체조직 파쇄 기술 개념도 [그림2] 2차 미세기포 생성 메커니즘 및 그 형상
초강력 초음파로 수술없이 암, 종양 파괴한다
- 집속 초음파 기술에서 주변 조직을 파괴하는 2차 미세 기포 생성 원리 규명 - 타겟 생체 조직만을 정밀하게 제거할 수 있는 기반 마련 초음파 에너지를 신체 내 원하는 타겟 위치에 모아 고열을 발생 시키면 외과적 수술 없이 조직을 태워 괴사 시킬 수 있다. 현재 이러한 방법은 자궁근종, 전립선비대증, 전립선암, 전이성 골종양 등에서 종양을 열을 이용해 파괴하는 치료 방법으로 임상에서 다양하게 사용되고 있다. 하지만 고열을 통해 조직을 태우다보니 열확산 현상에 의해서 종양 주변 조직까지도 태울 수 있는 문제가 있다. 한국과학기술연구원(KIST, 원장 윤석진)은 바이오닉스연구센터 박기주 박사팀은 2019년에 기존 초음파 기술보다 수십 배 더 강력한 수십 메가파스칼(MPa)의 음향 압력 세기를 갖는 초음파, 즉 고강도 집속초음파를 이용하면 열에 의한 신체의 손상없이 칼로 자른 듯 종양을 깨끗하게 파괴할 수 있음을 확인하고, 그 원리를 밝혀낸 바 있다.(※Ultrasonics Sonochemistry. 2019, 53, 164-177) 열을 이용하지 않고 물리적으로 조직을 파괴하는 이 기술에서 강력한 초음파를 받은 목표 지점에는 수증기 기포가 생겨나는데, 발생되는 1차 기포의 운동에너지에 의해서 목표한 종양 조직을 물리적으로 파괴할 수 있다. 하지만 목표 지점뿐만이 아니라 그 주변에서도 순차적으로 주변에 2차로 여러 미세 기포들이 동시 다발적으로 생성되어 원치 않는 부위까지 파괴될 수 있어 이들의 생성 원인을 파악하고 발생 위치를 정확히 예측해야 할 필요가 있었다. KIST 연구팀은 후속연구를 통해 집속초음파를 이용하여 종양조직을 제거 할 때 생성되는 2차 미세 기포의 발생 원리를 밝히기 위해 수학 모델을 개발 하고, 초음파에 의해 생긴 1차 수증기 기포가 초음파 진행에 미치는 영향을 연구했다. 그 결과, 수증기 기포에 의해서 전방위로 퍼져나가는 초음파와 지속적으로 입사되는 집속 초음파의 간섭이 그 원인이고 간섭되는 범위에서 2차 기포가 발생한다는 사실을 밝혀냈다. 초고속카메라를 이용하여 촬영한 결과와 비교하였더니, 초음파가 간섭되는 범위와 2차 미세기포가 실제 생성되는 위치가 일치하는 것을 확인하였다. 이 연구 결과는 2차 미세 기포가 생성되는 원리를 설명 하는 것뿐만 아니라, 그 범위를 예측함으로써 보다 안전하게 타겟 조직만을 정밀하게 제거 할 수 있는 가능성을 제시하였다. KIST 박기주 박사는 “이번 연구는 초음파 초점에서 수증기 기포 발생 후에 초음파 산란효과에 의해서 미세 기포들이 순차적으로 생성된다는 것을 규명한 것으로, 개발된 수학 모델을 이용하면 기포의 발생 위치 및 파괴되는 종양 조직의 범위를 사전에 예측 하는 것이 가능할 전망이다.”라고 말하며, “개발하고 있는 초음파 기술이 외과적인 수술 없이 종양조직만의 물리적 파쇄가 가능한 초정밀 집속 초음파 수술 기술로 발전되어 향후 임상에서 적용되길 기대한다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업 및 국가과학기술연구회 창의형융합연구사업 지원으로 수행되었으며, 연구결과는 음향(Acoustics) 분야 권위지인 ‘Ultrasonics Sonochemistry’ (IF: 6.513, JCR 분야 상위 1.562%) 최신호에 게재되었다. * (논문명) The interaction of shockwaves with a vapour bubble in boiling histotripsy: The shock scattering effect - (제 1저자, 교신저자) 한국과학기술연구원 박기주 선임연구원 <그림설명> [그림1] 고강도 집속초음파 기반 생체조직 파쇄 기술 개념도 [그림2] 2차 미세기포 생성 메커니즘 및 그 형상
초강력 초음파로 수술없이 암, 종양 파괴한다
- 집속 초음파 기술에서 주변 조직을 파괴하는 2차 미세 기포 생성 원리 규명 - 타겟 생체 조직만을 정밀하게 제거할 수 있는 기반 마련 초음파 에너지를 신체 내 원하는 타겟 위치에 모아 고열을 발생 시키면 외과적 수술 없이 조직을 태워 괴사 시킬 수 있다. 현재 이러한 방법은 자궁근종, 전립선비대증, 전립선암, 전이성 골종양 등에서 종양을 열을 이용해 파괴하는 치료 방법으로 임상에서 다양하게 사용되고 있다. 하지만 고열을 통해 조직을 태우다보니 열확산 현상에 의해서 종양 주변 조직까지도 태울 수 있는 문제가 있다. 한국과학기술연구원(KIST, 원장 윤석진)은 바이오닉스연구센터 박기주 박사팀은 2019년에 기존 초음파 기술보다 수십 배 더 강력한 수십 메가파스칼(MPa)의 음향 압력 세기를 갖는 초음파, 즉 고강도 집속초음파를 이용하면 열에 의한 신체의 손상없이 칼로 자른 듯 종양을 깨끗하게 파괴할 수 있음을 확인하고, 그 원리를 밝혀낸 바 있다.(※Ultrasonics Sonochemistry. 2019, 53, 164-177) 열을 이용하지 않고 물리적으로 조직을 파괴하는 이 기술에서 강력한 초음파를 받은 목표 지점에는 수증기 기포가 생겨나는데, 발생되는 1차 기포의 운동에너지에 의해서 목표한 종양 조직을 물리적으로 파괴할 수 있다. 하지만 목표 지점뿐만이 아니라 그 주변에서도 순차적으로 주변에 2차로 여러 미세 기포들이 동시 다발적으로 생성되어 원치 않는 부위까지 파괴될 수 있어 이들의 생성 원인을 파악하고 발생 위치를 정확히 예측해야 할 필요가 있었다. KIST 연구팀은 후속연구를 통해 집속초음파를 이용하여 종양조직을 제거 할 때 생성되는 2차 미세 기포의 발생 원리를 밝히기 위해 수학 모델을 개발 하고, 초음파에 의해 생긴 1차 수증기 기포가 초음파 진행에 미치는 영향을 연구했다. 그 결과, 수증기 기포에 의해서 전방위로 퍼져나가는 초음파와 지속적으로 입사되는 집속 초음파의 간섭이 그 원인이고 간섭되는 범위에서 2차 기포가 발생한다는 사실을 밝혀냈다. 초고속카메라를 이용하여 촬영한 결과와 비교하였더니, 초음파가 간섭되는 범위와 2차 미세기포가 실제 생성되는 위치가 일치하는 것을 확인하였다. 