검색결과
게시물 키워드""에 대한 9087개의 검색결과를 찾았습니다.
종이 접듯 DNA를 접는 기술로 제작한 나노구조체, 세포 내 약물 전달 효과 높인다
- KIST-(Dana-Farber Cancer Institute) 공동연구진, DNA 접기 기술로 세포 내 침투 효과 높이는 형태의 나노구조체 제작 - 향후, 다양한 형태의 DNA 나노구조체로 약물전달체, 암 치료제 등에 활용 인류의 평균 수명이 늘어나면서 질병과 건강에 대한 관심이 높아지고 있다. ‘암’(Cancer) 질환과 관련하여 국내 성인 3명 중 1명이 암을 겪는다는 통계에서 볼 수 있듯, 암은 흔한 질병이 되었으며 치료를 위한 많은 연구가 이뤄지고 있다. 특히 나노구조체를 이용한 암 치료제가 암 세포에 효과적으로 전달되도록 하는 연구가 활발하게 진행되고 있다. 국내 연구진이 DNA를 접는 기술을 개발, 원하는 형태의 DNA 나노구조체를 제작하여 효과적인 세포 암 치료의 가능성을 주목받고 있다. 한국과학기술연구원(KIST, 원장 이병권) 의공학연구소 류주희 박사팀은 다나파버 암 연구소(Dana-Farber Cancer Institute) 윌리엄 시(William Shih) 교수 연구진과 공동연구를 통해 DNA 접기 기술을 개발하여 기존의 나노구조체 제조방법으로는 만들기 어려운 다양한 형태의 DNA 나노구조체를 제작했다. 또한 공동연구진은 이 기술로 정교하게 제작된 여러 형태의 나노구조체들의 세포 침투도를 분석했다고 밝혔다. 최근 학계의 연구결과에서는 나노구조체의 모양과 크기에 따라서 세포에 침투할 수 있는 성질이 크게 달라진다는 점이 대략적으로 밝혀졌으나, 이 나노구조체를 원하는 모양과 크기로 만들기가 매우 어려워서 정교한 연구를 수행하기는 어려운 실정이었다. 연구진이 개발한 DNA 접기 기술은 뼈대가 되는 하나의 긴 DNA에 상호보완적인 여러 개의 짧은 DNA들을 이용하여 종이접기 하듯이 접어서, 원하는 형태의 나노구조체를 만드는 것이다. DNA 가닥들이 결합을 통해 이중나선을 형성하면서 특정형태를 이루는데, 다양한 형태의 구조체를 수 나노미터(nm, 10억분의 1m) 크기로 정밀하게 만들 수 있다. 정교한 제어를 통해 만들어진 DNA 나노구조체는 뛰어난 생체 적합성 등으로 약물전달체로서 밝은 전망을 가지고 있다. 연구진은 11가지 종류의 서로 다른 크기와 모양을 가진 DNA 나노구조체를 제작하여 다양한 세포에 침투시키는 실험을 진행했다. 그 결과, 모든 세포에서 나노구조체의 조밀함*이 높을수록 세포로의 침투도가 높아지는 것을 확인하였다. 구조체의 내부가 채워져있는 조밀함이 높은 나노구조체(L-block, 그림 1 참조)의 경우 같은 무게의 대조군에 비해 15배 이상 향상된 세포 투과도를 나타내었다. *조밀함(compactness) : 부피에 대한 표면적의 비율 KIST 류주희 박사는 “이번 연구 결과로 DNA 접기 기술을 통해 세포 침투 능력이 우수한 나노구조체를 제작하는 것이 가능해졌다. 향후 이 기술로 DNA 나노구조체가 암 치료제와 같은 약물 전달을 위한 전달체로 활용되는데 큰 기여를 할 것으로 기대한다.”고 밝혔다. 다나파버 암연구소(Dana-Farber Cancer Institute)는 하버드 의대 부속병원으로 세계적으로 유명한 암전문 병원이다. KIST는 DFCI와 지속적으로 공동연구를 해왔으며, KIST의 약물전달기술을 DFCI의 임상적으로 유용한 치료타겟에 적용해보는 것을 목표로 공동연구 확대 발전을 위해 KIST-DFCI 현지 랩을 3 년째 운영하고 있다. 