검색결과
게시물 키워드""에 대한 9087개의 검색결과를 찾았습니다.
차세대 스핀(SPIN) 반도체 개발 청신호, 반데르발스 자성체 비밀 밝혔다
한국과학기술연구원(KIST, 원장 이병권)은 스핀융합연구단 장차운, 최준우, 류혜진 박사팀이 기초과학연구원(IBS, 원장 노도영) 강상관계물질연구단 (단장 노태원)박세영 박사팀과 공동연구를 통해 최근 차세대 반도체인 ‘스핀트로닉스’ 소재로 주목받고 있는 반데르발스 자성체(Fe3GeTe2, FGT)의 자성 특성을 제어하는 데 성공했다고 밝혔다. 반데르발스(van der Waals) 물질이란 층간 결합이 반데르발스 결합, 즉 약한 층간 결합으로 이루어진 층상구조 물질로, 2차원 물질인 그래핀을 포함하여 이황화몰리브덴 등 다양한 물질이 있다. 또한 다른 2차원 물질과의 조합을 통해 기존에 없던 새로운 소재로 바뀔 수 있어 그간 초전도성, 반도체성, 금속성, 절연성 등의 다양한 성질의 2차원 물질이 연구되어 왔다. 특히 2017년 새로운 2차원 반데르발스 자성체들이 발견되며 전 세계적으로 연구에 속도가 붙기 시작했다. 하지만 이러한 반데르발스 자성체는 퀴리온도, 보자력(Coercivity) 등의 자성 특성이 소자 응용에 적합하지 않아 스핀트로닉스 소재로서 한계에 봉착하고 있었다. KIST-IBS 공동연구진은 최근 발견되어 많은 연구들이 진행되고 있는 층상구조를 가진 반데르발스 자성체인 ‘FGT’의 특성을 효율적으로 제어할 수 있는 방법과 원리를 찾아냈다. 연구진은 실험적으로 전자의 개수를 조절하며 자성체를 관찰한 결과, 반데르발스 자성체(FGT)의 특성 변화가 생기는 것을 확인했다. 연구진은 그 원인이 제어한 전자의 개수로 자성체 내부에서 자화 방향에 따라 에너지가 바뀌는 현상(자기이방성(Magnetic anisotropy) 때문이라는 사실을 밝혔다. 이번 연구결과는 반데르발스 자성체(FGT)의 자성 특성 변화 원인을 규명함으로써, 향후 다양한 2차원 자성체의 자성 특성을 효과적으로 제어할 수 있는 가능성을 제시하게 됐다. 또한, 연구진에 따르면, 원자 한 층 두께에 자성을 구현할 수 있는 반데르발스 물질의 특성 제어 가능성이 높아진다면, 실리콘보다 100배 이상 빠르게 전자를 이동시키는 스핀트로닉스 소자의 개발도 한층 빨라지게 될 것으로 전망한다고 밝혔다. KIST 류혜진 박사는 “반데르발스 자성체 특성을 밝혀 스핀트로닉스 소자로 응용해 보고자 연구를 시작하게 됐다.”라고 말하면서 “향후 반데르발스 자성물질과 다른 반데르발스 물질들의 이종 접합구조를 이용해, 보다 다양한 특성의 반도체 신소재 개발이 가능해질 것으로 기대하고 있다.”라고 밝혔다. 이번 연구는 과학기술정보통신부(장관 최기영)의 지원으로 KIST 주요사업 및 창의형 융합연구사업, 해외협력기반조성-국가간협력기반조성사업의 지원으로 수행되었다. 연구 결과는 나노과학 분야의 국제 저널인 ‘Nano Letters’ (IF: 12.279, JCR 분야 상위 5.743%) 최신 호에 게재되었다. * (논문명) Controlling the Magnetic Anisotropy of the van der Waals Ferromagnet Fe3GeTe2 through Hole Doping - (제 1저자) 한국과학기술연구원 김동섭 인턴(現,University of Texas at Austin) - (제 1저자) 기초과학연구원 강상관계물질연구단(서울대학교 물리천문학과) 박세영 연구 조교수 - (교신저자) 한국과학기술연구원 장차운 선임연구원 - (교신저자) 한국과학기술연구원 최준우 선임연구원 - (교신저자) 한국과학기술연구원 류혜진 선임연구원 <그림설명> [ 연구결과 대표이미지 ] (위) 이차원 자성체를 이용한 차세대 스핀 반도체 소자 개념도 (아래) KIST-IBS 공동연구진이 규명한 반데르발스 자성체(FGT)의 자성 특성 제어법을 활용한 반도체 소자 모식도 [그림 1] FGT nano flake의 자화곡선(왼쪽)과 도핑에 따른 자기이방성과 자기모멘트(오른쪽) flake의 자성특성 (i) FGT nano flake의 두께에 따른 보자력 [그림 2] FGT nanoflake의 자성 특성 (a) FGT nano flake의 광학현미경 사진 (b) FGT nano flake의 두께 (c-h) FGT nano flake의 자성특성 (i) FGT nano flake의 두께에 따른 보자력