이 연구 결과는 2차 미세 기포가 생성되는 원리를 설명 하는 것뿐만 아니라, 그 범위를 예측함으로써 보다 안전하게 타겟 조직만을 정밀하게 제거 할 수 있는 가능성을 제시하였다. KIST 박기주 박사는 “이번 연구는 초음파 초점에서 수증기 기포 발생 후에 초음파 산란효과에 의해서 미세 기포들이 순차적으로 생성된다는 것을 규명한 것으로, 개발된 수학 모델을 이용하면 기포의 발생 위치 및 파괴되는 종양 조직의 범위를 사전에 예측 하는 것이 가능할 전망이다.”라고 말하며, “개발하고 있는 초음파 기술이 외과적인 수술 없이 종양조직만의 물리적 파쇄가 가능한 초정밀 집속 초음파 수술 기술로 발전되어 향후 임상에서 적용되길 기대한다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업 및 국가과학기술연구회 창의형융합연구사업 지원으로 수행되었으며, 연구결과는 음향(Acoustics) 분야 권위지인 ‘Ultrasonics Sonochemistry’ (IF: 6.513, JCR 분야 상위 1.562%) 최신호에 게재되었다. * (논문명) The interaction of shockwaves with a vapour bubble in boiling histotripsy: The shock scattering effect - (제 1저자, 교신저자) 한국과학기술연구원 박기주 선임연구원 <그림설명> [그림1] 고강도 집속초음파 기반 생체조직 파쇄 기술 개념도 [그림2] 2차 미세기포 생성 메커니즘 및 그 형상
초고감도 분자 센서 개발로 ‘인공 광수용체’의 성능 검증한다
- 인공 광수용체의 빛 인지 시 신호 전달의 동역학 관찰 플랫폼 개발 - 테라헤르츠 분광기술과 메타물질의 결합, 초고감도 분자 센서 기술 개발 - 향후 인체 내 극미량의 신호 전달 체계 메커니즘 규명 연구에 응용 기대 최근 손상된 망막을 대체하기 위한 ‘인공망막’ 관련 연구가 활발하게 이루어지고 있는 가운데, KIST에서는 ‘인공 광수용체 기반 시각복원 원천기술 개발’ 사업(과제책임자, KIST 김재헌)을 수행, 이를 통해 일반인의 시각 기능과 유사하게 빛을 인지하는 인공 생체소재인 ‘인공 광수용체’를 제작하여 시력을 일부 회복시키기 위한 연구에 박차를 가하고 있다. 최근 KIST 연구진은 이에 대한 후속연구로 인공 광수용체를 정량적이고 체계적으로 연구할 수 있는 기반 기술의 하나로 초고감도 테라헤르츠 분자 센서를 개발했다고 밝혔다. 한국과학기술연구원(KIST, 원장 이병권) 센서시스템연구센터 서민아 박사팀은 서울대 박태현 교수 연구팀과의 공동연구를 통해 빛 인지 뿐 아니라 색까지 구분 할 수 있는 인공 생체 소재인 ‘광수용체’에서 빛을 인지하였을 때 일어나는 단백질 구조 변화를 직접적으로 관찰할 수 있는 초고감도 테라헤르츠(THz, 1012Hz) 분자 센서를 개발, 상온에서 미량의 샘플에서도 신호가 검출됨을 확인하였다. 광-기반 바이오 센서 기술은 비침습적인 방법으로 생화학 분자를 잴 수 있다는 큰 장점이 있으며, 침투 깊이가 긴 파장이면서 광-에너지 값이 낮아 안전한 것으로 알려진 테라헤르츠 (Terahertz, THz, 1012 Hz) 대역의 전자기파를 이용한 기술이 새로운 타입의 광센서로 주목 받기 시작하고 있다. 이번 연구는 인간 광수용체 단백질 중 주로 명암을 구분하는 간상세포를 이용하여 인공 광수용체를 생산하고, 이들이 빛을 흡수할 때 일어나는 분자 구조의 변화를 테라헤르츠 메타물질*을 이용하여 증폭된 신호를 포착, 그 특성을 분석하는 내용이다. *테라헤르츠 메타물질 : 테라헤르츠(THz) 전자기파 영역대에서 기능을 갖는 메타물질로서 특정 주파수에서 투과율이나 반사율이 증폭된다. 테라헤르츠 메타물질 기반 광-바이오 센서 기술를 이용하면 고민감도, 고선택성 분자 검출 플랫폼을 제작하여 각종 생체 저분자 측정에 적용할 수 있다. 공동 연구진은 비지표식(Label-free)** 생체 분자 측정에 적용 가능한 테라헤르츠 분광법 기반 분자 검출 플랫폼을 개발하였으며, 이를 이용해 테라헤르츠 전자기파 대역에 특이 스펙트럼이 있는 ppm(ng/ml) 수준의 극미량 분자를 매우 높은 감도로 측정하는 기술을 개발했다고 밝혔다. 특히 테라헤르츠 메타물질을 사용하여 특정 파장 또는 주파수에서의 테라헤르츠파의 신호를 선택적으로 높여, 높은 선택성과 민감도를 지닌 생화학 저분자 및 바이러스를 선택적으로 검출할 수 있는 플랫폼으로 활용할 수 있는 가능성을 보였다. **비지표식(Label-free) : 일반적으로 광-바이오센서는 이름표를 붙이는 지표식((Labeling)으로 물질의 성질을 바뀌는 한계점 존재, 비지표식은 특이 스펙트럼을 이용하여 비접촉, 비파괴의 특성을 갖춤 일반적으로 테라헤르츠 분광법을 이용한 물질의 흡수 광학 분석 시에, 측정하고자 하는 물질의 농도가 높을수록 뚜렷한 흡수 스펙트럼을 얻을 수 있게 된다. 테라헤르츠는 물 분자에 민감하기 때문에 물 등의 액체에 녹아있는 저농도 수준의 분자의 식별은 어렵다는 한계가 있었다. 연구진은 특정 계면(interface)으로부터만 신호를 취하는 수직 반사 형태의 테라헤르츠 분광법을 개발하여, 물-흡수에 의한 신호 감소의 영향을 최소화하면서 동시에 메타물질을 이용한 신호 증폭 효과를 누릴 수 있도록 개선되었다. 또한 연구진은 개선된 테라헤르츠 분광법과 메타물질 센싱칩을 광수용체의 광-반응성을 확인하는 데 적용하여, 빛을 받으면 분자 구조의 변형이 일어나 이를 테라헤르츠 신호의 변화율(반사율의 변화 정도)로 직접 측정하여 정량화하는데 성공했다. 이와 같이 테라헤르츠 메타물질을 이용하면, 실시간으로 상온에서 미량의 단백질 샘플에서 일어나는 동역학 관찰이 가능하게 된다. 