본 연구는 과학기술정보통신부(장관 유영민) 지원을 바탕으로 한 KIST 기관고유사업으로 수행되었으며, 연구결과는 ‘Nano Letters’ (IF : 12.712, JCR 분야 상위 3.45%) 최신호에 게재되었다. * (논문명) Modulation of cellular uptake of DNA origami through control over mass and shape - (제1저자) Maartje Bastings, Frances Anastassacos, Nandhini Ponnuswamy (Dana-Farber Cancer Institute, Post-doc 및 박사과정 학생) - (교신저자) 한국과학기술연구원 류주희 선임연구원 William Shih (Dana-Farber Cancer Institute, Professor) <그림설명> <그림 1> KIST-다나파버 암연구소 공동연구진이 개발한 DNA 접기 기술로 만들어진 다양한 크기와 모양의 DNA 나노구조체. (대조군 2개를 제외한 9개의 구조체만 표현) - 세포 내 투과에 영향을 미치는 나노구조체의 영향을 분석하기 위해 크기와 모양을 비교할 수 있도록 각각 다양한 형태의 나노구조체를 제작 ※ 네모박스는 각각의 나노구조체를 투과전자현미경으로 관찰한 실제 투과 이미지 - 11가지 나노구조체의 조밀함(Compactness, 부피에 대한 표면적의 비율), 비율(Aspectratio, 구조체의 가장 긴 길이/가장 짧은 길이, 원의 경우 1) 등을 계산해서 이러한 수치 중 어떤 수치가 세포내 침투도와 가장 큰 상관이 있는지 분석하였고, 그 결과 나노구조체의 조밀함(나노구조체의 내부가 비워져있느냐 or 채워져있느냐)이 세포 내 침투도와 가장 큰 상관이 있다는 것을 확인
종이접기 기술과 3D 프린팅 기술로 제작한 태양전지, 5배 이상 늘어나도 성능 유지
- 종이접기 활용한 3D프린팅 기술, 태양전지의 집적도 및 신축도 대폭 향상 - 전자소자 3차원 설계, 향후 3D 프린팅 의류 및 웨어러블 소자 적용 기대 한국과학기술연구원(KIST, 원장 이병권) 광전하이브리드연구센터 이필립 박사, 조만식 박사, 한양대학교 고민재 교수 공동 연구팀은 전도성 나노물질을 활용한 3D 프린팅 기술과 종이접기 기술을 융합하여, 집적도 및 신축도에 대한 자유로운 제어가 가능한 고신축성 페로브스카이트* 태양전지 모듈을 개발했다. *페로브스카이트 : 빛을 전기로 혹은 전기를 빛으로 바꾸는 특성이 있는 육방면체 구조의 반도체 물질 3D 프린팅 기술은 공간배치에 따라 성능이 극대화될 수 있는 태양전지를 포함한 에너지 소자 분야에 활용할 때 잠재력이 클 것으로 기대되고 있으나, 3D 프린팅 기술을 활용한 에너지 소자 모듈에 관한 연구는 많지 않은 실정이다. 3차원 설계가 가능한 에너지 소자 모듈 기술은 태양전지를 포함한 기존 에너지 소자의 성능 및 적용 분야의 큰 확장이 가능하다는 측면에서 많은 연구가 필요하다. 기존에 신축성 소자 제작을 위해서는 주로 섬-다리(island-bridge) 구조를 활용했다. 하지만, 이 구조에서는 신축성을 높이게 되면 에너지 소자의 집적도가 저하되고, 집적도를 높이게 되면 신축성이 저하되는 문제가 있었다. 