차세대 스핀(SPIN) 반도체 개발 청신호, 반데르발스 자성체 비밀 밝혔다
한국과학기술연구원(KIST, 원장 이병권)은 스핀융합연구단 장차운, 최준우, 류혜진 박사팀이 기초과학연구원(IBS, 원장 노도영) 강상관계물질연구단 (단장 노태원)박세영 박사팀과 공동연구를 통해 최근 차세대 반도체인 ‘스핀트로닉스’ 소재로 주목받고 있는 반데르발스 자성체(Fe3GeTe2, FGT)의 자성 특성을 제어하는 데 성공했다고 밝혔다. 반데르발스(van der Waals) 물질이란 층간 결합이 반데르발스 결합, 즉 약한 층간 결합으로 이루어진 층상구조 물질로, 2차원 물질인 그래핀을 포함하여 이황화몰리브덴 등 다양한 물질이 있다. 또한 다른 2차원 물질과의 조합을 통해 기존에 없던 새로운 소재로 바뀔 수 있어 그간 초전도성, 반도체성, 금속성, 절연성 등의 다양한 성질의 2차원 물질이 연구되어 왔다. 특히 2017년 새로운 2차원 반데르발스 자성체들이 발견되며 전 세계적으로 연구에 속도가 붙기 시작했다. 하지만 이러한 반데르발스 자성체는 퀴리온도, 보자력(Coercivity) 등의 자성 특성이 소자 응용에 적합하지 않아 스핀트로닉스 소재로서 한계에 봉착하고 있었다. KIST-IBS 공동연구진은 최근 발견되어 많은 연구들이 진행되고 있는 층상구조를 가진 반데르발스 자성체인 ‘FGT’의 특성을 효율적으로 제어할 수 있는 방법과 원리를 찾아냈다. 연구진은 실험적으로 전자의 개수를 조절하며 자성체를 관찰한 결과, 반데르발스 자성체(FGT)의 특성 변화가 생기는 것을 확인했다. 연구진은 그 원인이 제어한 전자의 개수로 자성체 내부에서 자화 방향에 따라 에너지가 바뀌는 현상(자기이방성(Magnetic anisotropy) 때문이라는 사실을 밝혔다. 이번 연구결과는 반데르발스 자성체(FGT)의 자성 특성 변화 원인을 규명함으로써, 향후 다양한 2차원 자성체의 자성 특성을 효과적으로 제어할 수 있는 가능성을 제시하게 됐다. 또한, 연구진에 따르면, 원자 한 층 두께에 자성을 구현할 수 있는 반데르발스 물질의 특성 제어 가능성이 높아진다면, 실리콘보다 100배 이상 빠르게 전자를 이동시키는 스핀트로닉스 소자의 개발도 한층 빨라지게 될 것으로 전망한다고 밝혔다. KIST 류혜진 박사는 “반데르발스 자성체 특성을 밝혀 스핀트로닉스 소자로 응용해 보고자 연구를 시작하게 됐다.”라고 말하면서 “향후 반데르발스 자성물질과 다른 반데르발스 물질들의 이종 접합구조를 이용해, 보다 다양한 특성의 반도체 신소재 개발이 가능해질 것으로 기대하고 있다.”라고 밝혔다. 이번 연구는 과학기술정보통신부(장관 최기영)의 지원으로 KIST 주요사업 및 창의형 융합연구사업, 해외협력기반조성-국가간협력기반조성사업의 지원으로 수행되었다. 연구 결과는 나노과학 분야의 국제 저널인 ‘Nano Letters’ (IF: 12.279, JCR 분야 상위 5.743%) 최신 호에 게재되었다. * (논문명) Controlling the Magnetic Anisotropy of the van der Waals Ferromagnet Fe3GeTe2 through Hole Doping - (제 1저자) 한국과학기술연구원 김동섭 인턴(現,University of Texas at Austin) - (제 1저자) 기초과학연구원 강상관계물질연구단(서울대학교 물리천문학과) 박세영 연구 조교수 - (교신저자) 한국과학기술연구원 장차운 선임연구원 - (교신저자) 한국과학기술연구원 최준우 선임연구원 - (교신저자) 한국과학기술연구원 류혜진 선임연구원 <그림설명> [ 연구결과 대표이미지 ] (위) 이차원 자성체를 이용한 차세대 스핀 반도체 소자 개념도 (아래) KIST-IBS 공동연구진이 규명한 반데르발스 자성체(FGT)의 자성 특성 제어법을 활용한 반도체 소자 모식도 [그림 1] FGT nano flake의 자화곡선(왼쪽)과 도핑에 따른 자기이방성과 자기모멘트(오른쪽) flake의 자성특성 (i) FGT nano flake의 두께에 따른 보자력 [그림 2] FGT nanoflake의 자성 특성 (a) FGT nano flake의 광학현미경 사진 (b) FGT nano flake의 두께 (c-h) FGT nano flake의 자성특성 (i) FGT nano flake의 두께에 따른 보자력