연구진은 실험실에서 만든 광수용체가 인간 수용체와 비교할 만한 수준의 민감도와 빛 흡수 능력을 갖고 있음을 입증했다. KIST 서민아 박사는 “인체 내 신호전달 체계에 기여하는 자극에 대한 대부분의 세포 반응은 막 단백질의 구조 변화(conformational change)로부터 시작되기 때문에, 본 연구의 내용은 향후 인공 광수용체 뿐 아니라 다양한 인체 내 세포들에서 기능 조절에 관한 연구들에 적용이 가능할 것으로 전망한다”고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민)지원으로 중견연구자지원사업, 글로벌프론티어사업(파동에너지극한제어연구단)과 KIST 기관고유사업의 일환으로 수행되었으며, 연구결과는 센서 분야 상위 국제 학술지인 ‘Sensors and Actuators B: Chemical’ (IF: 5.667, JCR 분야 상위 2.459%) 최신호에 게재되었다. * (논문명) Ultrasensitive terahertz molecule sensor for observation of photoinduced conformational change in rhodopsin-nanovesicles - (제1저자) 한국과학기술연구원 이동규 학생연구원 - (교신저자) 한국과학기술연구원 서민아 박사 <그림설명> [그림 1] (좌) 빛을 흡수하여 명암을 구분하는 광수용체 (Rhodopsin)을 포함하는 나노 크기 소포체 (vesicle) 가 테라헤르츠 분자 센서의 센싱칩 부분에 도포된 모습 (우 상) 광수용체의 11-cis 분자 구조가 외부의 빛 자극에 의해 all-trans 형태로 분자식이 바뀌는 모식도 (우 하) 광수용체 샘플에서 분자 구조의 변화 (conformational change)가 일어날 때, 테라헤르츠 메타물질 기반 분자 센서를 이용해 측정하는 테라헤르츠 신호의 외부 광자극에 대한 민감도 스펙트럼
초고감도 분자 센서 개발로 ‘인공 광수용체’의 성능 검증한다
- 인공 광수용체의 빛 인지 시 신호 전달의 동역학 관찰 플랫폼 개발 - 테라헤르츠 분광기술과 메타물질의 결합, 초고감도 분자 센서 기술 개발 - 향후 인체 내 극미량의 신호 전달 체계 메커니즘 규명 연구에 응용 기대 최근 손상된 망막을 대체하기 위한 ‘인공망막’ 관련 연구가 활발하게 이루어지고 있는 가운데, KIST에서는 ‘인공 광수용체 기반 시각복원 원천기술 개발’ 사업(과제책임자, KIST 김재헌)을 수행, 이를 통해 일반인의 시각 기능과 유사하게 빛을 인지하는 인공 생체소재인 ‘인공 광수용체’를 제작하여 시력을 일부 회복시키기 위한 연구에 박차를 가하고 있다. 최근 KIST 연구진은 이에 대한 후속연구로 인공 광수용체를 정량적이고 체계적으로 연구할 수 있는 기반 기술의 하나로 초고감도 테라헤르츠 분자 센서를 개발했다고 밝혔다. 한국과학기술연구원(KIST, 원장 이병권) 센서시스템연구센터 서민아 박사팀은 서울대 박태현 교수 연구팀과의 공동연구를 통해 빛 인지 뿐 아니라 색까지 구분 할 수 있는 인공 생체 소재인 ‘광수용체’에서 빛을 인지하였을 때 일어나는 단백질 구조 변화를 직접적으로 관찰할 수 있는 초고감도 테라헤르츠(THz, 1012Hz) 분자 센서를 개발, 상온에서 미량의 샘플에서도 신호가 검출됨을 확인하였다. 광-기반 바이오 센서 기술은 비침습적인 방법으로 생화학 분자를 잴 수 있다는 큰 장점이 있으며, 침투 깊이가 긴 파장이면서 광-에너지 값이 낮아 안전한 것으로 알려진 테라헤르츠 (Terahertz, THz, 1012 Hz) 대역의 전자기파를 이용한 기술이 새로운 타입의 광센서로 주목 받기 시작하고 있다. 이번 연구는 인간 광수용체 단백질 중 주로 명암을 구분하는 간상세포를 이용하여 인공 광수용체를 생산하고, 이들이 빛을 흡수할 때 일어나는 분자 구조의 변화를 테라헤르츠 메타물질*을 이용하여 증폭된 신호를 포착, 그 특성을 분석하는 내용이다. *테라헤르츠 메타물질 : 테라헤르츠(THz) 전자기파 영역대에서 기능을 갖는 메타물질로서 특정 주파수에서 투과율이나 반사율이 증폭된다. 테라헤르츠 메타물질 기반 광-바이오 센서 기술를 이용하면 고민감도, 고선택성 분자 검출 플랫폼을 제작하여 각종 생체 저분자 측정에 적용할 수 있다. 공동 연구진은 비지표식(Label-free)** 생체 분자 측정에 적용 가능한 테라헤르츠 분광법 기반 분자 검출 플랫폼을 개발하였으며, 이를 이용해 테라헤르츠 전자기파 대역에 특이 스펙트럼이 있는 ppm(ng/ml) 수준의 극미량 분자를 매우 높은 감도로 측정하는 기술을 개발했다고 밝혔다. 특히 테라헤르츠 메타물질을 사용하여 특정 파장 또는 주파수에서의 테라헤르츠파의 신호를 선택적으로 높여, 높은 선택성과 민감도를 지닌 생화학 저분자 및 바이러스를 선택적으로 검출할 수 있는 플랫폼으로 활용할 수 있는 가능성을 보였다. **비지표식(Label-free) : 일반적으로 광-바이오센서는 이름표를 붙이는 지표식((Labeling)으로 물질의 성질을 바뀌는 한계점 존재, 비지표식은 특이 스펙트럼을 이용하여 비접촉, 비파괴의 특성을 갖춤 일반적으로 테라헤르츠 분광법을 이용한 물질의 흡수 광학 분석 시에, 측정하고자 하는 물질의 농도가 높을수록 뚜렷한 흡수 스펙트럼을 얻을 수 있게 된다. 테라헤르츠는 물 분자에 민감하기 때문에 물 등의 액체에 녹아있는 저농도 수준의 분자의 식별은 어렵다는 한계가 있었다. 연구진은 특정 계면(interface)으로부터만 신호를 취하는 수직 반사 형태의 테라헤르츠 분광법을 개발하여, 물-흡수에 의한 신호 감소의 영향을 최소화하면서 동시에 메타물질을 이용한 신호 증폭 효과를 누릴 수 있도록 개선되었다. 또한 연구진은 개선된 테라헤르츠 분광법과 메타물질 센싱칩을 광수용체의 광-반응성을 확인하는 데 적용하여, 빛을 받으면 분자 구조의 변형이 일어나 이를 테라헤르츠 신호의 변화율(반사율의 변화 정도)로 직접 측정하여 정량화하는데 성공했다. 이와 같이 테라헤르츠 메타물질을 이용하면, 실시간으로 상온에서 미량의 단백질 샘플에서 일어나는 동역학 관찰이 가능하게 된다. 