검색결과
게시물 키워드""에 대한 9087개의 검색결과를 찾았습니다.
차세대 메모리 반도체 개발 패러다임이 바뀐다
- 외부 스핀 없이 전류를 걸어 스스로 스핀 방향을 바꾸는 나노 자석 원리 제시 - 기존 스핀 메모리 소자의 패러다임 변화로 상용화 앞당길 것으로 기대 한국과학기술연구원(KIST, 원장 윤석진)은 스핀융합연구단 김경환 박사팀이 차세대 메모리 소자인 스핀 메모리 소자에 관한 새로운 원리를 제시함으로써, 기존 패러다임과는 다른 새로운 응용 가능성을 제시했다고 밝혔다. 기존의 메모리 소자들은 RAM과 같이 빠르게 정보를 읽고 쓸 수 있는 휘발성 메모리와 하드디스크처럼 전력을 차단해도 정보가 유지되지는 비휘발성 메모리로 나뉜다. 최근 관련 학계 및 업계에서는 이들의 장점을 결합하여 빠른 속도를 가지면서 전력을 차단해도 정보가 유지되는 차세대 메모리의 개발을 서두르고 있다. 스핀 메모리 소자는 아주 작은 나노 자석의 N극과 S극의 방향으로 0과 1의 정보를 저장하는 소자이다. 전력이 차단되어도 N극과 S극의 방향은 유지되기 때문에 이미 하드디스크 등에서도 널리 응용되고 있다. 이 나노 자석의 N극과 S극의 방향을 따라서 얼마나 빠르고 쉽게 제어할 수 있는지가 차세대 스핀 메모리의 상용화 여부를 결정한다고 볼 수 있다. 그동안은 외부에서 스핀을 주입하여 나노 자석의 N극과 S극의 방향을 제어해왔다. 여기서 스핀이란 더 이상 자를 수 없는 자석의 기본 단위로, 같은 N극과 S극의 방향을 갖는 무수히 많은 스핀이 한데 모여 하나의 자석을 구성한다고 할 수 있다. 그러므로 외부에서 나노 자석에 많은 스핀을 주입하면 나노 자석의 N극과 S극의 방향을 제어할 수 있다. 하지만 외부의 스핀을 생성하고, 주입하는 효율이 좋지 않아 전력의 소모가 커 상용화에 큰 어려움이 따르고 있었다. 최근 나노 자석에 전류를 걸면 나노 자석 내부에 스핀이 형성된다는 것은 알려진 바 있으나, 이렇게 형성된 스핀의 거동을 분석하는 이론이 정립되지 않아 이들이 어떤 물리적 결과를 가져오는지 연구된 바는 없었다. KIST 김경환 박사는 자성체 내의 스핀 전도 현상을 기술하는 스핀 확산 방정식을 개발하여 이론 체계를 확립하였다. 그 결과, 전류에 의해 형성된 스핀이 외부로 발산될 때 외부에서 주입해주던 스핀과 부호만 반대이고 나머지는 같은 효과를 준다는 사실을 알게 되었다. 그러므로 외부의 스핀 주입이 없이도 나노 자석 스스로 N극과 S극의 방향을 제어할 수 있으며, 기존의 스핀 소자보다 최대 60%가량 전력 소모를 감소시킬 수 있음을 규명했다. 또한, 기존의 외부 스핀을 주입하기 위한 구조물이 필요 없게 되어 간단한 구조로 메모리를 개발할 수 있게 됐다. 김경환 박사는 “본 연구는 자성체 내에서의 스핀 전도 현상에 대한 학술적인 기초를 제공하였을 뿐 아니라, 새로운 패러다임을 통해 차세대 스핀 소자 구현에 가장 큰 걸림돌이었던 전력 소모, 생산 수율 등의 최적화 문제 해결에 큰 기여를 할 것으로 기대된다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업 및 한국연구재단 신진연구지원사업 등으로 수행되었으며, 이번 연구결과는 물리학 분야 저널인 ‘Physical Review Letters‘ (IF: 8.385) 최신 호에 게재되었다. * (논문명) Generalized Spin Drift-Diffusion Formalism in Presence of Spin-Orbit Interaction of Ferromagnets - (제 1저자, 교신저자) KIST 김경환 선임연구원 - (교신저자) 고려대학교 신소재공학부 이경진 교수 (現 KAIST 물리학과) <그림설명> [그림 1] 기존 외부 스핀 주입 방식과 자가생성 스핀 방식의 비교
차세대 메모리 반도체 개발 패러다임이 바뀐다