공동 연구진은 3D 프린터 공정과 종이접기 기술**(오리가미, 키리가미 구조)을 활용하여, 신축성을 가지는 태양전지 연결부를 3차원상에 효율적으로 배치했다. 이를 통해 만들어진 페로브스카이트 태양전지 모듈은 100%에 가까운 태양전지 집적도를 달성하여 태양전지 소자로 기판을 가득 채울 수 있었다. 또한, 초기 상태 대비 5배까지 늘어나도 문제가 없었다. 제작된 페로브스카이트 태양전지 모듈은 5배로 늘이는, 1000번의 반복적인 인장 시험에서도 초기의 성능을 유지하였다. **오리가미(Origami) : 한 장의 종이를 접어 개서 다양한 형태의 모양을 만드는 종이접기 **키리가미(Kirigami) : 접은 종이를 절단하여 여러 가지 모양을 만드는 예술 이는 기존에 발표된 반도체 공정 혹은 2차원 기반 인쇄공정으로 제작된 기존 신축성 소자와 비교하여, 월등한 집적도 및 시스템 신축성을 동시에 달성한 결과이다. 공동 연구팀이 도입한 접근법을 활용하게 되면 3차원 배치에 따라 집적도 및 신축도를 한계 없이 얼마든지 늘리는 것이 가능하다. 해당 고 신축성·전도성 플랫폼 기술은 태양전지 외에도 에너지 소자, 센서, 액츄에이터 등 다양한 전자 소자에 적용이 용이하며, 3차원 설계에 따른 다양한 소자의 성능 향상을 기대할 수 있다. 또한, 의류, 패션 분야 적용에 강점을 갖는 3D 프린팅 기술을 복합적으로 활용하게 될 경우, 웨어러블 소자와 같은 생활 밀착형, 고부가 가치 사업 분야로의 확장이 가능하다. KIST 이필립 박사는 “이번 성과는 3D 프린팅 기술과 에너지 소자와의 융합을 통해 기존 2차원 기반의 소자가 갖는 한계를 극복하는 접근법을 제시한 것으로, 앞으로 태양전지 유연화 및 경량화, 3차원 설계기술 제어, 그리고 형상기억 고분자 기술과의 융합을 통해 시너지 효과를 낼 수 있을 것”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 한국연구재단 기후변화대응기술개발사업, 글로벌프런티어사업, 멀티스케일 에너지시스템연구단 및 미래소재디스커버리사업의 지원으로 수행되었다. 이번 연구결과는 소재 분야 국제 저널인 ‘ACS Nano’ (IF: 13.903, JCR 분야 상위 5.74%) 최신호에 게재되었다. * (논문명) 3D Printer-Based Encapsulated Origami Electronics for Extreme System Stretchability and High Areal Coverage - (제1저자) 한국과학기술연구원/고려대학교 조만식 박사(現, 공군) - (교신저자) 한국과학기술연구원 이필립 선임연구원 - (교신저자) 한양대학교 고민재 교수 <그림설명> [그림 1] (a) 3D 프린팅을 활용한 고 신축성 태양전지 모듈 제작 공정 (b) 제작된 고 신축성 페로브스카이트 태양전지 모듈 (좌) 및 반복 인장 특성 (우) (좌측) 페로브스카이트 태양전지 모듈 인장 사진 (우측) 1000회의 반복적인 400% 시스템 인장에 따른 성능 변화 그래프
종이접기 기술과 3D 프린팅 기술로 제작한 태양전지, 5배 이상 늘어나도 성능 유지
