검색결과
게시물 키워드""에 대한 9087개의 검색결과를 찾았습니다.
차세대 연료전지의 새로운 전해질 합성법 개발, 그린수소 생산 한걸음 더
- 프로톤 세라믹 전해질의 소결 온도를 획기적으로 낮출 새로운 합성법 개발 - 획기적 공정개발로 프로톤 세라믹 전지의 경제성 및 고성능화 동시 달성 한국과학기술연구원(KIST, 원장 오상록) 수소에너지소재연구단 지호일 박사, 금오공과대학교 최시혁 교수 연구팀은 차세대 고효율 세라믹 전지인 프로톤 세라믹 전지의 전해질의 치밀화 과정을 유발하는 소결 온도를 획기적으로 낮출 수 있는 신규 합성법을 개발했다고 밝혔다. 전해질, 전극 등 모든 구성요소가 세라믹과 같은 금속산화물로 구성된 기존의 고체산화물 연료전지(Solid Oxide Cell; SOC)는 전력 생산과 수소 생산이 동시에 가능하다. 특히, 600℃ 이상의 고온에서 작동하기 때문에 다른 연료전지 대비 전력 변환 효율이 높다는 장점이 있으나, 고온 내구성을 지닌 재료를 사용하기 때문에 생산비용이 높고 장기간 작동 시 열화로 인한 성능 저하가 유발되는 한계가 있다. 최근, 고체산화물 전지 중 수소이온인 프로톤(Proton)을 사용하는 프로톤 세라믹 전지(Protonic Ceramic Cell; PCC)가 차세대 연료전지로 주목받고 있다. 산소이온을 전달하는 기존 전해질과 달리 크기가 작은 수소이온을 전달하기 때문에 높은 이온전도도를 구현할 수 있다. 그러나 프로톤 세라믹 전지의 전해질을 제작하기 위해서는 1,500℃ 이상 고온에서의 소결이 필요한데, 이 과정에서 구성물이 휘발 또는 석출되는 현상은 전해질의 성능을 저하하고 있어 프로톤 세라믹 전지의 상용화에 걸림돌이 되고 있다. 연구팀은 소결 온도를 낮추기 위해 전해질 소재를 합성하는 새로운 공정을 개발했다. 일반적으로는 하나의 화합물로 구성된 분말을 소결해 프로톤 세라믹 전지의 전해질을 제작한다. 하지만 소결 온도를 낮추기 위해 투입된 첨가제가 전해질에 잔류해 전지의 출력밀도를 저해하는 문제가 발생했다. 연구팀은 저온 합성을 통해 두 종류의 화합물이 혼합된 분말을 전해질로 제조했을 때, 소결 특성이 우수한 하나의 화합물로 합성되는 소결 가속화 과정에서 첨가제 없이도 소결 온도가 1,400℃로 낮아지는 것을 확인했다. 새로운 공정으로 합성된 프로톤 세라믹 전해질은 낮은 온도에서도 치밀한 막을 형성해 전지의 전기화학적 특성을 향상시켰다. 또한, 이 전해질을 실제 프로톤 세라믹 전지에 적용했을 때, 우수한 프로톤 전달 특성이 발현돼 600℃에서 기존 대비 약 2배 향상된 출력밀도(950mW/cm2)를 달성했다. 이를 통해 공정 시간을 단축하고 열적 안정성 및 세라믹 전해질의 성능 향상을 동시에 달성할 수 있을 것으로 기대된다. 연구진은 향후 프로톤 세라믹 전지 상용화를 위해 두 화합물 간 소결 가속화 현상을 이용한 새로운 공정을 대면적 전지 제작에 적용할 예정이다. KIST 지호일 박사는 "본 연구를 통해 프로톤 세라믹 전지 제작 과정 중 고질적인 소결 문제를 해결할 수 있었다"라며, "대면적화 기술이 성공적으로 개발되면 전력 생산과 수전해를 통한 그린수소, 원자력 발전소의 폐열을 활용한 핑크수소 생산 기술로 활용해 에너지의 효율적인 관리가 가능해질 것"이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 이종호)의 지원을 받아 KIST 주요사업 및 미래수소원천기술개발사업(2021M3I3A1084278), 산업통상자원부(장관 안덕근) 신재생에너지핵심기술개발사업(20223030040080)으로 수행됐다. 이번 연구 성과는 국제 학술지 「Advanced Energy Materials」 (IF 24.4, JCR 분야 2.6%)에 게재됐다. [그림 1] 저온합성으로 제조된 프로톤 세라믹 전해질이 소결되는 원리 저온합성공정으로 제조된 이중상(dual-phase) 프로톤 세라믹 전해질은 향상된 소결특성을 보여 기존의 소결공정 온도를 낮출 수 있으며, 그 결과 전해질의 고유특성을 소자에서도 발현할 수 있게 되어 전지 특성을 향상시킬 수 있다. [그림 2] 단일상(A) 및 이중상(B) 프로톤 세라믹 전해질 소결 거동 비교 (A) 단일상(single-phase) 전해질 분말소재는 온도가 증가할수록 고유소결특성에 따라 입자 크기가 성장한다. (B) 높은 소결도 및 낮은 소결도 특성을 각각 보이는 두 개의 상으로 구성된 이중상 전해질 분말은 온도가 증가함에 따라 소결특성이 우수한 하나의 상이 초기 소결특성을 결정, 가속화하고 잔존하는 난소결 상이 오스트발트 라이프닝(Ostwald ripening) 현상으로 입자크기 성장이 이루어진 상으로 흡수되면서 최종 단일상을 형성하게 된다.