차세대 스핀(SPIN) 반도체 개발 청신호, 반데르발스 자성체 비밀 밝혔다
한국과학기술연구원(KIST, 원장 이병권)은 스핀융합연구단 장차운, 최준우, 류혜진 박사팀이 기초과학연구원(IBS, 원장 노도영) 강상관계물질연구단 (단장 노태원)박세영 박사팀과 공동연구를 통해 최근 차세대 반도체인 ‘스핀트로닉스’ 소재로 주목받고 있는 반데르발스 자성체(Fe3GeTe2, FGT)의 자성 특성을 제어하는 데 성공했다고 밝혔다. 반데르발스(van der Waals) 물질이란 층간 결합이 반데르발스 결합, 즉 약한 층간 결합으로 이루어진 층상구조 물질로, 2차원 물질인 그래핀을 포함하여 이황화몰리브덴 등 다양한 물질이 있다. 또한 다른 2차원 물질과의 조합을 통해 기존에 없던 새로운 소재로 바뀔 수 있어 그간 초전도성, 반도체성, 금속성, 절연성 등의 다양한 성질의 2차원 물질이 연구되어 왔다. 특히 2017년 새로운 2차원 반데르발스 자성체들이 발견되며 전 세계적으로 연구에 속도가 붙기 시작했다. 하지만 이러한 반데르발스 자성체는 퀴리온도, 보자력(Coercivity) 등의 자성 특성이 소자 응용에 적합하지 않아 스핀트로닉스 소재로서 한계에 봉착하고 있었다. KIST-IBS 공동연구진은 최근 발견되어 많은 연구들이 진행되고 있는 층상구조를 가진 반데르발스 자성체인 ‘FGT’의 특성을 효율적으로 제어할 수 있는 방법과 원리를 찾아냈다. 연구진은 실험적으로 전자의 개수를 조절하며 자성체를 관찰한 결과, 반데르발스 자성체(FGT)의 특성 변화가 생기는 것을 확인했다. 연구진은 그 원인이 제어한 전자의 개수로 자성체 내부에서 자화 방향에 따라 에너지가 바뀌는 현상(자기이방성(Magnetic anisotropy) 때문이라는 사실을 밝혔다. 이번 연구결과는 반데르발스 자성체(FGT)의 자성 특성 변화 원인을 규명함으로써, 향후 다양한 2차원 자성체의 자성 특성을 효과적으로 제어할 수 있는 가능성을 제시하게 됐다. 또한, 연구진에 따르면, 원자 한 층 두께에 자성을 구현할 수 있는 반데르발스 물질의 특성 제어 가능성이 높아진다면, 실리콘보다 100배 이상 빠르게 전자를 이동시키는 스핀트로닉스 소자의 개발도 한층 빨라지게 될 것으로 전망한다고 밝혔다. KIST 류혜진 박사는 “반데르발스 자성체 특성을 밝혀 스핀트로닉스 소자로 응용해 보고자 연구를 시작하게 됐다.”라고 말하면서 “향후 반데르발스 자성물질과 다른 반데르발스 물질들의 이종 접합구조를 이용해, 보다 다양한 특성의 반도체 신소재 개발이 가능해질 것으로 기대하고 있다.”라고 밝혔다. 이번 연구는 과학기술정보통신부(장관 최기영)의 지원으로 KIST 주요사업 및 창의형 융합연구사업, 해외협력기반조성-국가간협력기반조성사업의 지원으로 수행되었다. 연구 결과는 나노과학 분야의 국제 저널인 ‘Nano Letters’ (IF: 12.279, JCR 분야 상위 5.743%) 최신 호에 게재되었다. * (논문명) Controlling the Magnetic Anisotropy of the van der Waals Ferromagnet Fe3GeTe2 through Hole Doping - (제 1저자) 한국과학기술연구원 김동섭 인턴(現,University of Texas at Austin) - (제 1저자) 기초과학연구원 강상관계물질연구단(서울대학교 물리천문학과) 박세영 연구 조교수 - (교신저자) 한국과학기술연구원 장차운 선임연구원 - (교신저자) 한국과학기술연구원 최준우 선임연구원 - (교신저자) 한국과학기술연구원 류혜진 선임연구원 <그림설명> [ 연구결과 대표이미지 ] (위) 이차원 자성체를 이용한 차세대 스핀 반도체 소자 개념도 (아래) KIST-IBS 공동연구진이 규명한 반데르발스 자성체(FGT)의 자성 특성 제어법을 활용한 반도체 소자 모식도 [그림 1] FGT nano flake의 자화곡선(왼쪽)과 도핑에 따른 자기이방성과 자기모멘트(오른쪽) flake의 자성특성 (i) FGT nano flake의 두께에 따른 보자력 [그림 2] FGT nanoflake의 자성 특성 (a) FGT nano flake의 광학현미경 사진 (b) FGT nano flake의 두께 (c-h) FGT nano flake의 자성특성 (i) FGT nano flake의 두께에 따른 보자력
차세대 스핀(SPIN) 반도체 개발 청신호, 반데르발스 자성체 비밀 밝혔다