- 종이접기 활용한 3D프린팅 기술, 태양전지의 집적도 및 신축도 대폭 향상 - 전자소자 3차원 설계, 향후 3D 프린팅 의류 및 웨어러블 소자 적용 기대 한국과학기술연구원(KIST, 원장 이병권) 광전하이브리드연구센터 이필립 박사, 조만식 박사, 한양대학교 고민재 교수 공동 연구팀은 전도성 나노물질을 활용한 3D 프린팅 기술과 종이접기 기술을 융합하여, 집적도 및 신축도에 대한 자유로운 제어가 가능한 고신축성 페로브스카이트* 태양전지 모듈을 개발했다. *페로브스카이트 : 빛을 전기로 혹은 전기를 빛으로 바꾸는 특성이 있는 육방면체 구조의 반도체 물질 3D 프린팅 기술은 공간배치에 따라 성능이 극대화될 수 있는 태양전지를 포함한 에너지 소자 분야에 활용할 때 잠재력이 클 것으로 기대되고 있으나, 3D 프린팅 기술을 활용한 에너지 소자 모듈에 관한 연구는 많지 않은 실정이다. 3차원 설계가 가능한 에너지 소자 모듈 기술은 태양전지를 포함한 기존 에너지 소자의 성능 및 적용 분야의 큰 확장이 가능하다는 측면에서 많은 연구가 필요하다. 기존에 신축성 소자 제작을 위해서는 주로 섬-다리(island-bridge) 구조를 활용했다. 하지만, 이 구조에서는 신축성을 높이게 되면 에너지 소자의 집적도가 저하되고, 집적도를 높이게 되면 신축성이 저하되는 문제가 있었다. 공동 연구진은 3D 프린터 공정과 종이접기 기술**(오리가미, 키리가미 구조)을 활용하여, 신축성을 가지는 태양전지 연결부를 3차원상에 효율적으로 배치했다. 이를 통해 만들어진 페로브스카이트 태양전지 모듈은 100%에 가까운 태양전지 집적도를 달성하여 태양전지 소자로 기판을 가득 채울 수 있었다. 또한, 초기 상태 대비 5배까지 늘어나도 문제가 없었다. 제작된 페로브스카이트 태양전지 모듈은 5배로 늘이는, 1000번의 반복적인 인장 시험에서도 초기의 성능을 유지하였다. **오리가미(Origami) : 한 장의 종이를 접어 개서 다양한 형태의 모양을 만드는 종이접기 **키리가미(Kirigami) : 접은 종이를 절단하여 여러 가지 모양을 만드는 예술 이는 기존에 발표된 반도체 공정 혹은 2차원 기반 인쇄공정으로 제작된 기존 신축성 소자와 비교하여, 월등한 집적도 및 시스템 신축성을 동시에 달성한 결과이다. 공동 연구팀이 도입한 접근법을 활용하게 되면 3차원 배치에 따라 집적도 및 신축도를 한계 없이 얼마든지 늘리는 것이 가능하다. 해당 고 신축성·전도성 플랫폼 기술은 태양전지 외에도 에너지 소자, 센서, 액츄에이터 등 다양한 전자 소자에 적용이 용이하며, 3차원 설계에 따른 다양한 소자의 성능 향상을 기대할 수 있다. 또한, 의류, 패션 분야 적용에 강점을 갖는 3D 프린팅 기술을 복합적으로 활용하게 될 경우, 웨어러블 소자와 같은 생활 밀착형, 고부가 가치 사업 분야로의 확장이 가능하다. KIST 이필립 박사는 “이번 성과는 3D 프린팅 기술과 에너지 소자와의 융합을 통해 기존 2차원 기반의 소자가 갖는 한계를 극복하는 접근법을 제시한 것으로, 앞으로 태양전지 유연화 및 경량화, 3차원 설계기술 제어, 그리고 형상기억 고분자 기술과의 융합을 통해 시너지 효과를 낼 수 있을 것”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 한국연구재단 기후변화대응기술개발사업, 글로벌프런티어사업, 멀티스케일 에너지시스템연구단 및 미래소재디스커버리사업의 지원으로 수행되었다. 