차세대 연료전지의 새로운 전해질 합성법 개발, 그린수소 생산 한걸음 더
- 프로톤 세라믹 전해질의 소결 온도를 획기적으로 낮출 새로운 합성법 개발 - 획기적 공정개발로 프로톤 세라믹 전지의 경제성 및 고성능화 동시 달성 한국과학기술연구원(KIST, 원장 오상록) 수소에너지소재연구단 지호일 박사, 금오공과대학교 최시혁 교수 연구팀은 차세대 고효율 세라믹 전지인 프로톤 세라믹 전지의 전해질의 치밀화 과정을 유발하는 소결 온도를 획기적으로 낮출 수 있는 신규 합성법을 개발했다고 밝혔다. 전해질, 전극 등 모든 구성요소가 세라믹과 같은 금속산화물로 구성된 기존의 고체산화물 연료전지(Solid Oxide Cell; SOC)는 전력 생산과 수소 생산이 동시에 가능하다. 특히, 600℃ 이상의 고온에서 작동하기 때문에 다른 연료전지 대비 전력 변환 효율이 높다는 장점이 있으나, 고온 내구성을 지닌 재료를 사용하기 때문에 생산비용이 높고 장기간 작동 시 열화로 인한 성능 저하가 유발되는 한계가 있다. 최근, 고체산화물 전지 중 수소이온인 프로톤(Proton)을 사용하는 프로톤 세라믹 전지(Protonic Ceramic Cell; PCC)가 차세대 연료전지로 주목받고 있다. 산소이온을 전달하는 기존 전해질과 달리 크기가 작은 수소이온을 전달하기 때문에 높은 이온전도도를 구현할 수 있다. 그러나 프로톤 세라믹 전지의 전해질을 제작하기 위해서는 1,500℃ 이상 고온에서의 소결이 필요한데, 이 과정에서 구성물이 휘발 또는 석출되는 현상은 전해질의 성능을 저하하고 있어 프로톤 세라믹 전지의 상용화에 걸림돌이 되고 있다. 연구팀은 소결 온도를 낮추기 위해 전해질 소재를 합성하는 새로운 공정을 개발했다. 일반적으로는 하나의 화합물로 구성된 분말을 소결해 프로톤 세라믹 전지의 전해질을 제작한다. 하지만 소결 온도를 낮추기 위해 투입된 첨가제가 전해질에 잔류해 전지의 출력밀도를 저해하는 문제가 발생했다. 연구팀은 저온 합성을 통해 두 종류의 화합물이 혼합된 분말을 전해질로 제조했을 때, 소결 특성이 우수한 하나의 화합물로 합성되는 소결 가속화 과정에서 첨가제 없이도 소결 온도가 1,400℃로 낮아지는 것을 확인했다. 새로운 공정으로 합성된 프로톤 세라믹 전해질은 낮은 온도에서도 치밀한 막을 형성해 전지의 전기화학적 특성을 향상시켰다. 또한, 이 전해질을 실제 프로톤 세라믹 전지에 적용했을 때, 우수한 프로톤 전달 특성이 발현돼 600℃에서 기존 대비 약 2배 향상된 출력밀도(950mW/cm2)를 달성했다. 이를 통해 공정 시간을 단축하고 열적 안정성 및 세라믹 전해질의 성능 향상을 동시에 달성할 수 있을 것으로 기대된다. 연구진은 향후 프로톤 세라믹 전지 상용화를 위해 두 화합물 간 소결 가속화 현상을 이용한 새로운 공정을 대면적 전지 제작에 적용할 예정이다. KIST 지호일 박사는 "본 연구를 통해 프로톤 세라믹 전지 제작 과정 중 고질적인 소결 문제를 해결할 수 있었다"라며, "대면적화 기술이 성공적으로 개발되면 전력 생산과 수전해를 통한 그린수소, 원자력 발전소의 폐열을 활용한 핑크수소 생산 기술로 활용해 에너지의 효율적인 관리가 가능해질 것"이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 이종호)의 지원을 받아 KIST 주요사업 및 미래수소원천기술개발사업(2021M3I3A1084278), 산업통상자원부(장관 안덕근) 신재생에너지핵심기술개발사업(20223030040080)으로 수행됐다. 이번 연구 성과는 국제 학술지 「Advanced Energy Materials」 (IF 24.4, JCR 분야 2.6%)에 게재됐다. [그림 1] 저온합성으로 제조된 프로톤 세라믹 전해질이 소결되는 원리 저온합성공정으로 제조된 이중상(dual-phase) 프로톤 세라믹 전해질은 향상된 소결특성을 보여 기존의 소결공정 온도를 낮출 수 있으며, 그 결과 전해질의 고유특성을 소자에서도 발현할 수 있게 되어 전지 특성을 향상시킬 수 있다. [그림 2] 단일상(A) 및 이중상(B) 프로톤 세라믹 전해질 소결 거동 비교 (A) 단일상(single-phase) 전해질 분말소재는 온도가 증가할수록 고유소결특성에 따라 입자 크기가 성장한다. (B) 높은 소결도 및 낮은 소결도 특성을 각각 보이는 두 개의 상으로 구성된 이중상 전해질 분말은 온도가 증가함에 따라 소결특성이 우수한 하나의 상이 초기 소결특성을 결정, 가속화하고 잔존하는 난소결 상이 오스트발트 라이프닝(Ostwald ripening) 현상으로 입자크기 성장이 이루어진 상으로 흡수되면서 최종 단일상을 형성하게 된다.
차세대 연료전지의 새로운 전해질 합성법 개발, 그린수소 생산 한걸음 더
- 프로톤 세라믹 전해질의 소결 온도를 획기적으로 낮출 새로운 합성법 개발 - 획기적 공정개발로 프로톤 세라믹 전지의 경제성 및 고성능화 동시 달성 한국과학기술연구원(KIST, 원장 오상록) 수소에너지소재연구단 지호일 박사, 금오공과대학교 최시혁 교수 연구팀은 차세대 고효율 세라믹 전지인 프로톤 세라믹 전지의 전해질의 치밀화 과정을 유발하는 소결 온도를 획기적으로 낮출 수 있는 신규 합성법을 개발했다고 밝혔다. 전해질, 전극 등 모든 구성요소가 세라믹과 같은 금속산화물로 구성된 기존의 고체산화물 연료전지(Solid Oxide Cell; SOC)는 전력 생산과 수소 생산이 동시에 가능하다. 특히, 600℃ 이상의 고온에서 작동하기 때문에 다른 연료전지 대비 전력 변환 효율이 높다는 장점이 있으나, 고온 내구성을 지닌 재료를 사용하기 때문에 생산비용이 높고 장기간 작동 시 열화로 인한 성능 저하가 유발되는 한계가 있다. 최근, 고체산화물 전지 중 수소이온인 프로톤(Proton)을 사용하는 프로톤 세라믹 전지(Protonic Ceramic Cell; PCC)가 차세대 연료전지로 주목받고 있다. 산소이온을 전달하는 기존 전해질과 달리 크기가 작은 수소이온을 전달하기 때문에 높은 이온전도도를 구현할 수 있다. 그러나 프로톤 세라믹 전지의 전해질을 제작하기 위해서는 1,500℃ 이상 고온에서의 소결이 필요한데, 이 과정에서 구성물이 휘발 또는 석출되는 현상은 전해질의 성능을 저하하고 있어 프로톤 세라믹 전지의 상용화에 걸림돌이 되고 있다. 연구팀은 소결 온도를 낮추기 위해 전해질 소재를 합성하는 새로운 공정을 개발했다. 일반적으로는 하나의 화합물로 구성된 분말을 소결해 프로톤 세라믹 전지의 전해질을 제작한다. 하지만 소결 온도를 낮추기 위해 투입된 첨가제가 전해질에 잔류해 전지의 출력밀도를 저해하는 문제가 발생했다. 연구팀은 저온 합성을 통해 두 종류의 화합물이 혼합된 분말을 전해질로 제조했을 때, 소결 특성이 우수한 하나의 화합물로 합성되는 소결 가속화 과정에서 첨가제 없이도 소결 온도가 1,400℃로 낮아지는 것을 확인했다. 새로운 공정으로 합성된 프로톤 세라믹 전해질은 낮은 온도에서도 치밀한 막을 형성해 전지의 전기화학적 특성을 향상시켰다. 