- 외부 스핀 없이 전류를 걸어 스스로 스핀 방향을 바꾸는 나노 자석 원리 제시 - 기존 스핀 메모리 소자의 패러다임 변화로 상용화 앞당길 것으로 기대 한국과학기술연구원(KIST, 원장 윤석진)은 스핀융합연구단 김경환 박사팀이 차세대 메모리 소자인 스핀 메모리 소자에 관한 새로운 원리를 제시함으로써, 기존 패러다임과는 다른 새로운 응용 가능성을 제시했다고 밝혔다. 기존의 메모리 소자들은 RAM과 같이 빠르게 정보를 읽고 쓸 수 있는 휘발성 메모리와 하드디스크처럼 전력을 차단해도 정보가 유지되지는 비휘발성 메모리로 나뉜다. 최근 관련 학계 및 업계에서는 이들의 장점을 결합하여 빠른 속도를 가지면서 전력을 차단해도 정보가 유지되는 차세대 메모리의 개발을 서두르고 있다. 스핀 메모리 소자는 아주 작은 나노 자석의 N극과 S극의 방향으로 0과 1의 정보를 저장하는 소자이다. 전력이 차단되어도 N극과 S극의 방향은 유지되기 때문에 이미 하드디스크 등에서도 널리 응용되고 있다. 이 나노 자석의 N극과 S극의 방향을 따라서 얼마나 빠르고 쉽게 제어할 수 있는지가 차세대 스핀 메모리의 상용화 여부를 결정한다고 볼 수 있다. 그동안은 외부에서 스핀을 주입하여 나노 자석의 N극과 S극의 방향을 제어해왔다. 여기서 스핀이란 더 이상 자를 수 없는 자석의 기본 단위로, 같은 N극과 S극의 방향을 갖는 무수히 많은 스핀이 한데 모여 하나의 자석을 구성한다고 할 수 있다. 그러므로 외부에서 나노 자석에 많은 스핀을 주입하면 나노 자석의 N극과 S극의 방향을 제어할 수 있다. 하지만 외부의 스핀을 생성하고, 주입하는 효율이 좋지 않아 전력의 소모가 커 상용화에 큰 어려움이 따르고 있었다. 최근 나노 자석에 전류를 걸면 나노 자석 내부에 스핀이 형성된다는 것은 알려진 바 있으나, 이렇게 형성된 스핀의 거동을 분석하는 이론이 정립되지 않아 이들이 어떤 물리적 결과를 가져오는지 연구된 바는 없었다. KIST 김경환 박사는 자성체 내의 스핀 전도 현상을 기술하는 스핀 확산 방정식을 개발하여 이론 체계를 확립하였다. 그 결과, 전류에 의해 형성된 스핀이 외부로 발산될 때 외부에서 주입해주던 스핀과 부호만 반대이고 나머지는 같은 효과를 준다는 사실을 알게 되었다. 그러므로 외부의 스핀 주입이 없이도 나노 자석 스스로 N극과 S극의 방향을 제어할 수 있으며, 기존의 스핀 소자보다 최대 60%가량 전력 소모를 감소시킬 수 있음을 규명했다. 또한, 기존의 외부 스핀을 주입하기 위한 구조물이 필요 없게 되어 간단한 구조로 메모리를 개발할 수 있게 됐다. 김경환 박사는 “본 연구는 자성체 내에서의 스핀 전도 현상에 대한 학술적인 기초를 제공하였을 뿐 아니라, 새로운 패러다임을 통해 차세대 스핀 소자 구현에 가장 큰 걸림돌이었던 전력 소모, 생산 수율 등의 최적화 문제 해결에 큰 기여를 할 것으로 기대된다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업 및 한국연구재단 신진연구지원사업 등으로 수행되었으며, 이번 연구결과는 물리학 분야 저널인 ‘Physical Review Letters‘ (IF: 8.385) 최신 호에 게재되었다. * (논문명) Generalized Spin Drift-Diffusion Formalism in Presence of Spin-Orbit Interaction of Ferromagnets - (제 1저자, 교신저자) KIST 김경환 선임연구원 - (교신저자) 고려대학교 신소재공학부 이경진 교수 (現 KAIST 물리학과) <그림설명> [그림 1] 기존 외부 스핀 주입 방식과 자가생성 스핀 방식의 비교
차세대 메모리 반도체 개발 패러다임이 바뀐다
- 외부 스핀 없이 전류를 걸어 스스로 스핀 방향을 바꾸는 나노 자석 원리 제시 - 기존 스핀 메모리 소자의 패러다임 변화로 상용화 앞당길 것으로 기대 한국과학기술연구원(KIST, 원장 윤석진)은 스핀융합연구단 김경환 박사팀이 차세대 메모리 소자인 스핀 메모리 소자에 관한 새로운 원리를 제시함으로써, 기존 패러다임과는 다른 새로운 응용 가능성을 제시했다고 밝혔다. 기존의 메모리 소자들은 RAM과 같이 빠르게 정보를 읽고 쓸 수 있는 휘발성 메모리와 하드디스크처럼 전력을 차단해도 정보가 유지되지는 비휘발성 메모리로 나뉜다. 최근 관련 학계 및 업계에서는 이들의 장점을 결합하여 빠른 속도를 가지면서 전력을 차단해도 정보가 유지되는 차세대 메모리의 개발을 서두르고 있다. 스핀 메모리 소자는 아주 작은 나노 자석의 N극과 S극의 방향으로 0과 1의 정보를 저장하는 소자이다. 전력이 차단되어도 N극과 S극의 방향은 유지되기 때문에 이미 하드디스크 등에서도 널리 응용되고 있다. 이 나노 자석의 N극과 S극의 방향을 따라서 얼마나 빠르고 쉽게 제어할 수 있는지가 차세대 스핀 메모리의 상용화 여부를 결정한다고 볼 수 있다. 그동안은 외부에서 스핀을 주입하여 나노 자석의 N극과 S극의 방향을 제어해왔다. 여기서 스핀이란 더 이상 자를 수 없는 자석의 기본 단위로, 같은 N극과 S극의 방향을 갖는 무수히 많은 스핀이 한데 모여 하나의 자석을 구성한다고 할 수 있다. 