한국과학기술연구원(KIST, 원장 이병권)은 스핀융합연구단 장차운, 최준우, 류혜진 박사팀이 기초과학연구원(IBS, 원장 노도영) 강상관계물질연구단 (단장 노태원)박세영 박사팀과 공동연구를 통해 최근 차세대 반도체인 ‘스핀트로닉스’ 소재로 주목받고 있는 반데르발스 자성체(Fe3GeTe2, FGT)의 자성 특성을 제어하는 데 성공했다고 밝혔다. 반데르발스(van der Waals) 물질이란 층간 결합이 반데르발스 결합, 즉 약한 층간 결합으로 이루어진 층상구조 물질로, 2차원 물질인 그래핀을 포함하여 이황화몰리브덴 등 다양한 물질이 있다. 또한 다른 2차원 물질과의 조합을 통해 기존에 없던 새로운 소재로 바뀔 수 있어 그간 초전도성, 반도체성, 금속성, 절연성 등의 다양한 성질의 2차원 물질이 연구되어 왔다. 특히 2017년 새로운 2차원 반데르발스 자성체들이 발견되며 전 세계적으로 연구에 속도가 붙기 시작했다. 하지만 이러한 반데르발스 자성체는 퀴리온도, 보자력(Coercivity) 등의 자성 특성이 소자 응용에 적합하지 않아 스핀트로닉스 소재로서 한계에 봉착하고 있었다. KIST-IBS 공동연구진은 최근 발견되어 많은 연구들이 진행되고 있는 층상구조를 가진 반데르발스 자성체인 ‘FGT’의 특성을 효율적으로 제어할 수 있는 방법과 원리를 찾아냈다. 연구진은 실험적으로 전자의 개수를 조절하며 자성체를 관찰한 결과, 반데르발스 자성체(FGT)의 특성 변화가 생기는 것을 확인했다. 연구진은 그 원인이 제어한 전자의 개수로 자성체 내부에서 자화 방향에 따라 에너지가 바뀌는 현상(자기이방성(Magnetic anisotropy) 때문이라는 사실을 밝혔다. 이번 연구결과는 반데르발스 자성체(FGT)의 자성 특성 변화 원인을 규명함으로써, 향후 다양한 2차원 자성체의 자성 특성을 효과적으로 제어할 수 있는 가능성을 제시하게 됐다. 또한, 연구진에 따르면, 원자 한 층 두께에 자성을 구현할 수 있는 반데르발스 물질의 특성 제어 가능성이 높아진다면, 실리콘보다 100배 이상 빠르게 전자를 이동시키는 스핀트로닉스 소자의 개발도 한층 빨라지게 될 것으로 전망한다고 밝혔다. KIST 류혜진 박사는 “반데르발스 자성체 특성을 밝혀 스핀트로닉스 소자로 응용해 보고자 연구를 시작하게 됐다.”라고 말하면서 “향후 반데르발스 자성물질과 다른 반데르발스 물질들의 이종 접합구조를 이용해, 보다 다양한 특성의 반도체 신소재 개발이 가능해질 것으로 기대하고 있다.”라고 밝혔다. 이번 연구는 과학기술정보통신부(장관 최기영)의 지원으로 KIST 주요사업 및 창의형 융합연구사업, 해외협력기반조성-국가간협력기반조성사업의 지원으로 수행되었다. 연구 결과는 나노과학 분야의 국제 저널인 ‘Nano Letters’ (IF: 12.279, JCR 분야 상위 5.743%) 최신 호에 게재되었다. * (논문명) Controlling the Magnetic Anisotropy of the van der Waals Ferromagnet Fe3GeTe2 through Hole Doping - (제 1저자) 한국과학기술연구원 김동섭 인턴(現,University of Texas at Austin) - (제 1저자) 기초과학연구원 강상관계물질연구단(서울대학교 물리천문학과) 박세영 연구 조교수 - (교신저자) 한국과학기술연구원 장차운 선임연구원 - (교신저자) 한국과학기술연구원 최준우 선임연구원 - (교신저자) 한국과학기술연구원 류혜진 선임연구원 <그림설명> [ 연구결과 대표이미지 ] (위) 이차원 자성체를 이용한 차세대 스핀 반도체 소자 개념도 (아래) KIST-IBS 공동연구진이 규명한 반데르발스 자성체(FGT)의 자성 특성 제어법을 활용한 반도체 소자 모식도 [그림 1] FGT nano flake의 자화곡선(왼쪽)과 도핑에 따른 자기이방성과 자기모멘트(오른쪽) flake의 자성특성 (i) FGT nano flake의 두께에 따른 보자력 [그림 2] FGT nanoflake의 자성 특성 (a) FGT nano flake의 광학현미경 사진 (b) FGT nano flake의 두께 (c-h) FGT nano flake의 자성특성 (i) FGT nano flake의 두께에 따른 보자력
차세대 스핀(SPIN) 반도체 개발 청신호, 반데르발스 자성체 비밀 밝혔다