또한, 이 전해질을 실제 프로톤 세라믹 전지에 적용했을 때, 우수한 프로톤 전달 특성이 발현돼 600℃에서 기존 대비 약 2배 향상된 출력밀도(950mW/cm2)를 달성했다. 이를 통해 공정 시간을 단축하고 열적 안정성 및 세라믹 전해질의 성능 향상을 동시에 달성할 수 있을 것으로 기대된다. 연구진은 향후 프로톤 세라믹 전지 상용화를 위해 두 화합물 간 소결 가속화 현상을 이용한 새로운 공정을 대면적 전지 제작에 적용할 예정이다. KIST 지호일 박사는 "본 연구를 통해 프로톤 세라믹 전지 제작 과정 중 고질적인 소결 문제를 해결할 수 있었다"라며, "대면적화 기술이 성공적으로 개발되면 전력 생산과 수전해를 통한 그린수소, 원자력 발전소의 폐열을 활용한 핑크수소 생산 기술로 활용해 에너지의 효율적인 관리가 가능해질 것"이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 이종호)의 지원을 받아 KIST 주요사업 및 미래수소원천기술개발사업(2021M3I3A1084278), 산업통상자원부(장관 안덕근) 신재생에너지핵심기술개발사업(20223030040080)으로 수행됐다. 이번 연구 성과는 국제 학술지 「Advanced Energy Materials」 (IF 24.4, JCR 분야 2.6%)에 게재됐다. [그림 1] 저온합성으로 제조된 프로톤 세라믹 전해질이 소결되는 원리 저온합성공정으로 제조된 이중상(dual-phase) 프로톤 세라믹 전해질은 향상된 소결특성을 보여 기존의 소결공정 온도를 낮출 수 있으며, 그 결과 전해질의 고유특성을 소자에서도 발현할 수 있게 되어 전지 특성을 향상시킬 수 있다. [그림 2] 단일상(A) 및 이중상(B) 프로톤 세라믹 전해질 소결 거동 비교 (A) 단일상(single-phase) 전해질 분말소재는 온도가 증가할수록 고유소결특성에 따라 입자 크기가 성장한다. (B) 높은 소결도 및 낮은 소결도 특성을 각각 보이는 두 개의 상으로 구성된 이중상 전해질 분말은 온도가 증가함에 따라 소결특성이 우수한 하나의 상이 초기 소결특성을 결정, 가속화하고 잔존하는 난소결 상이 오스트발트 라이프닝(Ostwald ripening) 현상으로 입자크기 성장이 이루어진 상으로 흡수되면서 최종 단일상을 형성하게 된다.
차세대 연료전지의 새로운 전해질 합성법 개발, 그린수소 생산 한걸음 더
- 프로톤 세라믹 전해질의 소결 온도를 획기적으로 낮출 새로운 합성법 개발 - 획기적 공정개발로 프로톤 세라믹 전지의 경제성 및 고성능화 동시 달성 한국과학기술연구원(KIST, 원장 오상록) 수소에너지소재연구단 지호일 박사, 금오공과대학교 최시혁 교수 연구팀은 차세대 고효율 세라믹 전지인 프로톤 세라믹 전지의 전해질의 치밀화 과정을 유발하는 소결 온도를 획기적으로 낮출 수 있는 신규 합성법을 개발했다고 밝혔다. 전해질, 전극 등 모든 구성요소가 세라믹과 같은 금속산화물로 구성된 기존의 고체산화물 연료전지(Solid Oxide Cell; SOC)는 전력 생산과 수소 생산이 동시에 가능하다. 특히, 600℃ 이상의 고온에서 작동하기 때문에 다른 연료전지 대비 전력 변환 효율이 높다는 장점이 있으나, 고온 내구성을 지닌 재료를 사용하기 때문에 생산비용이 높고 장기간 작동 시 열화로 인한 성능 저하가 유발되는 한계가 있다. 최근, 고체산화물 전지 중 수소이온인 프로톤(Proton)을 사용하는 프로톤 세라믹 전지(Protonic Ceramic Cell; PCC)가 차세대 연료전지로 주목받고 있다. 산소이온을 전달하는 기존 전해질과 달리 크기가 작은 수소이온을 전달하기 때문에 높은 이온전도도를 구현할 수 있다. 그러나 프로톤 세라믹 전지의 전해질을 제작하기 위해서는 1,500℃ 이상 고온에서의 소결이 필요한데, 이 과정에서 구성물이 휘발 또는 석출되는 현상은 전해질의 성능을 저하하고 있어 프로톤 세라믹 전지의 상용화에 걸림돌이 되고 있다. 연구팀은 소결 온도를 낮추기 위해 전해질 소재를 합성하는 새로운 공정을 개발했다. 일반적으로는 하나의 화합물로 구성된 분말을 소결해 프로톤 세라믹 전지의 전해질을 제작한다. 하지만 소결 온도를 낮추기 위해 투입된 첨가제가 전해질에 잔류해 전지의 출력밀도를 저해하는 문제가 발생했다. 연구팀은 저온 합성을 통해 두 종류의 화합물이 혼합된 분말을 전해질로 제조했을 때, 소결 특성이 우수한 하나의 화합물로 합성되는 소결 가속화 과정에서 첨가제 없이도 소결 온도가 1,400℃로 낮아지는 것을 확인했다. 새로운 공정으로 합성된 프로톤 세라믹 전해질은 낮은 온도에서도 치밀한 막을 형성해 전지의 전기화학적 특성을 향상시켰다. 또한, 이 전해질을 실제 프로톤 세라믹 전지에 적용했을 때, 우수한 프로톤 전달 특성이 발현돼 600℃에서 기존 대비 약 2배 향상된 출력밀도(950mW/cm2)를 달성했다. 이를 통해 공정 시간을 단축하고 열적 안정성 및 세라믹 전해질의 성능 향상을 동시에 달성할 수 있을 것으로 기대된다. 연구진은 향후 프로톤 세라믹 전지 상용화를 위해 두 화합물 간 소결 가속화 현상을 이용한 새로운 공정을 대면적 전지 제작에 적용할 예정이다. KIST 지호일 박사는 "본 연구를 통해 프로톤 세라믹 전지 제작 과정 중 고질적인 소결 문제를 해결할 수 있었다"라며, "대면적화 기술이 성공적으로 개발되면 전력 생산과 수전해를 통한 그린수소, 원자력 발전소의 폐열을 활용한 핑크수소 생산 기술로 활용해 에너지의 효율적인 관리가 가능해질 것"이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 이종호)의 지원을 받아 KIST 주요사업 및 미래수소원천기술개발사업(2021M3I3A1084278), 산업통상자원부(장관 안덕근) 신재생에너지핵심기술개발사업(20223030040080)으로 수행됐다. 이번 연구 성과는 국제 학술지 「Advanced Energy Materials」 (IF 24.4, JCR 분야 2.6%)에 게재됐다. [그림 1] 저온합성으로 제조된 프로톤 세라믹 전해질이 소결되는 원리 저온합성공정으로 제조된 이중상(dual-phase) 프로톤 세라믹 전해질은 향상된 소결특성을 보여 기존의 소결공정 온도를 낮출 수 있으며, 그 결과 전해질의 고유특성을 소자에서도 발현할 수 있게 되어 전지 특성을 향상시킬 수 있다. [그림 2] 단일상(A) 및 이중상(B) 프로톤 세라믹 전해질 소결 거동 비교 (A) 단일상(single-phase) 전해질 분말소재는 온도가 증가할수록 고유소결특성에 따라 입자 크기가 성장한다. (B) 높은 소결도 및 낮은 소결도 특성을 각각 보이는 두 개의 상으로 구성된 이중상 전해질 분말은 온도가 증가함에 따라 소결특성이 우수한 하나의 상이 초기 소결특성을 결정, 가속화하고 잔존하는 난소결 상이 오스트발트 라이프닝(Ostwald ripening) 현상으로 입자크기 성장이 이루어진 상으로 흡수되면서 최종 단일상을 형성하게 된다.