그러므로 외부에서 나노 자석에 많은 스핀을 주입하면 나노 자석의 N극과 S극의 방향을 제어할 수 있다. 하지만 외부의 스핀을 생성하고, 주입하는 효율이 좋지 않아 전력의 소모가 커 상용화에 큰 어려움이 따르고 있었다. 최근 나노 자석에 전류를 걸면 나노 자석 내부에 스핀이 형성된다는 것은 알려진 바 있으나, 이렇게 형성된 스핀의 거동을 분석하는 이론이 정립되지 않아 이들이 어떤 물리적 결과를 가져오는지 연구된 바는 없었다. KIST 김경환 박사는 자성체 내의 스핀 전도 현상을 기술하는 스핀 확산 방정식을 개발하여 이론 체계를 확립하였다. 그 결과, 전류에 의해 형성된 스핀이 외부로 발산될 때 외부에서 주입해주던 스핀과 부호만 반대이고 나머지는 같은 효과를 준다는 사실을 알게 되었다. 그러므로 외부의 스핀 주입이 없이도 나노 자석 스스로 N극과 S극의 방향을 제어할 수 있으며, 기존의 스핀 소자보다 최대 60%가량 전력 소모를 감소시킬 수 있음을 규명했다. 또한, 기존의 외부 스핀을 주입하기 위한 구조물이 필요 없게 되어 간단한 구조로 메모리를 개발할 수 있게 됐다. 김경환 박사는 “본 연구는 자성체 내에서의 스핀 전도 현상에 대한 학술적인 기초를 제공하였을 뿐 아니라, 새로운 패러다임을 통해 차세대 스핀 소자 구현에 가장 큰 걸림돌이었던 전력 소모, 생산 수율 등의 최적화 문제 해결에 큰 기여를 할 것으로 기대된다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업 및 한국연구재단 신진연구지원사업 등으로 수행되었으며, 이번 연구결과는 물리학 분야 저널인 ‘Physical Review Letters‘ (IF: 8.385) 최신 호에 게재되었다. * (논문명) Generalized Spin Drift-Diffusion Formalism in Presence of Spin-Orbit Interaction of Ferromagnets - (제 1저자, 교신저자) KIST 김경환 선임연구원 - (교신저자) 고려대학교 신소재공학부 이경진 교수 (現 KAIST 물리학과) <그림설명> [그림 1] 기존 외부 스핀 주입 방식과 자가생성 스핀 방식의 비교
차세대 메모리 반도체 개발 패러다임이 바뀐다
- 외부 스핀 없이 전류를 걸어 스스로 스핀 방향을 바꾸는 나노 자석 원리 제시 - 기존 스핀 메모리 소자의 패러다임 변화로 상용화 앞당길 것으로 기대 한국과학기술연구원(KIST, 원장 윤석진)은 스핀융합연구단 김경환 박사팀이 차세대 메모리 소자인 스핀 메모리 소자에 관한 새로운 원리를 제시함으로써, 기존 패러다임과는 다른 새로운 응용 가능성을 제시했다고 밝혔다. 기존의 메모리 소자들은 RAM과 같이 빠르게 정보를 읽고 쓸 수 있는 휘발성 메모리와 하드디스크처럼 전력을 차단해도 정보가 유지되지는 비휘발성 메모리로 나뉜다. 최근 관련 학계 및 업계에서는 이들의 장점을 결합하여 빠른 속도를 가지면서 전력을 차단해도 정보가 유지되는 차세대 메모리의 개발을 서두르고 있다. 스핀 메모리 소자는 아주 작은 나노 자석의 N극과 S극의 방향으로 0과 1의 정보를 저장하는 소자이다. 전력이 차단되어도 N극과 S극의 방향은 유지되기 때문에 이미 하드디스크 등에서도 널리 응용되고 있다. 이 나노 자석의 N극과 S극의 방향을 따라서 얼마나 빠르고 쉽게 제어할 수 있는지가 차세대 스핀 메모리의 상용화 여부를 결정한다고 볼 수 있다. 그동안은 외부에서 스핀을 주입하여 나노 자석의 N극과 S극의 방향을 제어해왔다. 여기서 스핀이란 더 이상 자를 수 없는 자석의 기본 단위로, 같은 N극과 S극의 방향을 갖는 무수히 많은 스핀이 한데 모여 하나의 자석을 구성한다고 할 수 있다. 그러므로 외부에서 나노 자석에 많은 스핀을 주입하면 나노 자석의 N극과 S극의 방향을 제어할 수 있다. 하지만 외부의 스핀을 생성하고, 주입하는 효율이 좋지 않아 전력의 소모가 커 상용화에 큰 어려움이 따르고 있었다. 최근 나노 자석에 전류를 걸면 나노 자석 내부에 스핀이 형성된다는 것은 알려진 바 있으나, 이렇게 형성된 스핀의 거동을 분석하는 이론이 정립되지 않아 이들이 어떤 물리적 결과를 가져오는지 연구된 바는 없었다. KIST 김경환 박사는 자성체 내의 스핀 전도 현상을 기술하는 스핀 확산 방정식을 개발하여 이론 체계를 확립하였다. 그 결과, 전류에 의해 형성된 스핀이 외부로 발산될 때 외부에서 주입해주던 스핀과 부호만 반대이고 나머지는 같은 효과를 준다는 사실을 알게 되었다. 