이번 연구결과는 소재 분야 국제 저널인 ‘ACS Nano’ (IF: 13.903, JCR 분야 상위 5.74%) 최신호에 게재되었다. * (논문명) 3D Printer-Based Encapsulated Origami Electronics for Extreme System Stretchability and High Areal Coverage - (제1저자) 한국과학기술연구원/고려대학교 조만식 박사(現, 공군) - (교신저자) 한국과학기술연구원 이필립 선임연구원 - (교신저자) 한양대학교 고민재 교수 <그림설명> [그림 1] (a) 3D 프린팅을 활용한 고 신축성 태양전지 모듈 제작 공정 (b) 제작된 고 신축성 페로브스카이트 태양전지 모듈 (좌) 및 반복 인장 특성 (우) (좌측) 페로브스카이트 태양전지 모듈 인장 사진 (우측) 1000회의 반복적인 400% 시스템 인장에 따른 성능 변화 그래프
종이접기 기술과 3D 프린팅 기술로 제작한 태양전지, 5배 이상 늘어나도 성능 유지
- 종이접기 활용한 3D프린팅 기술, 태양전지의 집적도 및 신축도 대폭 향상 - 전자소자 3차원 설계, 향후 3D 프린팅 의류 및 웨어러블 소자 적용 기대 한국과학기술연구원(KIST, 원장 이병권) 광전하이브리드연구센터 이필립 박사, 조만식 박사, 한양대학교 고민재 교수 공동 연구팀은 전도성 나노물질을 활용한 3D 프린팅 기술과 종이접기 기술을 융합하여, 집적도 및 신축도에 대한 자유로운 제어가 가능한 고신축성 페로브스카이트* 태양전지 모듈을 개발했다. *페로브스카이트 : 빛을 전기로 혹은 전기를 빛으로 바꾸는 특성이 있는 육방면체 구조의 반도체 물질 3D 프린팅 기술은 공간배치에 따라 성능이 극대화될 수 있는 태양전지를 포함한 에너지 소자 분야에 활용할 때 잠재력이 클 것으로 기대되고 있으나, 3D 프린팅 기술을 활용한 에너지 소자 모듈에 관한 연구는 많지 않은 실정이다. 3차원 설계가 가능한 에너지 소자 모듈 기술은 태양전지를 포함한 기존 에너지 소자의 성능 및 적용 분야의 큰 확장이 가능하다는 측면에서 많은 연구가 필요하다. 기존에 신축성 소자 제작을 위해서는 주로 섬-다리(island-bridge) 구조를 활용했다. 하지만, 이 구조에서는 신축성을 높이게 되면 에너지 소자의 집적도가 저하되고, 집적도를 높이게 되면 신축성이 저하되는 문제가 있었다. 공동 연구진은 3D 프린터 공정과 종이접기 기술**(오리가미, 키리가미 구조)을 활용하여, 신축성을 가지는 태양전지 연결부를 3차원상에 효율적으로 배치했다. 이를 통해 만들어진 페로브스카이트 태양전지 모듈은 100%에 가까운 태양전지 집적도를 달성하여 태양전지 소자로 기판을 가득 채울 수 있었다. 또한, 초기 상태 대비 5배까지 늘어나도 문제가 없었다. 제작된 페로브스카이트 태양전지 모듈은 5배로 늘이는, 1000번의 반복적인 인장 시험에서도 초기의 성능을 유지하였다. **오리가미(Origami) : 한 장의 종이를 접어 개서 다양한 형태의 모양을 만드는 종이접기 **키리가미(Kirigami) : 접은 종이를 절단하여 여러 가지 모양을 만드는 예술 이는 기존에 발표된 반도체 공정 혹은 2차원 기반 인쇄공정으로 제작된 기존 신축성 소자와 비교하여, 월등한 집적도 및 시스템 신축성을 동시에 달성한 결과이다. 공동 연구팀이 도입한 접근법을 활용하게 되면 3차원 배치에 따라 집적도 및 신축도를 한계 없이 얼마든지 늘리는 것이 가능하다. 해당 고 신축성·전도성 플랫폼 기술은 태양전지 외에도 에너지 소자, 센서, 액츄에이터 등 다양한 전자 소자에 적용이 용이하며, 3차원 설계에 따른 다양한 소자의 성능 향상을 기대할 수 있다. 