차세대 연료전지의 새로운 전해질 합성법 개발, 그린수소 생산 한걸음 더
- 프로톤 세라믹 전해질의 소결 온도를 획기적으로 낮출 새로운 합성법 개발 - 획기적 공정개발로 프로톤 세라믹 전지의 경제성 및 고성능화 동시 달성 한국과학기술연구원(KIST, 원장 오상록) 수소에너지소재연구단 지호일 박사, 금오공과대학교 최시혁 교수 연구팀은 차세대 고효율 세라믹 전지인 프로톤 세라믹 전지의 전해질의 치밀화 과정을 유발하는 소결 온도를 획기적으로 낮출 수 있는 신규 합성법을 개발했다고 밝혔다. 전해질, 전극 등 모든 구성요소가 세라믹과 같은 금속산화물로 구성된 기존의 고체산화물 연료전지(Solid Oxide Cell; SOC)는 전력 생산과 수소 생산이 동시에 가능하다. 특히, 600℃ 이상의 고온에서 작동하기 때문에 다른 연료전지 대비 전력 변환 효율이 높다는 장점이 있으나, 고온 내구성을 지닌 재료를 사용하기 때문에 생산비용이 높고 장기간 작동 시 열화로 인한 성능 저하가 유발되는 한계가 있다. 최근, 고체산화물 전지 중 수소이온인 프로톤(Proton)을 사용하는 프로톤 세라믹 전지(Protonic Ceramic Cell; PCC)가 차세대 연료전지로 주목받고 있다. 산소이온을 전달하는 기존 전해질과 달리 크기가 작은 수소이온을 전달하기 때문에 높은 이온전도도를 구현할 수 있다. 그러나 프로톤 세라믹 전지의 전해질을 제작하기 위해서는 1,500℃ 이상 고온에서의 소결이 필요한데, 이 과정에서 구성물이 휘발 또는 석출되는 현상은 전해질의 성능을 저하하고 있어 프로톤 세라믹 전지의 상용화에 걸림돌이 되고 있다. 연구팀은 소결 온도를 낮추기 위해 전해질 소재를 합성하는 새로운 공정을 개발했다. 일반적으로는 하나의 화합물로 구성된 분말을 소결해 프로톤 세라믹 전지의 전해질을 제작한다. 하지만 소결 온도를 낮추기 위해 투입된 첨가제가 전해질에 잔류해 전지의 출력밀도를 저해하는 문제가 발생했다. 연구팀은 저온 합성을 통해 두 종류의 화합물이 혼합된 분말을 전해질로 제조했을 때, 소결 특성이 우수한 하나의 화합물로 합성되는 소결 가속화 과정에서 첨가제 없이도 소결 온도가 1,400℃로 낮아지는 것을 확인했다. 새로운 공정으로 합성된 프로톤 세라믹 전해질은 낮은 온도에서도 치밀한 막을 형성해 전지의 전기화학적 특성을 향상시켰다. 또한, 이 전해질을 실제 프로톤 세라믹 전지에 적용했을 때, 우수한 프로톤 전달 특성이 발현돼 600℃에서 기존 대비 약 2배 향상된 출력밀도(950mW/cm2)를 달성했다. 이를 통해 공정 시간을 단축하고 열적 안정성 및 세라믹 전해질의 성능 향상을 동시에 달성할 수 있을 것으로 기대된다. 연구진은 향후 프로톤 세라믹 전지 상용화를 위해 두 화합물 간 소결 가속화 현상을 이용한 새로운 공정을 대면적 전지 제작에 적용할 예정이다. KIST 지호일 박사는 "본 연구를 통해 프로톤 세라믹 전지 제작 과정 중 고질적인 소결 문제를 해결할 수 있었다"라며, "대면적화 기술이 성공적으로 개발되면 전력 생산과 수전해를 통한 그린수소, 원자력 발전소의 폐열을 활용한 핑크수소 생산 기술로 활용해 에너지의 효율적인 관리가 가능해질 것"이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 이종호)의 지원을 받아 KIST 주요사업 및 미래수소원천기술개발사업(2021M3I3A1084278), 산업통상자원부(장관 안덕근) 신재생에너지핵심기술개발사업(20223030040080)으로 수행됐다. 이번 연구 성과는 국제 학술지 「Advanced Energy Materials」 (IF 24.4, JCR 분야 2.6%)에 게재됐다. [그림 1] 저온합성으로 제조된 프로톤 세라믹 전해질이 소결되는 원리 저온합성공정으로 제조된 이중상(dual-phase) 프로톤 세라믹 전해질은 향상된 소결특성을 보여 기존의 소결공정 온도를 낮출 수 있으며, 그 결과 전해질의 고유특성을 소자에서도 발현할 수 있게 되어 전지 특성을 향상시킬 수 있다. [그림 2] 단일상(A) 및 이중상(B) 프로톤 세라믹 전해질 소결 거동 비교 (A) 단일상(single-phase) 전해질 분말소재는 온도가 증가할수록 고유소결특성에 따라 입자 크기가 성장한다. (B) 높은 소결도 및 낮은 소결도 특성을 각각 보이는 두 개의 상으로 구성된 이중상 전해질 분말은 온도가 증가함에 따라 소결특성이 우수한 하나의 상이 초기 소결특성을 결정, 가속화하고 잔존하는 난소결 상이 오스트발트 라이프닝(Ostwald ripening) 현상으로 입자크기 성장이 이루어진 상으로 흡수되면서 최종 단일상을 형성하게 된다.