한국과학기술연구원(KIST, 원장 이병권)은 스핀융합연구단 장차운, 최준우, 류혜진 박사팀이 기초과학연구원(IBS, 원장 노도영) 강상관계물질연구단 (단장 노태원)박세영 박사팀과 공동연구를 통해 최근 차세대 반도체인 ‘스핀트로닉스’ 소재로 주목받고 있는 반데르발스 자성체(Fe3GeTe2, FGT)의 자성 특성을 제어하는 데 성공했다고 밝혔다. 반데르발스(van der Waals) 물질이란 층간 결합이 반데르발스 결합, 즉 약한 층간 결합으로 이루어진 층상구조 물질로, 2차원 물질인 그래핀을 포함하여 이황화몰리브덴 등 다양한 물질이 있다. 또한 다른 2차원 물질과의 조합을 통해 기존에 없던 새로운 소재로 바뀔 수 있어 그간 초전도성, 반도체성, 금속성, 절연성 등의 다양한 성질의 2차원 물질이 연구되어 왔다. 특히 2017년 새로운 2차원 반데르발스 자성체들이 발견되며 전 세계적으로 연구에 속도가 붙기 시작했다. 하지만 이러한 반데르발스 자성체는 퀴리온도, 보자력(Coercivity) 등의 자성 특성이 소자 응용에 적합하지 않아 스핀트로닉스 소재로서 한계에 봉착하고 있었다. KIST-IBS 공동연구진은 최근 발견되어 많은 연구들이 진행되고 있는 층상구조를 가진 반데르발스 자성체인 ‘FGT’의 특성을 효율적으로 제어할 수 있는 방법과 원리를 찾아냈다. 연구진은 실험적으로 전자의 개수를 조절하며 자성체를 관찰한 결과, 반데르발스 자성체(FGT)의 특성 변화가 생기는 것을 확인했다. 연구진은 그 원인이 제어한 전자의 개수로 자성체 내부에서 자화 방향에 따라 에너지가 바뀌는 현상(자기이방성(Magnetic anisotropy) 때문이라는 사실을 밝혔다. 이번 연구결과는 반데르발스 자성체(FGT)의 자성 특성 변화 원인을 규명함으로써, 향후 다양한 2차원 자성체의 자성 특성을 효과적으로 제어할 수 있는 가능성을 제시하게 됐다. 또한, 연구진에 따르면, 원자 한 층 두께에 자성을 구현할 수 있는 반데르발스 물질의 특성 제어 가능성이 높아진다면, 실리콘보다 100배 이상 빠르게 전자를 이동시키는 스핀트로닉스 소자의 개발도 한층 빨라지게 될 것으로 전망한다고 밝혔다. KIST 류혜진 박사는 “반데르발스 자성체 특성을 밝혀 스핀트로닉스 소자로 응용해 보고자 연구를 시작하게 됐다.”라고 말하면서 “향후 반데르발스 자성물질과 다른 반데르발스 물질들의 이종 접합구조를 이용해, 보다 다양한 특성의 반도체 신소재 개발이 가능해질 것으로 기대하고 있다.”라고 밝혔다. 이번 연구는 과학기술정보통신부(장관 최기영)의 지원으로 KIST 주요사업 및 창의형 융합연구사업, 해외협력기반조성-국가간협력기반조성사업의 지원으로 수행되었다. 연구 결과는 나노과학 분야의 국제 저널인 ‘Nano Letters’ (IF: 12.279, JCR 분야 상위 5.743%) 최신 호에 게재되었다. * (논문명) Controlling the Magnetic Anisotropy of the van der Waals Ferromagnet Fe3GeTe2 through Hole Doping - (제 1저자) 한국과학기술연구원 김동섭 인턴(現,University of Texas at Austin) - (제 1저자) 기초과학연구원 강상관계물질연구단(서울대학교 물리천문학과) 박세영 연구 조교수 - (교신저자) 한국과학기술연구원 장차운 선임연구원 - (교신저자) 한국과학기술연구원 최준우 선임연구원 - (교신저자) 한국과학기술연구원 류혜진 선임연구원 <그림설명> [ 연구결과 대표이미지 ] (위) 이차원 자성체를 이용한 차세대 스핀 반도체 소자 개념도 (아래) KIST-IBS 공동연구진이 규명한 반데르발스 자성체(FGT)의 자성 특성 제어법을 활용한 반도체 소자 모식도 [그림 1] FGT nano flake의 자화곡선(왼쪽)과 도핑에 따른 자기이방성과 자기모멘트(오른쪽) flake의 자성특성 (i) FGT nano flake의 두께에 따른 보자력 [그림 2] FGT nanoflake의 자성 특성 (a) FGT nano flake의 광학현미경 사진 (b) FGT nano flake의 두께 (c-h) FGT nano flake의 자성특성 (i) FGT nano flake의 두께에 따른 보자력
차세대 스핀(SPIN) 반도체 개발 청신호, 반데르발스 자성체 비밀 밝혔다