연구진은 실험실에서 만든 광수용체가 인간 수용체와 비교할 만한 수준의 민감도와 빛 흡수 능력을 갖고 있음을 입증했다. KIST 서민아 박사는 “인체 내 신호전달 체계에 기여하는 자극에 대한 대부분의 세포 반응은 막 단백질의 구조 변화(conformational change)로부터 시작되기 때문에, 본 연구의 내용은 향후 인공 광수용체 뿐 아니라 다양한 인체 내 세포들에서 기능 조절에 관한 연구들에 적용이 가능할 것으로 전망한다”고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민)지원으로 중견연구자지원사업, 글로벌프론티어사업(파동에너지극한제어연구단)과 KIST 기관고유사업의 일환으로 수행되었으며, 연구결과는 센서 분야 상위 국제 학술지인 ‘Sensors and Actuators B: Chemical’ (IF: 5.667, JCR 분야 상위 2.459%) 최신호에 게재되었다. * (논문명) Ultrasensitive terahertz molecule sensor for observation of photoinduced conformational change in rhodopsin-nanovesicles - (제1저자) 한국과학기술연구원 이동규 학생연구원 - (교신저자) 한국과학기술연구원 서민아 박사 <그림설명> [그림 1] (좌) 빛을 흡수하여 명암을 구분하는 광수용체 (Rhodopsin)을 포함하는 나노 크기 소포체 (vesicle) 가 테라헤르츠 분자 센서의 센싱칩 부분에 도포된 모습 (우 상) 광수용체의 11-cis 분자 구조가 외부의 빛 자극에 의해 all-trans 형태로 분자식이 바뀌는 모식도 (우 하) 광수용체 샘플에서 분자 구조의 변화 (conformational change)가 일어날 때, 테라헤르츠 메타물질 기반 분자 센서를 이용해 측정하는 테라헤르츠 신호의 외부 광자극에 대한 민감도 스펙트럼
초고감도 분자 센서 개발로 ‘인공 광수용체’의 성능 검증한다
- 인공 광수용체의 빛 인지 시 신호 전달의 동역학 관찰 플랫폼 개발 - 테라헤르츠 분광기술과 메타물질의 결합, 초고감도 분자 센서 기술 개발 - 향후 인체 내 극미량의 신호 전달 체계 메커니즘 규명 연구에 응용 기대 최근 손상된 망막을 대체하기 위한 ‘인공망막’ 관련 연구가 활발하게 이루어지고 있는 가운데, KIST에서는 ‘인공 광수용체 기반 시각복원 원천기술 개발’ 사업(과제책임자, KIST 김재헌)을 수행, 이를 통해 일반인의 시각 기능과 유사하게 빛을 인지하는 인공 생체소재인 ‘인공 광수용체’를 제작하여 시력을 일부 회복시키기 위한 연구에 박차를 가하고 있다. 최근 KIST 연구진은 이에 대한 후속연구로 인공 광수용체를 정량적이고 체계적으로 연구할 수 있는 기반 기술의 하나로 초고감도 테라헤르츠 분자 센서를 개발했다고 밝혔다. 한국과학기술연구원(KIST, 원장 이병권) 센서시스템연구센터 서민아 박사팀은 서울대 박태현 교수 연구팀과의 공동연구를 통해 빛 인지 뿐 아니라 색까지 구분 할 수 있는 인공 생체 소재인 ‘광수용체’에서 빛을 인지하였을 때 일어나는 단백질 구조 변화를 직접적으로 관찰할 수 있는 초고감도 테라헤르츠(THz, 1012Hz) 분자 센서를 개발, 상온에서 미량의 샘플에서도 신호가 검출됨을 확인하였다. 광-기반 바이오 센서 기술은 비침습적인 방법으로 생화학 분자를 잴 수 있다는 큰 장점이 있으며, 침투 깊이가 긴 파장이면서 광-에너지 값이 낮아 안전한 것으로 알려진 테라헤르츠 (Terahertz, THz, 1012 Hz) 대역의 전자기파를 이용한 기술이 새로운 타입의 광센서로 주목 받기 시작하고 있다. 이번 연구는 인간 광수용체 단백질 중 주로 명암을 구분하는 간상세포를 이용하여 인공 광수용체를 생산하고, 이들이 빛을 흡수할 때 일어나는 분자 구조의 변화를 테라헤르츠 메타물질*을 이용하여 증폭된 신호를 포착, 그 특성을 분석하는 내용이다. *테라헤르츠 메타물질 : 테라헤르츠(THz) 전자기파 영역대에서 기능을 갖는 메타물질로서 특정 주파수에서 투과율이나 반사율이 증폭된다. 테라헤르츠 메타물질 기반 광-바이오 센서 기술를 이용하면 고민감도, 고선택성 분자 검출 플랫폼을 제작하여 각종 생체 저분자 측정에 적용할 수 있다. 공동 연구진은 비지표식(Label-free)** 생체 분자 측정에 적용 가능한 테라헤르츠 분광법 기반 분자 검출 플랫폼을 개발하였으며, 이를 이용해 테라헤르츠 전자기파 대역에 특이 스펙트럼이 있는 ppm(ng/ml) 수준의 극미량 분자를 매우 높은 감도로 측정하는 기술을 개발했다고 밝혔다. 특히 테라헤르츠 메타물질을 사용하여 특정 파장 또는 주파수에서의 테라헤르츠파의 신호를 선택적으로 높여, 높은 선택성과 민감도를 지닌 생화학 저분자 및 바이러스를 선택적으로 검출할 수 있는 플랫폼으로 활용할 수 있는 가능성을 보였다. **비지표식(Label-free) : 일반적으로 광-바이오센서는 이름표를 붙이는 지표식((Labeling)으로 물질의 성질을 바뀌는 한계점 존재, 비지표식은 특이 스펙트럼을 이용하여 비접촉, 비파괴의 특성을 갖춤 일반적으로 테라헤르츠 분광법을 이용한 물질의 흡수 광학 분석 시에, 측정하고자 하는 물질의 농도가 높을수록 뚜렷한 흡수 스펙트럼을 얻을 수 있게 된다. 테라헤르츠는 물 분자에 민감하기 때문에 물 등의 액체에 녹아있는 저농도 수준의 분자의 식별은 어렵다는 한계가 있었다. 연구진은 특정 계면(interface)으로부터만 신호를 취하는 수직 반사 형태의 테라헤르츠 분광법을 개발하여, 물-흡수에 의한 신호 감소의 영향을 최소화하면서 동시에 메타물질을 이용한 신호 증폭 효과를 누릴 수 있도록 개선되었다. 또한 연구진은 개선된 테라헤르츠 분광법과 메타물질 센싱칩을 광수용체의 광-반응성을 확인하는 데 적용하여, 빛을 받으면 분자 구조의 변형이 일어나 이를 테라헤르츠 신호의 변화율(반사율의 변화 정도)로 직접 측정하여 정량화하는데 성공했다. 이와 같이 테라헤르츠 메타물질을 이용하면, 실시간으로 상온에서 미량의 단백질 샘플에서 일어나는 동역학 관찰이 가능하게 된다. 연구진은 실험실에서 만든 광수용체가 인간 수용체와 비교할 만한 수준의 민감도와 빛 흡수 능력을 갖고 있음을 입증했다. KIST 서민아 박사는 “인체 내 신호전달 체계에 기여하는 자극에 대한 대부분의 세포 반응은 막 단백질의 구조 변화(conformational change)로부터 시작되기 때문에, 본 연구의 내용은 향후 인공 광수용체 뿐 아니라 다양한 인체 내 세포들에서 기능 조절에 관한 연구들에 적용이 가능할 것으로 전망한다”고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민)지원으로 중견연구자지원사업, 글로벌프론티어사업(파동에너지극한제어연구단)과 KIST 기관고유사업의 일환으로 수행되었으며, 연구결과는 센서 분야 상위 국제 학술지인 ‘Sensors and Actuators B: Chemical’ (IF: 5.667, JCR 분야 상위 2.459%) 최신호에 게재되었다. * (논문명) Ultrasensitive terahertz molecule sensor for observation of photoinduced conformational change in rhodopsin-nanovesicles - (제1저자) 한국과학기술연구원 이동규 학생연구원 - (교신저자) 한국과학기술연구원 서민아 박사 <그림설명> [그림 1] (좌) 빛을 흡수하여 명암을 구분하는 광수용체 (Rhodopsin)을 포함하는 나노 크기 소포체 (vesicle) 가 테라헤르츠 분자 센서의 센싱칩 부분에 도포된 모습 (우 상) 광수용체의 11-cis 분자 구조가 외부의 빛 자극에 의해 all-trans 형태로 분자식이 바뀌는 모식도 (우 하) 광수용체 샘플에서 분자 구조의 변화 (conformational change)가 일어날 때, 테라헤르츠 메타물질 기반 분자 센서를 이용해 측정하는 테라헤르츠 신호의 외부 광자극에 대한 민감도 스펙트럼