차세대 연료전지의 새로운 전해질 합성법 개발, 그린수소 생산 한걸음 더
- 프로톤 세라믹 전해질의 소결 온도를 획기적으로 낮출 새로운 합성법 개발 - 획기적 공정개발로 프로톤 세라믹 전지의 경제성 및 고성능화 동시 달성 한국과학기술연구원(KIST, 원장 오상록) 수소에너지소재연구단 지호일 박사, 금오공과대학교 최시혁 교수 연구팀은 차세대 고효율 세라믹 전지인 프로톤 세라믹 전지의 전해질의 치밀화 과정을 유발하는 소결 온도를 획기적으로 낮출 수 있는 신규 합성법을 개발했다고 밝혔다. 전해질, 전극 등 모든 구성요소가 세라믹과 같은 금속산화물로 구성된 기존의 고체산화물 연료전지(Solid Oxide Cell; SOC)는 전력 생산과 수소 생산이 동시에 가능하다. 특히, 600℃ 이상의 고온에서 작동하기 때문에 다른 연료전지 대비 전력 변환 효율이 높다는 장점이 있으나, 고온 내구성을 지닌 재료를 사용하기 때문에 생산비용이 높고 장기간 작동 시 열화로 인한 성능 저하가 유발되는 한계가 있다. 최근, 고체산화물 전지 중 수소이온인 프로톤(Proton)을 사용하는 프로톤 세라믹 전지(Protonic Ceramic Cell; PCC)가 차세대 연료전지로 주목받고 있다. 산소이온을 전달하는 기존 전해질과 달리 크기가 작은 수소이온을 전달하기 때문에 높은 이온전도도를 구현할 수 있다. 그러나 프로톤 세라믹 전지의 전해질을 제작하기 위해서는 1,500℃ 이상 고온에서의 소결이 필요한데, 이 과정에서 구성물이 휘발 또는 석출되는 현상은 전해질의 성능을 저하하고 있어 프로톤 세라믹 전지의 상용화에 걸림돌이 되고 있다. 연구팀은 소결 온도를 낮추기 위해 전해질 소재를 합성하는 새로운 공정을 개발했다. 일반적으로는 하나의 화합물로 구성된 분말을 소결해 프로톤 세라믹 전지의 전해질을 제작한다. 하지만 소결 온도를 낮추기 위해 투입된 첨가제가 전해질에 잔류해 전지의 출력밀도를 저해하는 문제가 발생했다. 연구팀은 저온 합성을 통해 두 종류의 화합물이 혼합된 분말을 전해질로 제조했을 때, 소결 특성이 우수한 하나의 화합물로 합성되는 소결 가속화 과정에서 첨가제 없이도 소결 온도가 1,400℃로 낮아지는 것을 확인했다. 새로운 공정으로 합성된 프로톤 세라믹 전해질은 낮은 온도에서도 치밀한 막을 형성해 전지의 전기화학적 특성을 향상시켰다. 또한, 이 전해질을 실제 프로톤 세라믹 전지에 적용했을 때, 우수한 프로톤 전달 특성이 발현돼 600℃에서 기존 대비 약 2배 향상된 출력밀도(950mW/cm2)를 달성했다. 이를 통해 공정 시간을 단축하고 열적 안정성 및 세라믹 전해질의 성능 향상을 동시에 달성할 수 있을 것으로 기대된다. 연구진은 향후 프로톤 세라믹 전지 상용화를 위해 두 화합물 간 소결 가속화 현상을 이용한 새로운 공정을 대면적 전지 제작에 적용할 예정이다. KIST 지호일 박사는 "본 연구를 통해 프로톤 세라믹 전지 제작 과정 중 고질적인 소결 문제를 해결할 수 있었다"라며, "대면적화 기술이 성공적으로 개발되면 전력 생산과 수전해를 통한 그린수소, 원자력 발전소의 폐열을 활용한 핑크수소 생산 기술로 활용해 에너지의 효율적인 관리가 가능해질 것"이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 이종호)의 지원을 받아 KIST 주요사업 및 미래수소원천기술개발사업(2021M3I3A1084278), 산업통상자원부(장관 안덕근) 신재생에너지핵심기술개발사업(20223030040080)으로 수행됐다. 이번 연구 성과는 국제 학술지 「Advanced Energy Materials」 (IF 24.4, JCR 분야 2.6%)에 게재됐다. [그림 1] 저온합성으로 제조된 프로톤 세라믹 전해질이 소결되는 원리 저온합성공정으로 제조된 이중상(dual-phase) 프로톤 세라믹 전해질은 향상된 소결특성을 보여 기존의 소결공정 온도를 낮출 수 있으며, 그 결과 전해질의 고유특성을 소자에서도 발현할 수 있게 되어 전지 특성을 향상시킬 수 있다. [그림 2] 단일상(A) 및 이중상(B) 프로톤 세라믹 전해질 소결 거동 비교 (A) 단일상(single-phase) 전해질 분말소재는 온도가 증가할수록 고유소결특성에 따라 입자 크기가 성장한다. (B) 높은 소결도 및 낮은 소결도 특성을 각각 보이는 두 개의 상으로 구성된 이중상 전해질 분말은 온도가 증가함에 따라 소결특성이 우수한 하나의 상이 초기 소결특성을 결정, 가속화하고 잔존하는 난소결 상이 오스트발트 라이프닝(Ostwald ripening) 현상으로 입자크기 성장이 이루어진 상으로 흡수되면서 최종 단일상을 형성하게 된다.