한국과학기술연구원(KIST, 원장 이병권)은 스핀융합연구단 장차운, 최준우, 류혜진 박사팀이 기초과학연구원(IBS, 원장 노도영) 강상관계물질연구단 (단장 노태원)박세영 박사팀과 공동연구를 통해 최근 차세대 반도체인 ‘스핀트로닉스’ 소재로 주목받고 있는 반데르발스 자성체(Fe3GeTe2, FGT)의 자성 특성을 제어하는 데 성공했다고 밝혔다. 반데르발스(van der Waals) 물질이란 층간 결합이 반데르발스 결합, 즉 약한 층간 결합으로 이루어진 층상구조 물질로, 2차원 물질인 그래핀을 포함하여 이황화몰리브덴 등 다양한 물질이 있다. 또한 다른 2차원 물질과의 조합을 통해 기존에 없던 새로운 소재로 바뀔 수 있어 그간 초전도성, 반도체성, 금속성, 절연성 등의 다양한 성질의 2차원 물질이 연구되어 왔다. 특히 2017년 새로운 2차원 반데르발스 자성체들이 발견되며 전 세계적으로 연구에 속도가 붙기 시작했다. 하지만 이러한 반데르발스 자성체는 퀴리온도, 보자력(Coercivity) 등의 자성 특성이 소자 응용에 적합하지 않아 스핀트로닉스 소재로서 한계에 봉착하고 있었다. KIST-IBS 공동연구진은 최근 발견되어 많은 연구들이 진행되고 있는 층상구조를 가진 반데르발스 자성체인 ‘FGT’의 특성을 효율적으로 제어할 수 있는 방법과 원리를 찾아냈다. 연구진은 실험적으로 전자의 개수를 조절하며 자성체를 관찰한 결과, 반데르발스 자성체(FGT)의 특성 변화가 생기는 것을 확인했다. 연구진은 그 원인이 제어한 전자의 개수로 자성체 내부에서 자화 방향에 따라 에너지가 바뀌는 현상(자기이방성(Magnetic anisotropy) 때문이라는 사실을 밝혔다. 이번 연구결과는 반데르발스 자성체(FGT)의 자성 특성 변화 원인을 규명함으로써, 향후 다양한 2차원 자성체의 자성 특성을 효과적으로 제어할 수 있는 가능성을 제시하게 됐다. 또한, 연구진에 따르면, 원자 한 층 두께에 자성을 구현할 수 있는 반데르발스 물질의 특성 제어 가능성이 높아진다면, 실리콘보다 100배 이상 빠르게 전자를 이동시키는 스핀트로닉스 소자의 개발도 한층 빨라지게 될 것으로 전망한다고 밝혔다. KIST 류혜진 박사는 “반데르발스 자성체 특성을 밝혀 스핀트로닉스 소자로 응용해 보고자 연구를 시작하게 됐다.”라고 말하면서 “향후 반데르발스 자성물질과 다른 반데르발스 물질들의 이종 접합구조를 이용해, 보다 다양한 특성의 반도체 신소재 개발이 가능해질 것으로 기대하고 있다.”라고 밝혔다. 이번 연구는 과학기술정보통신부(장관 최기영)의 지원으로 KIST 주요사업 및 창의형 융합연구사업, 해외협력기반조성-국가간협력기반조성사업의 지원으로 수행되었다. 연구 결과는 나노과학 분야의 국제 저널인 ‘Nano Letters’ (IF: 12.279, JCR 분야 상위 5.743%) 최신 호에 게재되었다. * (논문명) Controlling the Magnetic Anisotropy of the van der Waals Ferromagnet Fe3GeTe2 through Hole Doping - (제 1저자) 한국과학기술연구원 김동섭 인턴(現,University of Texas at Austin) - (제 1저자) 기초과학연구원 강상관계물질연구단(서울대학교 물리천문학과) 박세영 연구 조교수 - (교신저자) 한국과학기술연구원 장차운 선임연구원 - (교신저자) 한국과학기술연구원 최준우 선임연구원 - (교신저자) 한국과학기술연구원 류혜진 선임연구원 <그림설명> [ 연구결과 대표이미지 ] (위) 이차원 자성체를 이용한 차세대 스핀 반도체 소자 개념도 (아래) KIST-IBS 공동연구진이 규명한 반데르발스 자성체(FGT)의 자성 특성 제어법을 활용한 반도체 소자 모식도 [그림 1] FGT nano flake의 자화곡선(왼쪽)과 도핑에 따른 자기이방성과 자기모멘트(오른쪽) flake의 자성특성 (i) FGT nano flake의 두께에 따른 보자력 [그림 2] FGT nanoflake의 자성 특성 (a) FGT nano flake의 광학현미경 사진 (b) FGT nano flake의 두께 (c-h) FGT nano flake의 자성특성 (i) FGT nano flake의 두께에 따른 보자력
차세대 스핀(SPIN) 반도체 개발 청신호, 반데르발스 자성체 비밀 밝혔다