초고감도 분자 센서 개발로 ‘인공 광수용체’의 성능 검증한다
- 인공 광수용체의 빛 인지 시 신호 전달의 동역학 관찰 플랫폼 개발 - 테라헤르츠 분광기술과 메타물질의 결합, 초고감도 분자 센서 기술 개발 - 향후 인체 내 극미량의 신호 전달 체계 메커니즘 규명 연구에 응용 기대 최근 손상된 망막을 대체하기 위한 ‘인공망막’ 관련 연구가 활발하게 이루어지고 있는 가운데, KIST에서는 ‘인공 광수용체 기반 시각복원 원천기술 개발’ 사업(과제책임자, KIST 김재헌)을 수행, 이를 통해 일반인의 시각 기능과 유사하게 빛을 인지하는 인공 생체소재인 ‘인공 광수용체’를 제작하여 시력을 일부 회복시키기 위한 연구에 박차를 가하고 있다. 최근 KIST 연구진은 이에 대한 후속연구로 인공 광수용체를 정량적이고 체계적으로 연구할 수 있는 기반 기술의 하나로 초고감도 테라헤르츠 분자 센서를 개발했다고 밝혔다. 한국과학기술연구원(KIST, 원장 이병권) 센서시스템연구센터 서민아 박사팀은 서울대 박태현 교수 연구팀과의 공동연구를 통해 빛 인지 뿐 아니라 색까지 구분 할 수 있는 인공 생체 소재인 ‘광수용체’에서 빛을 인지하였을 때 일어나는 단백질 구조 변화를 직접적으로 관찰할 수 있는 초고감도 테라헤르츠(THz, 1012Hz) 분자 센서를 개발, 상온에서 미량의 샘플에서도 신호가 검출됨을 확인하였다. 광-기반 바이오 센서 기술은 비침습적인 방법으로 생화학 분자를 잴 수 있다는 큰 장점이 있으며, 침투 깊이가 긴 파장이면서 광-에너지 값이 낮아 안전한 것으로 알려진 테라헤르츠 (Terahertz, THz, 1012 Hz) 대역의 전자기파를 이용한 기술이 새로운 타입의 광센서로 주목 받기 시작하고 있다. 이번 연구는 인간 광수용체 단백질 중 주로 명암을 구분하는 간상세포를 이용하여 인공 광수용체를 생산하고, 이들이 빛을 흡수할 때 일어나는 분자 구조의 변화를 테라헤르츠 메타물질*을 이용하여 증폭된 신호를 포착, 그 특성을 분석하는 내용이다. *테라헤르츠 메타물질 : 테라헤르츠(THz) 전자기파 영역대에서 기능을 갖는 메타물질로서 특정 주파수에서 투과율이나 반사율이 증폭된다. 테라헤르츠 메타물질 기반 광-바이오 센서 기술를 이용하면 고민감도, 고선택성 분자 검출 플랫폼을 제작하여 각종 생체 저분자 측정에 적용할 수 있다. 공동 연구진은 비지표식(Label-free)** 생체 분자 측정에 적용 가능한 테라헤르츠 분광법 기반 분자 검출 플랫폼을 개발하였으며, 이를 이용해 테라헤르츠 전자기파 대역에 특이 스펙트럼이 있는 ppm(ng/ml) 수준의 극미량 분자를 매우 높은 감도로 측정하는 기술을 개발했다고 밝혔다. 특히 테라헤르츠 메타물질을 사용하여 특정 파장 또는 주파수에서의 테라헤르츠파의 신호를 선택적으로 높여, 높은 선택성과 민감도를 지닌 생화학 저분자 및 바이러스를 선택적으로 검출할 수 있는 플랫폼으로 활용할 수 있는 가능성을 보였다. **비지표식(Label-free) : 일반적으로 광-바이오센서는 이름표를 붙이는 지표식((Labeling)으로 물질의 성질을 바뀌는 한계점 존재, 비지표식은 특이 스펙트럼을 이용하여 비접촉, 비파괴의 특성을 갖춤 일반적으로 테라헤르츠 분광법을 이용한 물질의 흡수 광학 분석 시에, 측정하고자 하는 물질의 농도가 높을수록 뚜렷한 흡수 스펙트럼을 얻을 수 있게 된다. 테라헤르츠는 물 분자에 민감하기 때문에 물 등의 액체에 녹아있는 저농도 수준의 분자의 식별은 어렵다는 한계가 있었다. 연구진은 특정 계면(interface)으로부터만 신호를 취하는 수직 반사 형태의 테라헤르츠 분광법을 개발하여, 물-흡수에 의한 신호 감소의 영향을 최소화하면서 동시에 메타물질을 이용한 신호 증폭 효과를 누릴 수 있도록 개선되었다. 또한 연구진은 개선된 테라헤르츠 분광법과 메타물질 센싱칩을 광수용체의 광-반응성을 확인하는 데 적용하여, 빛을 받으면 분자 구조의 변형이 일어나 이를 테라헤르츠 신호의 변화율(반사율의 변화 정도)로 직접 측정하여 정량화하는데 성공했다. 이와 같이 테라헤르츠 메타물질을 이용하면, 실시간으로 상온에서 미량의 단백질 샘플에서 일어나는 동역학 관찰이 가능하게 된다. 연구진은 실험실에서 만든 광수용체가 인간 수용체와 비교할 만한 수준의 민감도와 빛 흡수 능력을 갖고 있음을 입증했다. KIST 서민아 박사는 “인체 내 신호전달 체계에 기여하는 자극에 대한 대부분의 세포 반응은 막 단백질의 구조 변화(conformational change)로부터 시작되기 때문에, 본 연구의 내용은 향후 인공 광수용체 뿐 아니라 다양한 인체 내 세포들에서 기능 조절에 관한 연구들에 적용이 가능할 것으로 전망한다”고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민)지원으로 중견연구자지원사업, 글로벌프론티어사업(파동에너지극한제어연구단)과 KIST 기관고유사업의 일환으로 수행되었으며, 연구결과는 센서 분야 상위 국제 학술지인 ‘Sensors and Actuators B: Chemical’ (IF: 5.667, JCR 분야 상위 2.459%) 최신호에 게재되었다. * (논문명) Ultrasensitive terahertz molecule sensor for observation of photoinduced conformational change in rhodopsin-nanovesicles - (제1저자) 한국과학기술연구원 이동규 학생연구원 - (교신저자) 한국과학기술연구원 서민아 박사 <그림설명> [그림 1] (좌) 빛을 흡수하여 명암을 구분하는 광수용체 (Rhodopsin)을 포함하는 나노 크기 소포체 (vesicle) 가 테라헤르츠 분자 센서의 센싱칩 부분에 도포된 모습 (우 상) 광수용체의 11-cis 분자 구조가 외부의 빛 자극에 의해 all-trans 형태로 분자식이 바뀌는 모식도 (우 하) 광수용체 샘플에서 분자 구조의 변화 (conformational change)가 일어날 때, 테라헤르츠 메타물질 기반 분자 센서를 이용해 측정하는 테라헤르츠 신호의 외부 광자극에 대한 민감도 스펙트럼