그러므로 외부의 스핀 주입이 없이도 나노 자석 스스로 N극과 S극의 방향을 제어할 수 있으며, 기존의 스핀 소자보다 최대 60%가량 전력 소모를 감소시킬 수 있음을 규명했다. 또한, 기존의 외부 스핀을 주입하기 위한 구조물이 필요 없게 되어 간단한 구조로 메모리를 개발할 수 있게 됐다. 김경환 박사는 “본 연구는 자성체 내에서의 스핀 전도 현상에 대한 학술적인 기초를 제공하였을 뿐 아니라, 새로운 패러다임을 통해 차세대 스핀 소자 구현에 가장 큰 걸림돌이었던 전력 소모, 생산 수율 등의 최적화 문제 해결에 큰 기여를 할 것으로 기대된다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업 및 한국연구재단 신진연구지원사업 등으로 수행되었으며, 이번 연구결과는 물리학 분야 저널인 ‘Physical Review Letters‘ (IF: 8.385) 최신 호에 게재되었다. * (논문명) Generalized Spin Drift-Diffusion Formalism in Presence of Spin-Orbit Interaction of Ferromagnets - (제 1저자, 교신저자) KIST 김경환 선임연구원 - (교신저자) 고려대학교 신소재공학부 이경진 교수 (現 KAIST 물리학과) <그림설명> [그림 1] 기존 외부 스핀 주입 방식과 자가생성 스핀 방식의 비교
차세대 메모리 반도체 개발 패러다임이 바뀐다
- 외부 스핀 없이 전류를 걸어 스스로 스핀 방향을 바꾸는 나노 자석 원리 제시 - 기존 스핀 메모리 소자의 패러다임 변화로 상용화 앞당길 것으로 기대 한국과학기술연구원(KIST, 원장 윤석진)은 스핀융합연구단 김경환 박사팀이 차세대 메모리 소자인 스핀 메모리 소자에 관한 새로운 원리를 제시함으로써, 기존 패러다임과는 다른 새로운 응용 가능성을 제시했다고 밝혔다. 기존의 메모리 소자들은 RAM과 같이 빠르게 정보를 읽고 쓸 수 있는 휘발성 메모리와 하드디스크처럼 전력을 차단해도 정보가 유지되지는 비휘발성 메모리로 나뉜다. 최근 관련 학계 및 업계에서는 이들의 장점을 결합하여 빠른 속도를 가지면서 전력을 차단해도 정보가 유지되는 차세대 메모리의 개발을 서두르고 있다. 스핀 메모리 소자는 아주 작은 나노 자석의 N극과 S극의 방향으로 0과 1의 정보를 저장하는 소자이다. 전력이 차단되어도 N극과 S극의 방향은 유지되기 때문에 이미 하드디스크 등에서도 널리 응용되고 있다. 이 나노 자석의 N극과 S극의 방향을 따라서 얼마나 빠르고 쉽게 제어할 수 있는지가 차세대 스핀 메모리의 상용화 여부를 결정한다고 볼 수 있다. 그동안은 외부에서 스핀을 주입하여 나노 자석의 N극과 S극의 방향을 제어해왔다. 여기서 스핀이란 더 이상 자를 수 없는 자석의 기본 단위로, 같은 N극과 S극의 방향을 갖는 무수히 많은 스핀이 한데 모여 하나의 자석을 구성한다고 할 수 있다. 그러므로 외부에서 나노 자석에 많은 스핀을 주입하면 나노 자석의 N극과 S극의 방향을 제어할 수 있다. 하지만 외부의 스핀을 생성하고, 주입하는 효율이 좋지 않아 전력의 소모가 커 상용화에 큰 어려움이 따르고 있었다. 최근 나노 자석에 전류를 걸면 나노 자석 내부에 스핀이 형성된다는 것은 알려진 바 있으나, 이렇게 형성된 스핀의 거동을 분석하는 이론이 정립되지 않아 이들이 어떤 물리적 결과를 가져오는지 연구된 바는 없었다. KIST 김경환 박사는 자성체 내의 스핀 전도 현상을 기술하는 스핀 확산 방정식을 개발하여 이론 체계를 확립하였다. 그 결과, 전류에 의해 형성된 스핀이 외부로 발산될 때 외부에서 주입해주던 스핀과 부호만 반대이고 나머지는 같은 효과를 준다는 사실을 알게 되었다. 그러므로 외부의 스핀 주입이 없이도 나노 자석 스스로 N극과 S극의 방향을 제어할 수 있으며, 기존의 스핀 소자보다 최대 60%가량 전력 소모를 감소시킬 수 있음을 규명했다. 또한, 기존의 외부 스핀을 주입하기 위한 구조물이 필요 없게 되어 간단한 구조로 메모리를 개발할 수 있게 됐다. 