한국과학기술연구원(KIST, 원장 이병권)은 스핀융합연구단 장차운, 최준우, 류혜진 박사팀이 기초과학연구원(IBS, 원장 노도영) 강상관계물질연구단 (단장 노태원)박세영 박사팀과 공동연구를 통해 최근 차세대 반도체인 ‘스핀트로닉스’ 소재로 주목받고 있는 반데르발스 자성체(Fe3GeTe2, FGT)의 자성 특성을 제어하는 데 성공했다고 밝혔다. 반데르발스(van der Waals) 물질이란 층간 결합이 반데르발스 결합, 즉 약한 층간 결합으로 이루어진 층상구조 물질로, 2차원 물질인 그래핀을 포함하여 이황화몰리브덴 등 다양한 물질이 있다. 또한 다른 2차원 물질과의 조합을 통해 기존에 없던 새로운 소재로 바뀔 수 있어 그간 초전도성, 반도체성, 금속성, 절연성 등의 다양한 성질의 2차원 물질이 연구되어 왔다. 특히 2017년 새로운 2차원 반데르발스 자성체들이 발견되며 전 세계적으로 연구에 속도가 붙기 시작했다. 하지만 이러한 반데르발스 자성체는 퀴리온도, 보자력(Coercivity) 등의 자성 특성이 소자 응용에 적합하지 않아 스핀트로닉스 소재로서 한계에 봉착하고 있었다. KIST-IBS 공동연구진은 최근 발견되어 많은 연구들이 진행되고 있는 층상구조를 가진 반데르발스 자성체인 ‘FGT’의 특성을 효율적으로 제어할 수 있는 방법과 원리를 찾아냈다. 연구진은 실험적으로 전자의 개수를 조절하며 자성체를 관찰한 결과, 반데르발스 자성체(FGT)의 특성 변화가 생기는 것을 확인했다. 연구진은 그 원인이 제어한 전자의 개수로 자성체 내부에서 자화 방향에 따라 에너지가 바뀌는 현상(자기이방성(Magnetic anisotropy) 때문이라는 사실을 밝혔다. 이번 연구결과는 반데르발스 자성체(FGT)의 자성 특성 변화 원인을 규명함으로써, 향후 다양한 2차원 자성체의 자성 특성을 효과적으로 제어할 수 있는 가능성을 제시하게 됐다. 또한, 연구진에 따르면, 원자 한 층 두께에 자성을 구현할 수 있는 반데르발스 물질의 특성 제어 가능성이 높아진다면, 실리콘보다 100배 이상 빠르게 전자를 이동시키는 스핀트로닉스 소자의 개발도 한층 빨라지게 될 것으로 전망한다고 밝혔다. KIST 류혜진 박사는 “반데르발스 자성체 특성을 밝혀 스핀트로닉스 소자로 응용해 보고자 연구를 시작하게 됐다.”라고 말하면서 “향후 반데르발스 자성물질과 다른 반데르발스 물질들의 이종 접합구조를 이용해, 보다 다양한 특성의 반도체 신소재 개발이 가능해질 것으로 기대하고 있다.”라고 밝혔다. 이번 연구는 과학기술정보통신부(장관 최기영)의 지원으로 KIST 주요사업 및 창의형 융합연구사업, 해외협력기반조성-국가간협력기반조성사업의 지원으로 수행되었다. 연구 결과는 나노과학 분야의 국제 저널인 ‘Nano Letters’ (IF: 12.279, JCR 분야 상위 5.743%) 최신 호에 게재되었다. * (논문명) Controlling the Magnetic Anisotropy of the van der Waals Ferromagnet Fe3GeTe2 through Hole Doping - (제 1저자) 한국과학기술연구원 김동섭 인턴(現,University of Texas at Austin) - (제 1저자) 기초과학연구원 강상관계물질연구단(서울대학교 물리천문학과) 박세영 연구 조교수 - (교신저자) 한국과학기술연구원 장차운 선임연구원 - (교신저자) 한국과학기술연구원 최준우 선임연구원 - (교신저자) 한국과학기술연구원 류혜진 선임연구원 <그림설명> [ 연구결과 대표이미지 ] (위) 이차원 자성체를 이용한 차세대 스핀 반도체 소자 개념도 (아래) KIST-IBS 공동연구진이 규명한 반데르발스 자성체(FGT)의 자성 특성 제어법을 활용한 반도체 소자 모식도 [그림 1] FGT nano flake의 자화곡선(왼쪽)과 도핑에 따른 자기이방성과 자기모멘트(오른쪽) flake의 자성특성 (i) FGT nano flake의 두께에 따른 보자력 [그림 2] FGT nanoflake의 자성 특성 (a) FGT nano flake의 광학현미경 사진 (b) FGT nano flake의 두께 (c-h) FGT nano flake의 자성특성 (i) FGT nano flake의 두께에 따른 보자력
차세대 연료전지의 새로운 전해질 합성법 개발, 그린수소 생산 한걸음 더