초고감도 분자 센서 개발로 ‘인공 광수용체’의 성능 검증한다
- 인공 광수용체의 빛 인지 시 신호 전달의 동역학 관찰 플랫폼 개발 - 테라헤르츠 분광기술과 메타물질의 결합, 초고감도 분자 센서 기술 개발 - 향후 인체 내 극미량의 신호 전달 체계 메커니즘 규명 연구에 응용 기대 최근 손상된 망막을 대체하기 위한 ‘인공망막’ 관련 연구가 활발하게 이루어지고 있는 가운데, KIST에서는 ‘인공 광수용체 기반 시각복원 원천기술 개발’ 사업(과제책임자, KIST 김재헌)을 수행, 이를 통해 일반인의 시각 기능과 유사하게 빛을 인지하는 인공 생체소재인 ‘인공 광수용체’를 제작하여 시력을 일부 회복시키기 위한 연구에 박차를 가하고 있다. 최근 KIST 연구진은 이에 대한 후속연구로 인공 광수용체를 정량적이고 체계적으로 연구할 수 있는 기반 기술의 하나로 초고감도 테라헤르츠 분자 센서를 개발했다고 밝혔다. 한국과학기술연구원(KIST, 원장 이병권) 센서시스템연구센터 서민아 박사팀은 서울대 박태현 교수 연구팀과의 공동연구를 통해 빛 인지 뿐 아니라 색까지 구분 할 수 있는 인공 생체 소재인 ‘광수용체’에서 빛을 인지하였을 때 일어나는 단백질 구조 변화를 직접적으로 관찰할 수 있는 초고감도 테라헤르츠(THz, 1012Hz) 분자 센서를 개발, 상온에서 미량의 샘플에서도 신호가 검출됨을 확인하였다. 광-기반 바이오 센서 기술은 비침습적인 방법으로 생화학 분자를 잴 수 있다는 큰 장점이 있으며, 침투 깊이가 긴 파장이면서 광-에너지 값이 낮아 안전한 것으로 알려진 테라헤르츠 (Terahertz, THz, 1012 Hz) 대역의 전자기파를 이용한 기술이 새로운 타입의 광센서로 주목 받기 시작하고 있다. 이번 연구는 인간 광수용체 단백질 중 주로 명암을 구분하는 간상세포를 이용하여 인공 광수용체를 생산하고, 이들이 빛을 흡수할 때 일어나는 분자 구조의 변화를 테라헤르츠 메타물질*을 이용하여 증폭된 신호를 포착, 그 특성을 분석하는 내용이다. *테라헤르츠 메타물질 : 테라헤르츠(THz) 전자기파 영역대에서 기능을 갖는 메타물질로서 특정 주파수에서 투과율이나 반사율이 증폭된다. 테라헤르츠 메타물질 기반 광-바이오 센서 기술를 이용하면 고민감도, 고선택성 분자 검출 플랫폼을 제작하여 각종 생체 저분자 측정에 적용할 수 있다. 공동 연구진은 비지표식(Label-free)** 생체 분자 측정에 적용 가능한 테라헤르츠 분광법 기반 분자 검출 플랫폼을 개발하였으며, 이를 이용해 테라헤르츠 전자기파 대역에 특이 스펙트럼이 있는 ppm(ng/ml) 수준의 극미량 분자를 매우 높은 감도로 측정하는 기술을 개발했다고 밝혔다. 특히 테라헤르츠 메타물질을 사용하여 특정 파장 또는 주파수에서의 테라헤르츠파의 신호를 선택적으로 높여, 높은 선택성과 민감도를 지닌 생화학 저분자 및 바이러스를 선택적으로 검출할 수 있는 플랫폼으로 활용할 수 있는 가능성을 보였다. **비지표식(Label-free) : 일반적으로 광-바이오센서는 이름표를 붙이는 지표식((Labeling)으로 물질의 성질을 바뀌는 한계점 존재, 비지표식은 특이 스펙트럼을 이용하여 비접촉, 비파괴의 특성을 갖춤 일반적으로 테라헤르츠 분광법을 이용한 물질의 흡수 광학 분석 시에, 측정하고자 하는 물질의 농도가 높을수록 뚜렷한 흡수 스펙트럼을 얻을 수 있게 된다. 테라헤르츠는 물 분자에 민감하기 때문에 물 등의 액체에 녹아있는 저농도 수준의 분자의 식별은 어렵다는 한계가 있었다. 연구진은 특정 계면(interface)으로부터만 신호를 취하는 수직 반사 형태의 테라헤르츠 분광법을 개발하여, 물-흡수에 의한 신호 감소의 영향을 최소화하면서 동시에 메타물질을 이용한 신호 증폭 효과를 누릴 수 있도록 개선되었다. 또한 연구진은 개선된 테라헤르츠 분광법과 메타물질 센싱칩을 광수용체의 광-반응성을 확인하는 데 적용하여, 빛을 받으면 분자 구조의 변형이 일어나 이를 테라헤르츠 신호의 변화율(반사율의 변화 정도)로 직접 측정하여 정량화하는데 성공했다. 이와 같이 테라헤르츠 메타물질을 이용하면, 실시간으로 상온에서 미량의 단백질 샘플에서 일어나는 동역학 관찰이 가능하게 된다. 연구진은 실험실에서 만든 광수용체가 인간 수용체와 비교할 만한 수준의 민감도와 빛 흡수 능력을 갖고 있음을 입증했다. KIST 서민아 박사는 “인체 내 신호전달 체계에 기여하는 자극에 대한 대부분의 세포 반응은 막 단백질의 구조 변화(conformational change)로부터 시작되기 때문에, 본 연구의 내용은 향후 인공 광수용체 뿐 아니라 다양한 인체 내 세포들에서 기능 조절에 관한 연구들에 적용이 가능할 것으로 전망한다”고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민)지원으로 중견연구자지원사업, 글로벌프론티어사업(파동에너지극한제어연구단)과 KIST 기관고유사업의 일환으로 수행되었으며, 연구결과는 센서 분야 상위 국제 학술지인 ‘Sensors and Actuators B: Chemical’ (IF: 5.667, JCR 분야 상위 2.459%) 최신호에 게재되었다. * (논문명) Ultrasensitive terahertz molecule sensor for observation of photoinduced conformational change in rhodopsin-nanovesicles - (제1저자) 한국과학기술연구원 이동규 학생연구원 - (교신저자) 한국과학기술연구원 서민아 박사 <그림설명> [그림 1] (좌) 빛을 흡수하여 명암을 구분하는 광수용체 (Rhodopsin)을 포함하는 나노 크기 소포체 (vesicle) 가 테라헤르츠 분자 센서의 센싱칩 부분에 도포된 모습 (우 상) 광수용체의 11-cis 분자 구조가 외부의 빛 자극에 의해 all-trans 형태로 분자식이 바뀌는 모식도 (우 하) 광수용체 샘플에서 분자 구조의 변화 (conformational change)가 일어날 때, 테라헤르츠 메타물질 기반 분자 센서를 이용해 측정하는 테라헤르츠 신호의 외부 광자극에 대한 민감도 스펙트럼