차세대 연료전지의 새로운 전해질 합성법 개발, 그린수소 생산 한걸음 더
- 프로톤 세라믹 전해질의 소결 온도를 획기적으로 낮출 새로운 합성법 개발 - 획기적 공정개발로 프로톤 세라믹 전지의 경제성 및 고성능화 동시 달성 한국과학기술연구원(KIST, 원장 오상록) 수소에너지소재연구단 지호일 박사, 금오공과대학교 최시혁 교수 연구팀은 차세대 고효율 세라믹 전지인 프로톤 세라믹 전지의 전해질의 치밀화 과정을 유발하는 소결 온도를 획기적으로 낮출 수 있는 신규 합성법을 개발했다고 밝혔다. 전해질, 전극 등 모든 구성요소가 세라믹과 같은 금속산화물로 구성된 기존의 고체산화물 연료전지(Solid Oxide Cell; SOC)는 전력 생산과 수소 생산이 동시에 가능하다. 특히, 600℃ 이상의 고온에서 작동하기 때문에 다른 연료전지 대비 전력 변환 효율이 높다는 장점이 있으나, 고온 내구성을 지닌 재료를 사용하기 때문에 생산비용이 높고 장기간 작동 시 열화로 인한 성능 저하가 유발되는 한계가 있다. 최근, 고체산화물 전지 중 수소이온인 프로톤(Proton)을 사용하는 프로톤 세라믹 전지(Protonic Ceramic Cell; PCC)가 차세대 연료전지로 주목받고 있다. 산소이온을 전달하는 기존 전해질과 달리 크기가 작은 수소이온을 전달하기 때문에 높은 이온전도도를 구현할 수 있다. 그러나 프로톤 세라믹 전지의 전해질을 제작하기 위해서는 1,500℃ 이상 고온에서의 소결이 필요한데, 이 과정에서 구성물이 휘발 또는 석출되는 현상은 전해질의 성능을 저하하고 있어 프로톤 세라믹 전지의 상용화에 걸림돌이 되고 있다. 연구팀은 소결 온도를 낮추기 위해 전해질 소재를 합성하는 새로운 공정을 개발했다. 일반적으로는 하나의 화합물로 구성된 분말을 소결해 프로톤 세라믹 전지의 전해질을 제작한다. 하지만 소결 온도를 낮추기 위해 투입된 첨가제가 전해질에 잔류해 전지의 출력밀도를 저해하는 문제가 발생했다. 연구팀은 저온 합성을 통해 두 종류의 화합물이 혼합된 분말을 전해질로 제조했을 때, 소결 특성이 우수한 하나의 화합물로 합성되는 소결 가속화 과정에서 첨가제 없이도 소결 온도가 1,400℃로 낮아지는 것을 확인했다. 새로운 공정으로 합성된 프로톤 세라믹 전해질은 낮은 온도에서도 치밀한 막을 형성해 전지의 전기화학적 특성을 향상시켰다. 또한, 이 전해질을 실제 프로톤 세라믹 전지에 적용했을 때, 우수한 프로톤 전달 특성이 발현돼 600℃에서 기존 대비 약 2배 향상된 출력밀도(950mW/cm2)를 달성했다. 이를 통해 공정 시간을 단축하고 열적 안정성 및 세라믹 전해질의 성능 향상을 동시에 달성할 수 있을 것으로 기대된다. 연구진은 향후 프로톤 세라믹 전지 상용화를 위해 두 화합물 간 소결 가속화 현상을 이용한 새로운 공정을 대면적 전지 제작에 적용할 예정이다. KIST 지호일 박사는 "본 연구를 통해 프로톤 세라믹 전지 제작 과정 중 고질적인 소결 문제를 해결할 수 있었다"라며, "대면적화 기술이 성공적으로 개발되면 전력 생산과 수전해를 통한 그린수소, 원자력 발전소의 폐열을 활용한 핑크수소 생산 기술로 활용해 에너지의 효율적인 관리가 가능해질 것"이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 이종호)의 지원을 받아 KIST 주요사업 및 미래수소원천기술개발사업(2021M3I3A1084278), 산업통상자원부(장관 안덕근) 신재생에너지핵심기술개발사업(20223030040080)으로 수행됐다. 이번 연구 성과는 국제 학술지 「Advanced Energy Materials」 (IF 24.4, JCR 분야 2.6%)에 게재됐다. [그림 1] 저온합성으로 제조된 프로톤 세라믹 전해질이 소결되는 원리 저온합성공정으로 제조된 이중상(dual-phase) 프로톤 세라믹 전해질은 향상된 소결특성을 보여 기존의 소결공정 온도를 낮출 수 있으며, 그 결과 전해질의 고유특성을 소자에서도 발현할 수 있게 되어 전지 특성을 향상시킬 수 있다. [그림 2] 단일상(A) 및 이중상(B) 프로톤 세라믹 전해질 소결 거동 비교 (A) 단일상(single-phase) 전해질 분말소재는 온도가 증가할수록 고유소결특성에 따라 입자 크기가 성장한다. (B) 높은 소결도 및 낮은 소결도 특성을 각각 보이는 두 개의 상으로 구성된 이중상 전해질 분말은 온도가 증가함에 따라 소결특성이 우수한 하나의 상이 초기 소결특성을 결정, 가속화하고 잔존하는 난소결 상이 오스트발트 라이프닝(Ostwald ripening) 현상으로 입자크기 성장이 이루어진 상으로 흡수되면서 최종 단일상을 형성하게 된다.
차세대 연료전지의 새로운 전해질 합성법 개발, 그린수소 생산 한걸음 더
- 프로톤 세라믹 전해질의 소결 온도를 획기적으로 낮출 새로운 합성법 개발 - 획기적 공정개발로 프로톤 세라믹 전지의 경제성 및 고성능화 동시 달성 한국과학기술연구원(KIST, 원장 오상록) 수소에너지소재연구단 지호일 박사, 금오공과대학교 최시혁 교수 연구팀은 차세대 고효율 세라믹 전지인 프로톤 세라믹 전지의 전해질의 치밀화 과정을 유발하는 소결 온도를 획기적으로 낮출 수 있는 신규 합성법을 개발했다고 밝혔다. 전해질, 전극 등 모든 구성요소가 세라믹과 같은 금속산화물로 구성된 기존의 고체산화물 연료전지(Solid Oxide Cell; SOC)는 전력 생산과 수소 생산이 동시에 가능하다. 특히, 600℃ 이상의 고온에서 작동하기 때문에 다른 연료전지 대비 전력 변환 효율이 높다는 장점이 있으나, 고온 내구성을 지닌 재료를 사용하기 때문에 생산비용이 높고 장기간 작동 시 열화로 인한 성능 저하가 유발되는 한계가 있다. 최근, 고체산화물 전지 중 수소이온인 프로톤(Proton)을 사용하는 프로톤 세라믹 전지(Protonic Ceramic Cell; PCC)가 차세대 연료전지로 주목받고 있다. 산소이온을 전달하는 기존 전해질과 달리 크기가 작은 수소이온을 전달하기 때문에 높은 이온전도도를 구현할 수 있다. 그러나 프로톤 세라믹 전지의 전해질을 제작하기 위해서는 1,500℃ 이상 고온에서의 소결이 필요한데, 이 과정에서 구성물이 휘발 또는 석출되는 현상은 전해질의 성능을 저하하고 있어 프로톤 세라믹 전지의 상용화에 걸림돌이 되고 있다. 연구팀은 소결 온도를 낮추기 위해 전해질 소재를 합성하는 새로운 공정을 개발했다. 일반적으로는 하나의 화합물로 구성된 분말을 소결해 프로톤 세라믹 전지의 전해질을 제작한다. 하지만 소결 온도를 낮추기 위해 투입된 첨가제가 전해질에 잔류해 전지의 출력밀도를 저해하는 문제가 발생했다. 연구팀은 저온 합성을 통해 두 종류의 화합물이 혼합된 분말을 전해질로 제조했을 때, 소결 특성이 우수한 하나의 화합물로 합성되는 소결 가속화 과정에서 첨가제 없이도 소결 온도가 1,400℃로 낮아지는 것을 확인했다. 새로운 공정으로 합성된 프로톤 세라믹 전해질은 낮은 온도에서도 치밀한 막을 형성해 전지의 전기화학적 특성을 향상시켰다. 