- 프로톤 세라믹 전해질의 소결 온도를 획기적으로 낮출 새로운 합성법 개발 - 획기적 공정개발로 프로톤 세라믹 전지의 경제성 및 고성능화 동시 달성 한국과학기술연구원(KIST, 원장 오상록) 수소에너지소재연구단 지호일 박사, 금오공과대학교 최시혁 교수 연구팀은 차세대 고효율 세라믹 전지인 프로톤 세라믹 전지의 전해질의 치밀화 과정을 유발하는 소결 온도를 획기적으로 낮출 수 있는 신규 합성법을 개발했다고 밝혔다. 전해질, 전극 등 모든 구성요소가 세라믹과 같은 금속산화물로 구성된 기존의 고체산화물 연료전지(Solid Oxide Cell; SOC)는 전력 생산과 수소 생산이 동시에 가능하다. 특히, 600℃ 이상의 고온에서 작동하기 때문에 다른 연료전지 대비 전력 변환 효율이 높다는 장점이 있으나, 고온 내구성을 지닌 재료를 사용하기 때문에 생산비용이 높고 장기간 작동 시 열화로 인한 성능 저하가 유발되는 한계가 있다. 최근, 고체산화물 전지 중 수소이온인 프로톤(Proton)을 사용하는 프로톤 세라믹 전지(Protonic Ceramic Cell; PCC)가 차세대 연료전지로 주목받고 있다. 산소이온을 전달하는 기존 전해질과 달리 크기가 작은 수소이온을 전달하기 때문에 높은 이온전도도를 구현할 수 있다. 그러나 프로톤 세라믹 전지의 전해질을 제작하기 위해서는 1,500℃ 이상 고온에서의 소결이 필요한데, 이 과정에서 구성물이 휘발 또는 석출되는 현상은 전해질의 성능을 저하하고 있어 프로톤 세라믹 전지의 상용화에 걸림돌이 되고 있다. 연구팀은 소결 온도를 낮추기 위해 전해질 소재를 합성하는 새로운 공정을 개발했다. 일반적으로는 하나의 화합물로 구성된 분말을 소결해 프로톤 세라믹 전지의 전해질을 제작한다. 하지만 소결 온도를 낮추기 위해 투입된 첨가제가 전해질에 잔류해 전지의 출력밀도를 저해하는 문제가 발생했다. 연구팀은 저온 합성을 통해 두 종류의 화합물이 혼합된 분말을 전해질로 제조했을 때, 소결 특성이 우수한 하나의 화합물로 합성되는 소결 가속화 과정에서 첨가제 없이도 소결 온도가 1,400℃로 낮아지는 것을 확인했다. 새로운 공정으로 합성된 프로톤 세라믹 전해질은 낮은 온도에서도 치밀한 막을 형성해 전지의 전기화학적 특성을 향상시켰다. 또한, 이 전해질을 실제 프로톤 세라믹 전지에 적용했을 때, 우수한 프로톤 전달 특성이 발현돼 600℃에서 기존 대비 약 2배 향상된 출력밀도(950mW/cm2)를 달성했다. 이를 통해 공정 시간을 단축하고 열적 안정성 및 세라믹 전해질의 성능 향상을 동시에 달성할 수 있을 것으로 기대된다. 연구진은 향후 프로톤 세라믹 전지 상용화를 위해 두 화합물 간 소결 가속화 현상을 이용한 새로운 공정을 대면적 전지 제작에 적용할 예정이다. KIST 지호일 박사는 "본 연구를 통해 프로톤 세라믹 전지 제작 과정 중 고질적인 소결 문제를 해결할 수 있었다"라며, "대면적화 기술이 성공적으로 개발되면 전력 생산과 수전해를 통한 그린수소, 원자력 발전소의 폐열을 활용한 핑크수소 생산 기술로 활용해 에너지의 효율적인 관리가 가능해질 것"이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 이종호)의 지원을 받아 KIST 주요사업 및 미래수소원천기술개발사업(2021M3I3A1084278), 산업통상자원부(장관 안덕근) 신재생에너지핵심기술개발사업(20223030040080)으로 수행됐다. 이번 연구 성과는 국제 학술지 「Advanced Energy Materials」 (IF 24.4, JCR 분야 2.6%)에 게재됐다. [그림 1] 저온합성으로 제조된 프로톤 세라믹 전해질이 소결되는 원리 저온합성공정으로 제조된 이중상(dual-phase) 프로톤 세라믹 전해질은 향상된 소결특성을 보여 기존의 소결공정 온도를 낮출 수 있으며, 그 결과 전해질의 고유특성을 소자에서도 발현할 수 있게 되어 전지 특성을 향상시킬 수 있다. [그림 2] 단일상(A) 및 이중상(B) 프로톤 세라믹 전해질 소결 거동 비교 (A) 단일상(single-phase) 전해질 분말소재는 온도가 증가할수록 고유소결특성에 따라 입자 크기가 성장한다. (B) 높은 소결도 및 낮은 소결도 특성을 각각 보이는 두 개의 상으로 구성된 이중상 전해질 분말은 온도가 증가함에 따라 소결특성이 우수한 하나의 상이 초기 소결특성을 결정, 가속화하고 잔존하는 난소결 상이 오스트발트 라이프닝(Ostwald ripening) 현상으로 입자크기 성장이 이루어진 상으로 흡수되면서 최종 단일상을 형성하게 된다.