초고감도 분자 센서 개발로 ‘인공 광수용체’의 성능 검증한다
- 인공 광수용체의 빛 인지 시 신호 전달의 동역학 관찰 플랫폼 개발 - 테라헤르츠 분광기술과 메타물질의 결합, 초고감도 분자 센서 기술 개발 - 향후 인체 내 극미량의 신호 전달 체계 메커니즘 규명 연구에 응용 기대 최근 손상된 망막을 대체하기 위한 ‘인공망막’ 관련 연구가 활발하게 이루어지고 있는 가운데, KIST에서는 ‘인공 광수용체 기반 시각복원 원천기술 개발’ 사업(과제책임자, KIST 김재헌)을 수행, 이를 통해 일반인의 시각 기능과 유사하게 빛을 인지하는 인공 생체소재인 ‘인공 광수용체’를 제작하여 시력을 일부 회복시키기 위한 연구에 박차를 가하고 있다. 최근 KIST 연구진은 이에 대한 후속연구로 인공 광수용체를 정량적이고 체계적으로 연구할 수 있는 기반 기술의 하나로 초고감도 테라헤르츠 분자 센서를 개발했다고 밝혔다. 한국과학기술연구원(KIST, 원장 이병권) 센서시스템연구센터 서민아 박사팀은 서울대 박태현 교수 연구팀과의 공동연구를 통해 빛 인지 뿐 아니라 색까지 구분 할 수 있는 인공 생체 소재인 ‘광수용체’에서 빛을 인지하였을 때 일어나는 단백질 구조 변화를 직접적으로 관찰할 수 있는 초고감도 테라헤르츠(THz, 1012Hz) 분자 센서를 개발, 상온에서 미량의 샘플에서도 신호가 검출됨을 확인하였다. 광-기반 바이오 센서 기술은 비침습적인 방법으로 생화학 분자를 잴 수 있다는 큰 장점이 있으며, 침투 깊이가 긴 파장이면서 광-에너지 값이 낮아 안전한 것으로 알려진 테라헤르츠 (Terahertz, THz, 1012 Hz) 대역의 전자기파를 이용한 기술이 새로운 타입의 광센서로 주목 받기 시작하고 있다. 이번 연구는 인간 광수용체 단백질 중 주로 명암을 구분하는 간상세포를 이용하여 인공 광수용체를 생산하고, 이들이 빛을 흡수할 때 일어나는 분자 구조의 변화를 테라헤르츠 메타물질*을 이용하여 증폭된 신호를 포착, 그 특성을 분석하는 내용이다. *테라헤르츠 메타물질 : 테라헤르츠(THz) 전자기파 영역대에서 기능을 갖는 메타물질로서 특정 주파수에서 투과율이나 반사율이 증폭된다. 테라헤르츠 메타물질 기반 광-바이오 센서 기술를 이용하면 고민감도, 고선택성 분자 검출 플랫폼을 제작하여 각종 생체 저분자 측정에 적용할 수 있다. 공동 연구진은 비지표식(Label-free)** 생체 분자 측정에 적용 가능한 테라헤르츠 분광법 기반 분자 검출 플랫폼을 개발하였으며, 이를 이용해 테라헤르츠 전자기파 대역에 특이 스펙트럼이 있는 ppm(ng/ml) 수준의 극미량 분자를 매우 높은 감도로 측정하는 기술을 개발했다고 밝혔다. 특히 테라헤르츠 메타물질을 사용하여 특정 파장 또는 주파수에서의 테라헤르츠파의 신호를 선택적으로 높여, 높은 선택성과 민감도를 지닌 생화학 저분자 및 바이러스를 선택적으로 검출할 수 있는 플랫폼으로 활용할 수 있는 가능성을 보였다. **비지표식(Label-free) : 일반적으로 광-바이오센서는 이름표를 붙이는 지표식((Labeling)으로 물질의 성질을 바뀌는 한계점 존재, 비지표식은 특이 스펙트럼을 이용하여 비접촉, 비파괴의 특성을 갖춤 일반적으로 테라헤르츠 분광법을 이용한 물질의 흡수 광학 분석 시에, 측정하고자 하는 물질의 농도가 높을수록 뚜렷한 흡수 스펙트럼을 얻을 수 있게 된다. 테라헤르츠는 물 분자에 민감하기 때문에 물 등의 액체에 녹아있는 저농도 수준의 분자의 식별은 어렵다는 한계가 있었다. 연구진은 특정 계면(interface)으로부터만 신호를 취하는 수직 반사 형태의 테라헤르츠 분광법을 개발하여, 물-흡수에 의한 신호 감소의 영향을 최소화하면서 동시에 메타물질을 이용한 신호 증폭 효과를 누릴 수 있도록 개선되었다. 또한 연구진은 개선된 테라헤르츠 분광법과 메타물질 센싱칩을 광수용체의 광-반응성을 확인하는 데 적용하여, 빛을 받으면 분자 구조의 변형이 일어나 이를 테라헤르츠 신호의 변화율(반사율의 변화 정도)로 직접 측정하여 정량화하는데 성공했다. 이와 같이 테라헤르츠 메타물질을 이용하면, 실시간으로 상온에서 미량의 단백질 샘플에서 일어나는 동역학 관찰이 가능하게 된다. 연구진은 실험실에서 만든 광수용체가 인간 수용체와 비교할 만한 수준의 민감도와 빛 흡수 능력을 갖고 있음을 입증했다. KIST 서민아 박사는 “인체 내 신호전달 체계에 기여하는 자극에 대한 대부분의 세포 반응은 막 단백질의 구조 변화(conformational change)로부터 시작되기 때문에, 본 연구의 내용은 향후 인공 광수용체 뿐 아니라 다양한 인체 내 세포들에서 기능 조절에 관한 연구들에 적용이 가능할 것으로 전망한다”고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민)지원으로 중견연구자지원사업, 글로벌프론티어사업(파동에너지극한제어연구단)과 KIST 기관고유사업의 일환으로 수행되었으며, 연구결과는 센서 분야 상위 국제 학술지인 ‘Sensors and Actuators B: Chemical’ (IF: 5.667, JCR 분야 상위 2.459%) 최신호에 게재되었다. * (논문명) Ultrasensitive terahertz molecule sensor for observation of photoinduced conformational change in rhodopsin-nanovesicles - (제1저자) 한국과학기술연구원 이동규 학생연구원 - (교신저자) 한국과학기술연구원 서민아 박사 <그림설명> [그림 1] (좌) 빛을 흡수하여 명암을 구분하는 광수용체 (Rhodopsin)을 포함하는 나노 크기 소포체 (vesicle) 가 테라헤르츠 분자 센서의 센싱칩 부분에 도포된 모습 (우 상) 광수용체의 11-cis 분자 구조가 외부의 빛 자극에 의해 all-trans 형태로 분자식이 바뀌는 모식도 (우 하) 광수용체 샘플에서 분자 구조의 변화 (conformational change)가 일어날 때, 테라헤르츠 메타물질 기반 분자 센서를 이용해 측정하는 테라헤르츠 신호의 외부 광자극에 대한 민감도 스펙트럼