또한, 의류, 패션 분야 적용에 강점을 갖는 3D 프린팅 기술을 복합적으로 활용하게 될 경우, 웨어러블 소자와 같은 생활 밀착형, 고부가 가치 사업 분야로의 확장이 가능하다. KIST 이필립 박사는 “이번 성과는 3D 프린팅 기술과 에너지 소자와의 융합을 통해 기존 2차원 기반의 소자가 갖는 한계를 극복하는 접근법을 제시한 것으로, 앞으로 태양전지 유연화 및 경량화, 3차원 설계기술 제어, 그리고 형상기억 고분자 기술과의 융합을 통해 시너지 효과를 낼 수 있을 것”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 한국연구재단 기후변화대응기술개발사업, 글로벌프런티어사업, 멀티스케일 에너지시스템연구단 및 미래소재디스커버리사업의 지원으로 수행되었다. 이번 연구결과는 소재 분야 국제 저널인 ‘ACS Nano’ (IF: 13.903, JCR 분야 상위 5.74%) 최신호에 게재되었다. * (논문명) 3D Printer-Based Encapsulated Origami Electronics for Extreme System Stretchability and High Areal Coverage - (제1저자) 한국과학기술연구원/고려대학교 조만식 박사(現, 공군) - (교신저자) 한국과학기술연구원 이필립 선임연구원 - (교신저자) 한양대학교 고민재 교수 <그림설명> [그림 1] (a) 3D 프린팅을 활용한 고 신축성 태양전지 모듈 제작 공정 (b) 제작된 고 신축성 페로브스카이트 태양전지 모듈 (좌) 및 반복 인장 특성 (우) (좌측) 페로브스카이트 태양전지 모듈 인장 사진 (우측) 1000회의 반복적인 400% 시스템 인장에 따른 성능 변화 그래프
종이접기 기술과 3D 프린팅 기술로 제작한 태양전지, 5배 이상 늘어나도 성능 유지
- 종이접기 활용한 3D프린팅 기술, 태양전지의 집적도 및 신축도 대폭 향상 - 전자소자 3차원 설계, 향후 3D 프린팅 의류 및 웨어러블 소자 적용 기대 한국과학기술연구원(KIST, 원장 이병권) 광전하이브리드연구센터 이필립 박사, 조만식 박사, 한양대학교 고민재 교수 공동 연구팀은 전도성 나노물질을 활용한 3D 프린팅 기술과 종이접기 기술을 융합하여, 집적도 및 신축도에 대한 자유로운 제어가 가능한 고신축성 페로브스카이트* 태양전지 모듈을 개발했다. *페로브스카이트 : 빛을 전기로 혹은 전기를 빛으로 바꾸는 특성이 있는 육방면체 구조의 반도체 물질 3D 프린팅 기술은 공간배치에 따라 성능이 극대화될 수 있는 태양전지를 포함한 에너지 소자 분야에 활용할 때 잠재력이 클 것으로 기대되고 있으나, 3D 프린팅 기술을 활용한 에너지 소자 모듈에 관한 연구는 많지 않은 실정이다. 3차원 설계가 가능한 에너지 소자 모듈 기술은 태양전지를 포함한 기존 에너지 소자의 성능 및 적용 분야의 큰 확장이 가능하다는 측면에서 많은 연구가 필요하다. 기존에 신축성 소자 제작을 위해서는 주로 섬-다리(island-bridge) 구조를 활용했다. 하지만, 이 구조에서는 신축성을 높이게 되면 에너지 소자의 집적도가 저하되고, 집적도를 높이게 되면 신축성이 저하되는 문제가 있었다. 공동 연구진은 3D 프린터 공정과 종이접기 기술**(오리가미, 키리가미 구조)을 활용하여, 신축성을 가지는 태양전지 연결부를 3차원상에 효율적으로 배치했다. 