김경환 박사는 “본 연구는 자성체 내에서의 스핀 전도 현상에 대한 학술적인 기초를 제공하였을 뿐 아니라, 새로운 패러다임을 통해 차세대 스핀 소자 구현에 가장 큰 걸림돌이었던 전력 소모, 생산 수율 등의 최적화 문제 해결에 큰 기여를 할 것으로 기대된다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업 및 한국연구재단 신진연구지원사업 등으로 수행되었으며, 이번 연구결과는 물리학 분야 저널인 ‘Physical Review Letters‘ (IF: 8.385) 최신 호에 게재되었다. * (논문명) Generalized Spin Drift-Diffusion Formalism in Presence of Spin-Orbit Interaction of Ferromagnets - (제 1저자, 교신저자) KIST 김경환 선임연구원 - (교신저자) 고려대학교 신소재공학부 이경진 교수 (現 KAIST 물리학과) <그림설명> [그림 1] 기존 외부 스핀 주입 방식과 자가생성 스핀 방식의 비교
차세대 메모리 반도체 개발 패러다임이 바뀐다
- 외부 스핀 없이 전류를 걸어 스스로 스핀 방향을 바꾸는 나노 자석 원리 제시 - 기존 스핀 메모리 소자의 패러다임 변화로 상용화 앞당길 것으로 기대 한국과학기술연구원(KIST, 원장 윤석진)은 스핀융합연구단 김경환 박사팀이 차세대 메모리 소자인 스핀 메모리 소자에 관한 새로운 원리를 제시함으로써, 기존 패러다임과는 다른 새로운 응용 가능성을 제시했다고 밝혔다. 기존의 메모리 소자들은 RAM과 같이 빠르게 정보를 읽고 쓸 수 있는 휘발성 메모리와 하드디스크처럼 전력을 차단해도 정보가 유지되지는 비휘발성 메모리로 나뉜다. 최근 관련 학계 및 업계에서는 이들의 장점을 결합하여 빠른 속도를 가지면서 전력을 차단해도 정보가 유지되는 차세대 메모리의 개발을 서두르고 있다. 스핀 메모리 소자는 아주 작은 나노 자석의 N극과 S극의 방향으로 0과 1의 정보를 저장하는 소자이다. 전력이 차단되어도 N극과 S극의 방향은 유지되기 때문에 이미 하드디스크 등에서도 널리 응용되고 있다. 이 나노 자석의 N극과 S극의 방향을 따라서 얼마나 빠르고 쉽게 제어할 수 있는지가 차세대 스핀 메모리의 상용화 여부를 결정한다고 볼 수 있다. 그동안은 외부에서 스핀을 주입하여 나노 자석의 N극과 S극의 방향을 제어해왔다. 여기서 스핀이란 더 이상 자를 수 없는 자석의 기본 단위로, 같은 N극과 S극의 방향을 갖는 무수히 많은 스핀이 한데 모여 하나의 자석을 구성한다고 할 수 있다. 그러므로 외부에서 나노 자석에 많은 스핀을 주입하면 나노 자석의 N극과 S극의 방향을 제어할 수 있다. 하지만 외부의 스핀을 생성하고, 주입하는 효율이 좋지 않아 전력의 소모가 커 상용화에 큰 어려움이 따르고 있었다. 최근 나노 자석에 전류를 걸면 나노 자석 내부에 스핀이 형성된다는 것은 알려진 바 있으나, 이렇게 형성된 스핀의 거동을 분석하는 이론이 정립되지 않아 이들이 어떤 물리적 결과를 가져오는지 연구된 바는 없었다. KIST 김경환 박사는 자성체 내의 스핀 전도 현상을 기술하는 스핀 확산 방정식을 개발하여 이론 체계를 확립하였다. 그 결과, 전류에 의해 형성된 스핀이 외부로 발산될 때 외부에서 주입해주던 스핀과 부호만 반대이고 나머지는 같은 효과를 준다는 사실을 알게 되었다. 그러므로 외부의 스핀 주입이 없이도 나노 자석 스스로 N극과 S극의 방향을 제어할 수 있으며, 기존의 스핀 소자보다 최대 60%가량 전력 소모를 감소시킬 수 있음을 규명했다. 또한, 기존의 외부 스핀을 주입하기 위한 구조물이 필요 없게 되어 간단한 구조로 메모리를 개발할 수 있게 됐다. 김경환 박사는 “본 연구는 자성체 내에서의 스핀 전도 현상에 대한 학술적인 기초를 제공하였을 뿐 아니라, 새로운 패러다임을 통해 차세대 스핀 소자 구현에 가장 큰 걸림돌이었던 전력 소모, 생산 수율 등의 최적화 문제 해결에 큰 기여를 할 것으로 기대된다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업 및 한국연구재단 신진연구지원사업 등으로 수행되었으며, 이번 연구결과는 물리학 분야 저널인 ‘Physical Review Letters‘ (IF: 8.385) 최신 호에 게재되었다. * (논문명) Generalized Spin Drift-Diffusion Formalism in Presence of Spin-Orbit Interaction of Ferromagnets - (제 1저자, 교신저자) KIST 김경환 선임연구원 - (교신저자) 고려대학교 신소재공학부 이경진 교수 (現 KAIST 물리학과) <그림설명> [그림 1] 기존 외부 스핀 주입 방식과 자가생성 스핀 방식의 비교
차세대 반도체 산업의 핵심, 스핀트랜지스터 기술 세계 최초 개발!