또한, 이 전해질을 실제 프로톤 세라믹 전지에 적용했을 때, 우수한 프로톤 전달 특성이 발현돼 600℃에서 기존 대비 약 2배 향상된 출력밀도(950mW/cm2)를 달성했다. 이를 통해 공정 시간을 단축하고 열적 안정성 및 세라믹 전해질의 성능 향상을 동시에 달성할 수 있을 것으로 기대된다. 연구진은 향후 프로톤 세라믹 전지 상용화를 위해 두 화합물 간 소결 가속화 현상을 이용한 새로운 공정을 대면적 전지 제작에 적용할 예정이다. KIST 지호일 박사는 "본 연구를 통해 프로톤 세라믹 전지 제작 과정 중 고질적인 소결 문제를 해결할 수 있었다"라며, "대면적화 기술이 성공적으로 개발되면 전력 생산과 수전해를 통한 그린수소, 원자력 발전소의 폐열을 활용한 핑크수소 생산 기술로 활용해 에너지의 효율적인 관리가 가능해질 것"이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 이종호)의 지원을 받아 KIST 주요사업 및 미래수소원천기술개발사업(2021M3I3A1084278), 산업통상자원부(장관 안덕근) 신재생에너지핵심기술개발사업(20223030040080)으로 수행됐다. 이번 연구 성과는 국제 학술지 「Advanced Energy Materials」 (IF 24.4, JCR 분야 2.6%)에 게재됐다. [그림 1] 저온합성으로 제조된 프로톤 세라믹 전해질이 소결되는 원리 저온합성공정으로 제조된 이중상(dual-phase) 프로톤 세라믹 전해질은 향상된 소결특성을 보여 기존의 소결공정 온도를 낮출 수 있으며, 그 결과 전해질의 고유특성을 소자에서도 발현할 수 있게 되어 전지 특성을 향상시킬 수 있다. [그림 2] 단일상(A) 및 이중상(B) 프로톤 세라믹 전해질 소결 거동 비교 (A) 단일상(single-phase) 전해질 분말소재는 온도가 증가할수록 고유소결특성에 따라 입자 크기가 성장한다. (B) 높은 소결도 및 낮은 소결도 특성을 각각 보이는 두 개의 상으로 구성된 이중상 전해질 분말은 온도가 증가함에 따라 소결특성이 우수한 하나의 상이 초기 소결특성을 결정, 가속화하고 잔존하는 난소결 상이 오스트발트 라이프닝(Ostwald ripening) 현상으로 입자크기 성장이 이루어진 상으로 흡수되면서 최종 단일상을 형성하게 된다.
차세대 연료전지의 새로운 전해질 합성법 개발, 그린수소 생산 한걸음 더
- 프로톤 세라믹 전해질의 소결 온도를 획기적으로 낮출 새로운 합성법 개발 - 획기적 공정개발로 프로톤 세라믹 전지의 경제성 및 고성능화 동시 달성 한국과학기술연구원(KIST, 원장 오상록) 수소에너지소재연구단 지호일 박사, 금오공과대학교 최시혁 교수 연구팀은 차세대 고효율 세라믹 전지인 프로톤 세라믹 전지의 전해질의 치밀화 과정을 유발하는 소결 온도를 획기적으로 낮출 수 있는 신규 합성법을 개발했다고 밝혔다. 전해질, 전극 등 모든 구성요소가 세라믹과 같은 금속산화물로 구성된 기존의 고체산화물 연료전지(Solid Oxide Cell; SOC)는 전력 생산과 수소 생산이 동시에 가능하다. 특히, 600℃ 이상의 고온에서 작동하기 때문에 다른 연료전지 대비 전력 변환 효율이 높다는 장점이 있으나, 고온 내구성을 지닌 재료를 사용하기 때문에 생산비용이 높고 장기간 작동 시 열화로 인한 성능 저하가 유발되는 한계가 있다. 최근, 고체산화물 전지 중 수소이온인 프로톤(Proton)을 사용하는 프로톤 세라믹 전지(Protonic Ceramic Cell; PCC)가 차세대 연료전지로 주목받고 있다. 산소이온을 전달하는 기존 전해질과 달리 크기가 작은 수소이온을 전달하기 때문에 높은 이온전도도를 구현할 수 있다. 그러나 프로톤 세라믹 전지의 전해질을 제작하기 위해서는 1,500℃ 이상 고온에서의 소결이 필요한데, 이 과정에서 구성물이 휘발 또는 석출되는 현상은 전해질의 성능을 저하하고 있어 프로톤 세라믹 전지의 상용화에 걸림돌이 되고 있다. 연구팀은 소결 온도를 낮추기 위해 전해질 소재를 합성하는 새로운 공정을 개발했다. 일반적으로는 하나의 화합물로 구성된 분말을 소결해 프로톤 세라믹 전지의 전해질을 제작한다. 하지만 소결 온도를 낮추기 위해 투입된 첨가제가 전해질에 잔류해 전지의 출력밀도를 저해하는 문제가 발생했다. 연구팀은 저온 합성을 통해 두 종류의 화합물이 혼합된 분말을 전해질로 제조했을 때, 소결 특성이 우수한 하나의 화합물로 합성되는 소결 가속화 과정에서 첨가제 없이도 소결 온도가 1,400℃로 낮아지는 것을 확인했다. 새로운 공정으로 합성된 프로톤 세라믹 전해질은 낮은 온도에서도 치밀한 막을 형성해 전지의 전기화학적 특성을 향상시켰다. 또한, 이 전해질을 실제 프로톤 세라믹 전지에 적용했을 때, 우수한 프로톤 전달 특성이 발현돼 600℃에서 기존 대비 약 2배 향상된 출력밀도(950mW/cm2)를 달성했다. 이를 통해 공정 시간을 단축하고 열적 안정성 및 세라믹 전해질의 성능 향상을 동시에 달성할 수 있을 것으로 기대된다. 연구진은 향후 프로톤 세라믹 전지 상용화를 위해 두 화합물 간 소결 가속화 현상을 이용한 새로운 공정을 대면적 전지 제작에 적용할 예정이다. KIST 지호일 박사는 "본 연구를 통해 프로톤 세라믹 전지 제작 과정 중 고질적인 소결 문제를 해결할 수 있었다"라며, "대면적화 기술이 성공적으로 개발되면 전력 생산과 수전해를 통한 그린수소, 원자력 발전소의 폐열을 활용한 핑크수소 생산 기술로 활용해 에너지의 효율적인 관리가 가능해질 것"이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 이종호)의 지원을 받아 KIST 주요사업 및 미래수소원천기술개발사업(2021M3I3A1084278), 산업통상자원부(장관 안덕근) 신재생에너지핵심기술개발사업(20223030040080)으로 수행됐다. 이번 연구 성과는 국제 학술지 「Advanced Energy Materials」 (IF 24.4, JCR 분야 2.6%)에 게재됐다. [그림 1] 저온합성으로 제조된 프로톤 세라믹 전해질이 소결되는 원리 저온합성공정으로 제조된 이중상(dual-phase) 프로톤 세라믹 전해질은 향상된 소결특성을 보여 기존의 소결공정 온도를 낮출 수 있으며, 그 결과 전해질의 고유특성을 소자에서도 발현할 수 있게 되어 전지 특성을 향상시킬 수 있다. [그림 2] 단일상(A) 및 이중상(B) 프로톤 세라믹 전해질 소결 거동 비교 (A) 단일상(single-phase) 전해질 분말소재는 온도가 증가할수록 고유소결특성에 따라 입자 크기가 성장한다. (B) 높은 소결도 및 낮은 소결도 특성을 각각 보이는 두 개의 상으로 구성된 이중상 전해질 분말은 온도가 증가함에 따라 소결특성이 우수한 하나의 상이 초기 소결특성을 결정, 가속화하고 잔존하는 난소결 상이 오스트발트 라이프닝(Ostwald ripening) 현상으로 입자크기 성장이 이루어진 상으로 흡수되면서 최종 단일상을 형성하게 된다.