초고감도 분자 센서 개발로 ‘인공 광수용체’의 성능 검증한다
- 인공 광수용체의 빛 인지 시 신호 전달의 동역학 관찰 플랫폼 개발 - 테라헤르츠 분광기술과 메타물질의 결합, 초고감도 분자 센서 기술 개발 - 향후 인체 내 극미량의 신호 전달 체계 메커니즘 규명 연구에 응용 기대 최근 손상된 망막을 대체하기 위한 ‘인공망막’ 관련 연구가 활발하게 이루어지고 있는 가운데, KIST에서는 ‘인공 광수용체 기반 시각복원 원천기술 개발’ 사업(과제책임자, KIST 김재헌)을 수행, 이를 통해 일반인의 시각 기능과 유사하게 빛을 인지하는 인공 생체소재인 ‘인공 광수용체’를 제작하여 시력을 일부 회복시키기 위한 연구에 박차를 가하고 있다. 최근 KIST 연구진은 이에 대한 후속연구로 인공 광수용체를 정량적이고 체계적으로 연구할 수 있는 기반 기술의 하나로 초고감도 테라헤르츠 분자 센서를 개발했다고 밝혔다. 한국과학기술연구원(KIST, 원장 이병권) 센서시스템연구센터 서민아 박사팀은 서울대 박태현 교수 연구팀과의 공동연구를 통해 빛 인지 뿐 아니라 색까지 구분 할 수 있는 인공 생체 소재인 ‘광수용체’에서 빛을 인지하였을 때 일어나는 단백질 구조 변화를 직접적으로 관찰할 수 있는 초고감도 테라헤르츠(THz, 1012Hz) 분자 센서를 개발, 상온에서 미량의 샘플에서도 신호가 검출됨을 확인하였다. 광-기반 바이오 센서 기술은 비침습적인 방법으로 생화학 분자를 잴 수 있다는 큰 장점이 있으며, 침투 깊이가 긴 파장이면서 광-에너지 값이 낮아 안전한 것으로 알려진 테라헤르츠 (Terahertz, THz, 1012 Hz) 대역의 전자기파를 이용한 기술이 새로운 타입의 광센서로 주목 받기 시작하고 있다. 이번 연구는 인간 광수용체 단백질 중 주로 명암을 구분하는 간상세포를 이용하여 인공 광수용체를 생산하고, 이들이 빛을 흡수할 때 일어나는 분자 구조의 변화를 테라헤르츠 메타물질*을 이용하여 증폭된 신호를 포착, 그 특성을 분석하는 내용이다. *테라헤르츠 메타물질 : 테라헤르츠(THz) 전자기파 영역대에서 기능을 갖는 메타물질로서 특정 주파수에서 투과율이나 반사율이 증폭된다. 테라헤르츠 메타물질 기반 광-바이오 센서 기술를 이용하면 고민감도, 고선택성 분자 검출 플랫폼을 제작하여 각종 생체 저분자 측정에 적용할 수 있다. 공동 연구진은 비지표식(Label-free)** 생체 분자 측정에 적용 가능한 테라헤르츠 분광법 기반 분자 검출 플랫폼을 개발하였으며, 이를 이용해 테라헤르츠 전자기파 대역에 특이 스펙트럼이 있는 ppm(ng/ml) 수준의 극미량 분자를 매우 높은 감도로 측정하는 기술을 개발했다고 밝혔다. 특히 테라헤르츠 메타물질을 사용하여 특정 파장 또는 주파수에서의 테라헤르츠파의 신호를 선택적으로 높여, 높은 선택성과 민감도를 지닌 생화학 저분자 및 바이러스를 선택적으로 검출할 수 있는 플랫폼으로 활용할 수 있는 가능성을 보였다. **비지표식(Label-free) : 일반적으로 광-바이오센서는 이름표를 붙이는 지표식((Labeling)으로 물질의 성질을 바뀌는 한계점 존재, 비지표식은 특이 스펙트럼을 이용하여 비접촉, 비파괴의 특성을 갖춤 일반적으로 테라헤르츠 분광법을 이용한 물질의 흡수 광학 분석 시에, 측정하고자 하는 물질의 농도가 높을수록 뚜렷한 흡수 스펙트럼을 얻을 수 있게 된다. 테라헤르츠는 물 분자에 민감하기 때문에 물 등의 액체에 녹아있는 저농도 수준의 분자의 식별은 어렵다는 한계가 있었다. 연구진은 특정 계면(interface)으로부터만 신호를 취하는 수직 반사 형태의 테라헤르츠 분광법을 개발하여, 물-흡수에 의한 신호 감소의 영향을 최소화하면서 동시에 메타물질을 이용한 신호 증폭 효과를 누릴 수 있도록 개선되었다. 또한 연구진은 개선된 테라헤르츠 분광법과 메타물질 센싱칩을 광수용체의 광-반응성을 확인하는 데 적용하여, 빛을 받으면 분자 구조의 변형이 일어나 이를 테라헤르츠 신호의 변화율(반사율의 변화 정도)로 직접 측정하여 정량화하는데 성공했다. 이와 같이 테라헤르츠 메타물질을 이용하면, 실시간으로 상온에서 미량의 단백질 샘플에서 일어나는 동역학 관찰이 가능하게 된다. 연구진은 실험실에서 만든 광수용체가 인간 수용체와 비교할 만한 수준의 민감도와 빛 흡수 능력을 갖고 있음을 입증했다. KIST 서민아 박사는 “인체 내 신호전달 체계에 기여하는 자극에 대한 대부분의 세포 반응은 막 단백질의 구조 변화(conformational change)로부터 시작되기 때문에, 본 연구의 내용은 향후 인공 광수용체 뿐 아니라 다양한 인체 내 세포들에서 기능 조절에 관한 연구들에 적용이 가능할 것으로 전망한다”고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민)지원으로 중견연구자지원사업, 글로벌프론티어사업(파동에너지극한제어연구단)과 KIST 기관고유사업의 일환으로 수행되었으며, 연구결과는 센서 분야 상위 국제 학술지인 ‘Sensors and Actuators B: Chemical’ (IF: 5.667, JCR 분야 상위 2.459%) 최신호에 게재되었다. * (논문명) Ultrasensitive terahertz molecule sensor for observation of photoinduced conformational change in rhodopsin-nanovesicles - (제1저자) 한국과학기술연구원 이동규 학생연구원 - (교신저자) 한국과학기술연구원 서민아 박사 <그림설명> [그림 1] (좌) 빛을 흡수하여 명암을 구분하는 광수용체 (Rhodopsin)을 포함하는 나노 크기 소포체 (vesicle) 가 테라헤르츠 분자 센서의 센싱칩 부분에 도포된 모습 (우 상) 광수용체의 11-cis 분자 구조가 외부의 빛 자극에 의해 all-trans 형태로 분자식이 바뀌는 모식도 (우 하) 광수용체 샘플에서 분자 구조의 변화 (conformational change)가 일어날 때, 테라헤르츠 메타물질 기반 분자 센서를 이용해 측정하는 테라헤르츠 신호의 외부 광자극에 대한 민감도 스펙트럼