- Science誌 게재, 미국, 유럽, 일본 등에 관련 특허 출원 中 - 우리원 스핀트로닉스연구단 장준현, 구현철 박사팀이 20여 년간 과학계와 산업계에 이론으로만 제시되어 왔던 전자의 스핀을 이용한 '스핀트랜지스터 소자'를 세계 최초로 개발하여 Science誌 에 9월 18일 발표하였다. ‘스핀트랜지스터 소자’ 개발은 KIST가 2002년부터 10년간의 전담연구단을 구성하여 장기적으로 지원한 “비전 21사업”의 결실이며, 기존 반도체가 전자의 전하(-)만을 이용할 수 있었던 데 비해, 전하와 동시에 스핀을 새롭게 이용해 전자소자를 구동하는 신기술이다. 스핀트랜지스터가 상용화시 기존 반도체의 한계를 극복한 비휘발성의 초고속, 초저전력의 전자소자 가능. 특히 컴퓨터를 부팅 과정 없이 바로 실행하고 메모리와 컴퓨터 CPU를 한 칩에 모두 담는 등, 정보산업 전반에 파급 효과가 엄청날 것으로 예상된다.
차세대 스핀(SPIN) 반도체 개발 청신호, 반데르발스 자성체 비밀 밝혔다
한국과학기술연구원(KIST, 원장 이병권)은 스핀융합연구단 장차운, 최준우, 류혜진 박사팀이 기초과학연구원(IBS, 원장 노도영) 강상관계물질연구단 (단장 노태원)박세영 박사팀과 공동연구를 통해 최근 차세대 반도체인 ‘스핀트로닉스’ 소재로 주목받고 있는 반데르발스 자성체(Fe3GeTe2, FGT)의 자성 특성을 제어하는 데 성공했다고 밝혔다. 반데르발스(van der Waals) 물질이란 층간 결합이 반데르발스 결합, 즉 약한 층간 결합으로 이루어진 층상구조 물질로, 2차원 물질인 그래핀을 포함하여 이황화몰리브덴 등 다양한 물질이 있다. 또한 다른 2차원 물질과의 조합을 통해 기존에 없던 새로운 소재로 바뀔 수 있어 그간 초전도성, 반도체성, 금속성, 절연성 등의 다양한 성질의 2차원 물질이 연구되어 왔다. 특히 2017년 새로운 2차원 반데르발스 자성체들이 발견되며 전 세계적으로 연구에 속도가 붙기 시작했다. 하지만 이러한 반데르발스 자성체는 퀴리온도, 보자력(Coercivity) 등의 자성 특성이 소자 응용에 적합하지 않아 스핀트로닉스 소재로서 한계에 봉착하고 있었다. KIST-IBS 공동연구진은 최근 발견되어 많은 연구들이 진행되고 있는 층상구조를 가진 반데르발스 자성체인 ‘FGT’의 특성을 효율적으로 제어할 수 있는 방법과 원리를 찾아냈다. 연구진은 실험적으로 전자의 개수를 조절하며 자성체를 관찰한 결과, 반데르발스 자성체(FGT)의 특성 변화가 생기는 것을 확인했다. 연구진은 그 원인이 제어한 전자의 개수로 자성체 내부에서 자화 방향에 따라 에너지가 바뀌는 현상(자기이방성(Magnetic anisotropy) 때문이라는 사실을 밝혔다. 이번 연구결과는 반데르발스 자성체(FGT)의 자성 특성 변화 원인을 규명함으로써, 향후 다양한 2차원 자성체의 자성 특성을 효과적으로 제어할 수 있는 가능성을 제시하게 됐다. 또한, 연구진에 따르면, 원자 한 층 두께에 자성을 구현할 수 있는 반데르발스 물질의 특성 제어 가능성이 높아진다면, 실리콘보다 100배 이상 빠르게 전자를 이동시키는 스핀트로닉스 소자의 개발도 한층 빨라지게 될 것으로 전망한다고 밝혔다. KIST 류혜진 박사는 “반데르발스 자성체 특성을 밝혀 스핀트로닉스 소자로 응용해 보고자 연구를 시작하게 됐다.”라고 말하면서 “향후 반데르발스 자성물질과 다른 반데르발스 물질들의 이종 접합구조를 이용해, 보다 다양한 특성의 반도체 신소재 개발이 가능해질 것으로 기대하고 있다.”라고 밝혔다. 이번 연구는 과학기술정보통신부(장관 최기영)의 지원으로 KIST 주요사업 및 창의형 융합연구사업, 해외협력기반조성-국가간협력기반조성사업의 지원으로 수행되었다. 연구 결과는 나노과학 분야의 국제 저널인 ‘Nano Letters’ (IF: 12.279, JCR 분야 상위 5.743%) 최신 호에 게재되었다. * (논문명) Controlling the Magnetic Anisotropy of the van der Waals Ferromagnet Fe3GeTe2 through Hole Doping - (제 1저자) 한국과학기술연구원 김동섭 인턴(現,University of Texas at Austin) - (제 1저자) 기초과학연구원 강상관계물질연구단(서울대학교 물리천문학과) 박세영 연구 조교수 - (교신저자) 한국과학기술연구원 장차운 선임연구원 - (교신저자) 한국과학기술연구원 최준우 선임연구원 - (교신저자) 한국과학기술연구원 류혜진 선임연구원 <그림설명> [ 연구결과 대표이미지 ] (위) 이차원 자성체를 이용한 차세대 스핀 반도체 소자 개념도 (아래) KIST-IBS 공동연구진이 규명한 반데르발스 자성체(FGT)의 자성 특성 제어법을 활용한 반도체 소자 모식도 [그림 1] FGT nano flake의 자화곡선(왼쪽)과 도핑에 따른 자기이방성과 자기모멘트(오른쪽) flake의 자성특성 (i) FGT nano flake의 두께에 따른 보자력 [그림 2] FGT nanoflake의 자성 특성 (a) FGT nano flake의 광학현미경 사진 (b) FGT nano flake의 두께 (c-h) FGT nano flake의 자성특성 (i) FGT nano flake의 두께에 따른 보자력