차세대 웨어러블 기기에 결합 섬유실 형상의 태양전지 기술 나온다
- 섬유실(Yarn type) 모양의 새로운 형태의 우수한 성능 지닌 태양전지 개발 - 휴대 간편, 신축성·유연성 뛰어나 차세대 웨어러블 기기 전원기술 활용 기대 4차 산업혁명 시대 진입과 맞물려 웨어러블 전자기기 시장이 빠르게 성장하고 있다. 그에 따라 차세대 웨어러블 전자기기와 결합되어 전원을 공급해줄 수 있는 전력 공급 기기들에 대한 관심도 증가하고 있는데, 그중에서도 특히 휴대가 가능하고, 평상의복처럼 입을 수 있는 섬유 형상의 태양전지나 배터리, 마이크로 케이블 구조의 전력섬유 형태의 전력장치에 대한 수요가 증가하고 있다. 최근 국내 연구진이 양극산화와 표면개질기술을 통해 섬유실 모양(Yarn type)의 전극형태를 지닌 신개념 염료감응형 태양전지 개발에 성공하여 주목 받고 있다. 한국과학기술연구원(KIST, 원장 이병권) 에너지저장연구단 이중기, 리우구쳉 박사 연구팀은 티타늄와이어의 양극산화 및 표면개질을 이용해 줄 모양의 태양전지기술을 개발하였다. 연구진은 여러 개의 섬유실로 이루어진 줄모양의 우수한 태양전지기술을 개발함으로서 기존 태양전지와 차별되는 용량, 수명, 전극형상을 지니고 디바이스 공간설계의 한계를 극복할 수 있는 형상 변형이 자유로운 고신축성을 지닌 염료감응형 웨어러블 태양전지를 개발했다. 일반적으로 염료감응형 태양전지는 창호형태로 제작하여 건물이나 유리창에 부착시켜 전기를 생산하여 제로에너지하우스나 에너지절약형 빌딩에 응용되어 에너지효율을 향상시키는데 사용되고 있다. 기존의 창호형 태양전지는 친환경적으로 웨어러블 전자기기에 전원을 공급할 수 있다는 장점은 있으나. 신축성 및 유연성을 지니고 세탁까지 가능한 특성을 지녀야하는 웨어러블 태양전지로 활용되기에는 한계가 있었다. KIST 연구진은 태양전지전극의 표면을 개질시켜 티타늄 산화층 간의 광전자이동거리를 최소화화고, 접촉면적을 증가시켜 전하 수집을 향상시키는 동시에 티타늄 산화층으로부터 입사된 빛을 수집·산란시켜 입사된 빛의 활용도를 끌어올렸다. 연구진이 개발한 ‘계층 구조의 티타늄금속 기반 광음극(photoanode)’를 이용한 섬유 형상 염료감응형 태양전지(Fiber-shaped dye-sensitized solar cells)는 8.128%의 우수한 광전 변환효율과 93.1%의 광전자집전효율을 보이면서 현재 나노구조체 기반 염료감응형 태양전지 연구 결과 중에서도 매우 우수한 성능을 보여주었다. 또한, 기존의 티타늄금속 와이어와 이번 연구를 통해 개질된 티타늄금속 와이어를 곡률반경에 따른 출력 변환 및 개회로전압을 비교한 결과, 연구진이 개발한 줄형상의 염료감응형 태양전지는 지름 1cm로 말아도 태양전지성능이 95% 이상 유지되는 것으로 확인하여 나노구조가 기계적으로도 안정한 유연특성을 지니고 있는 것을 증명하였다. KIST 이중기 박사는 “최근 4차 산업혁명시대가 본격화되면서 사람, 사물, 공간이 네트워크로 연결된 몸에 부착시켜 입는 형태의 전자제품이 등장하고 있다.”고 말하며, “이번 연구성과로 몸에 부착 가능한 섬유제품만큼의 유연성과 신축성을 확보했으며, 향후 차세대 웨어러블 기기와 결합된 전력공급의 형태로 활용되길 기대한다.”고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민)지원으로 KIST 기관고유사업, 한국연구재단 중견연구사업 및 한-중(NRF-NSFC) 협력연구사업으로 수행되었으며, 연구 결과는 물리, 응용 분야 국제 학술지인 ‘Nano Energy’(IF: 13.120, JCR 분야 상위 4.452%) 최신호에 온라인 게재되었다. * (논문명) Hierarchically structured photoanode with enhanced charge collection and light harvesting abilities for fiber-shaped dye-sensitized solar cells - (제 1저자) 한국과학기술연구원 Guicheng Liu 박사 - (교신저자) 한국과학기술연구원 이중기 박사 <그림설명> <그림 1> 전하 수집 및 수확 능력이 향상된 계층 적 구조의 광양자를 이용하여 제작한 섬유 모양의 염료 감응형 태양전지 제작 모식도 <그림 2> Ti microridge/nanorod 로 표면 개질된 티타늄와이어를 포함한 계층구조 photoanode 로부터 전하수집, 집광성, 구조적 안정성이 향상된 FDSSCs의 성능 모식도. <그림 3> (a, a′) 기존의 티타늄 와이어 (T-1), (b, b’, b′’) Ti microridge로 표면 개질된 티타늄 와이어 (T-2), (c, c’, c′’) Ti microridge/nanorod로 표면 개질된 티타늄 와이어 (T-3), (d, d’, d′’) Ti nanorod로 표면 개질된 티타늄 와이어 (T-4) 의 SEM image.