차세대 스핀(SPIN) 반도체 개발 청신호, 반데르발스 자성체 비밀 밝혔다
한국과학기술연구원(KIST, 원장 이병권)은 스핀융합연구단 장차운, 최준우, 류혜진 박사팀이 기초과학연구원(IBS, 원장 노도영) 강상관계물질연구단 (단장 노태원)박세영 박사팀과 공동연구를 통해 최근 차세대 반도체인 ‘스핀트로닉스’ 소재로 주목받고 있는 반데르발스 자성체(Fe3GeTe2, FGT)의 자성 특성을 제어하는 데 성공했다고 밝혔다. 반데르발스(van der Waals) 물질이란 층간 결합이 반데르발스 결합, 즉 약한 층간 결합으로 이루어진 층상구조 물질로, 2차원 물질인 그래핀을 포함하여 이황화몰리브덴 등 다양한 물질이 있다. 또한 다른 2차원 물질과의 조합을 통해 기존에 없던 새로운 소재로 바뀔 수 있어 그간 초전도성, 반도체성, 금속성, 절연성 등의 다양한 성질의 2차원 물질이 연구되어 왔다. 특히 2017년 새로운 2차원 반데르발스 자성체들이 발견되며 전 세계적으로 연구에 속도가 붙기 시작했다. 하지만 이러한 반데르발스 자성체는 퀴리온도, 보자력(Coercivity) 등의 자성 특성이 소자 응용에 적합하지 않아 스핀트로닉스 소재로서 한계에 봉착하고 있었다. KIST-IBS 공동연구진은 최근 발견되어 많은 연구들이 진행되고 있는 층상구조를 가진 반데르발스 자성체인 ‘FGT’의 특성을 효율적으로 제어할 수 있는 방법과 원리를 찾아냈다. 연구진은 실험적으로 전자의 개수를 조절하며 자성체를 관찰한 결과, 반데르발스 자성체(FGT)의 특성 변화가 생기는 것을 확인했다. 연구진은 그 원인이 제어한 전자의 개수로 자성체 내부에서 자화 방향에 따라 에너지가 바뀌는 현상(자기이방성(Magnetic anisotropy) 때문이라는 사실을 밝혔다. 이번 연구결과는 반데르발스 자성체(FGT)의 자성 특성 변화 원인을 규명함으로써, 향후 다양한 2차원 자성체의 자성 특성을 효과적으로 제어할 수 있는 가능성을 제시하게 됐다. 또한, 연구진에 따르면, 원자 한 층 두께에 자성을 구현할 수 있는 반데르발스 물질의 특성 제어 가능성이 높아진다면, 실리콘보다 100배 이상 빠르게 전자를 이동시키는 스핀트로닉스 소자의 개발도 한층 빨라지게 될 것으로 전망한다고 밝혔다. KIST 류혜진 박사는 “반데르발스 자성체 특성을 밝혀 스핀트로닉스 소자로 응용해 보고자 연구를 시작하게 됐다.”라고 말하면서 “향후 반데르발스 자성물질과 다른 반데르발스 물질들의 이종 접합구조를 이용해, 보다 다양한 특성의 반도체 신소재 개발이 가능해질 것으로 기대하고 있다.”라고 밝혔다. 이번 연구는 과학기술정보통신부(장관 최기영)의 지원으로 KIST 주요사업 및 창의형 융합연구사업, 해외협력기반조성-국가간협력기반조성사업의 지원으로 수행되었다. 연구 결과는 나노과학 분야의 국제 저널인 ‘Nano Letters’ (IF: 12.279, JCR 분야 상위 5.743%) 최신 호에 게재되었다. * (논문명) Controlling the Magnetic Anisotropy of the van der Waals Ferromagnet Fe3GeTe2 through Hole Doping - (제 1저자) 한국과학기술연구원 김동섭 인턴(現,University of Texas at Austin) - (제 1저자) 기초과학연구원 강상관계물질연구단(서울대학교 물리천문학과) 박세영 연구 조교수 - (교신저자) 한국과학기술연구원 장차운 선임연구원 - (교신저자) 한국과학기술연구원 최준우 선임연구원 - (교신저자) 한국과학기술연구원 류혜진 선임연구원 <그림설명> [ 연구결과 대표이미지 ] (위) 이차원 자성체를 이용한 차세대 스핀 반도체 소자 개념도 (아래) KIST-IBS 공동연구진이 규명한 반데르발스 자성체(FGT)의 자성 특성 제어법을 활용한 반도체 소자 모식도 [그림 1] FGT nano flake의 자화곡선(왼쪽)과 도핑에 따른 자기이방성과 자기모멘트(오른쪽) flake의 자성특성 (i) FGT nano flake의 두께에 따른 보자력 [그림 2] FGT nanoflake의 자성 특성 (a) FGT nano flake의 광학현미경 사진 (b) FGT nano flake의 두께 (c-h) FGT nano flake의 자성특성 (i) FGT nano flake의 두께에 따른 보자력
차세대 스핀(SPIN) 반도체 개발 청신호, 반데르발스 자성체 비밀 밝혔다
한국과학기술연구원(KIST, 원장 이병권)은 스핀융합연구단 장차운, 최준우, 류혜진 박사팀이 기초과학연구원(IBS, 원장 노도영) 강상관계물질연구단 (단장 노태원)박세영 박사팀과 공동연구를 통해 최근 차세대 반도체인 ‘스핀트로닉스’ 소재로 주목받고 있는 반데르발스 자성체(Fe3GeTe2, FGT)의 자성 특성을 제어하는 데 성공했다고 밝혔다. 반데르발스(van der Waals) 물질이란 층간 결합이 반데르발스 결합, 즉 약한 층간 결합으로 이루어진 층상구조 물질로, 2차원 물질인 그래핀을 포함하여 이황화몰리브덴 등 다양한 물질이 있다. 또한 다른 2차원 물질과의 조합을 통해 기존에 없던 새로운 소재로 바뀔 수 있어 그간 초전도성, 반도체성, 금속성, 절연성 등의 다양한 성질의 2차원 물질이 연구되어 왔다. 특히 2017년 새로운 2차원 반데르발스 자성체들이 발견되며 전 세계적으로 연구에 속도가 붙기 시작했다. 하지만 이러한 반데르발스 자성체는 퀴리온도, 보자력(Coercivity) 등의 자성 특성이 소자 응용에 적합하지 않아 스핀트로닉스 소재로서 한계에 봉착하고 있었다. KIST-IBS 공동연구진은 최근 발견되어 많은 연구들이 진행되고 있는 층상구조를 가진 반데르발스 자성체인 ‘FGT’의 특성을 효율적으로 제어할 수 있는 방법과 원리를 찾아냈다. 연구진은 실험적으로 전자의 개수를 조절하며 자성체를 관찰한 결과, 반데르발스 자성체(FGT)의 특성 변화가 생기는 것을 확인했다. 연구진은 그 원인이 제어한 전자의 개수로 자성체 내부에서 자화 방향에 따라 에너지가 바뀌는 현상(자기이방성(Magnetic anisotropy) 때문이라는 사실을 밝혔다. 이번 연구결과는 반데르발스 자성체(FGT)의 자성 특성 변화 원인을 규명함으로써, 향후 다양한 2차원 자성체의 자성 특성을 효과적으로 제어할 수 있는 가능성을 제시하게 됐다. 또한, 연구진에 따르면, 원자 한 층 두께에 자성을 구현할 수 있는 반데르발스 물질의 특성 제어 가능성이 높아진다면, 실리콘보다 100배 이상 빠르게 전자를 이동시키는 스핀트로닉스 소자의 개발도 한층 빨라지게 될 것으로 전망한다고 밝혔다. KIST 류혜진 박사는 “반데르발스 자성체 특성을 밝혀 스핀트로닉스 소자로 응용해 보고자 연구를 시작하게 됐다.”라고 말하면서 “향후 반데르발스 자성물질과 다른 반데르발스 물질들의 이종 접합구조를 이용해, 보다 다양한 특성의 반도체 신소재 개발이 가능해질 것으로 기대하고 있다.”라고 밝혔다. 이번 연구는 과학기술정보통신부(장관 최기영)의 지원으로 KIST 주요사업 및 창의형 융합연구사업, 해외협력기반조성-국가간협력기반조성사업의 지원으로 수행되었다. 연구 결과는 나노과학 분야의 국제 저널인 ‘Nano Letters’ (IF: 12.279, JCR 분야 상위 5.743%) 최신 호에 게재되었다. * (논문명) Controlling the Magnetic Anisotropy of the van der Waals Ferromagnet Fe3GeTe2 through Hole Doping - (제 1저자) 한국과학기술연구원 김동섭 인턴(現,University of Texas at Austin) - (제 1저자) 기초과학연구원 강상관계물질연구단(서울대학교 물리천문학과) 박세영 연구 조교수 - (교신저자) 한국과학기술연구원 장차운 선임연구원 - (교신저자) 한국과학기술연구원 최준우 선임연구원 - (교신저자) 한국과학기술연구원 류혜진 선임연구원 <그림설명> [ 연구결과 대표이미지 ] (위) 이차원 자성체를 이용한 차세대 스핀 반도체 소자 개념도 (아래) KIST-IBS 공동연구진이 규명한 반데르발스 자성체(FGT)의 자성 특성 제어법을 활용한 반도체 소자 모식도 [그림 1] FGT nano flake의 자화곡선(왼쪽)과 도핑에 따른 자기이방성과 자기모멘트(오른쪽) flake의 자성특성 (i) FGT nano flake의 두께에 따른 보자력 [그림 2] FGT nanoflake의 자성 특성 (a) FGT nano flake의 광학현미경 사진 (b) FGT nano flake의 두께 (c-h) FGT nano flake의 자성특성 (i) FGT nano flake의 두께에 따른 보자력