이를 통해 만들어진 페로브스카이트 태양전지 모듈은 100%에 가까운 태양전지 집적도를 달성하여 태양전지 소자로 기판을 가득 채울 수 있었다. 또한, 초기 상태 대비 5배까지 늘어나도 문제가 없었다. 제작된 페로브스카이트 태양전지 모듈은 5배로 늘이는, 1000번의 반복적인 인장 시험에서도 초기의 성능을 유지하였다. **오리가미(Origami) : 한 장의 종이를 접어 개서 다양한 형태의 모양을 만드는 종이접기 **키리가미(Kirigami) : 접은 종이를 절단하여 여러 가지 모양을 만드는 예술 이는 기존에 발표된 반도체 공정 혹은 2차원 기반 인쇄공정으로 제작된 기존 신축성 소자와 비교하여, 월등한 집적도 및 시스템 신축성을 동시에 달성한 결과이다. 공동 연구팀이 도입한 접근법을 활용하게 되면 3차원 배치에 따라 집적도 및 신축도를 한계 없이 얼마든지 늘리는 것이 가능하다. 해당 고 신축성·전도성 플랫폼 기술은 태양전지 외에도 에너지 소자, 센서, 액츄에이터 등 다양한 전자 소자에 적용이 용이하며, 3차원 설계에 따른 다양한 소자의 성능 향상을 기대할 수 있다. 또한, 의류, 패션 분야 적용에 강점을 갖는 3D 프린팅 기술을 복합적으로 활용하게 될 경우, 웨어러블 소자와 같은 생활 밀착형, 고부가 가치 사업 분야로의 확장이 가능하다. KIST 이필립 박사는 “이번 성과는 3D 프린팅 기술과 에너지 소자와의 융합을 통해 기존 2차원 기반의 소자가 갖는 한계를 극복하는 접근법을 제시한 것으로, 앞으로 태양전지 유연화 및 경량화, 3차원 설계기술 제어, 그리고 형상기억 고분자 기술과의 융합을 통해 시너지 효과를 낼 수 있을 것”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 한국연구재단 기후변화대응기술개발사업, 글로벌프런티어사업, 멀티스케일 에너지시스템연구단 및 미래소재디스커버리사업의 지원으로 수행되었다. 이번 연구결과는 소재 분야 국제 저널인 ‘ACS Nano’ (IF: 13.903, JCR 분야 상위 5.74%) 최신호에 게재되었다. * (논문명) 3D Printer-Based Encapsulated Origami Electronics for Extreme System Stretchability and High Areal Coverage - (제1저자) 한국과학기술연구원/고려대학교 조만식 박사(現, 공군) - (교신저자) 한국과학기술연구원 이필립 선임연구원 - (교신저자) 한양대학교 고민재 교수 <그림설명> [그림 1] (a) 3D 프린팅을 활용한 고 신축성 태양전지 모듈 제작 공정 (b) 제작된 고 신축성 페로브스카이트 태양전지 모듈 (좌) 및 반복 인장 특성 (우) (좌측) 페로브스카이트 태양전지 모듈 인장 사진 (우측) 1000회의 반복적인 400% 시스템 인장에 따른 성능 변화 그래프
종이접기 기술과 3D 프린팅 기술로 제작한 태양전지, 5배 이상 늘어나도 성능 유지
- 종이접기 활용한 3D프린팅 기술, 태양전지의 집적도 및 신축도 대폭 향상 - 전자소자 3차원 설계, 향후 3D 프린팅 의류 및 웨어러블 소자 적용 기대 한국과학기술연구원(KIST, 원장 이병권) 광전하이브리드연구센터 이필립 박사, 조만식 박사, 한양대학교 고민재 교수 공동 연구팀은 전도성 나노물질을 활용한 3D 프린팅 기술과 종이접기 기술을 융합하여, 집적도 및 신축도에 대한 자유로운 제어가 가능한 고신축성 페로브스카이트* 태양전지 모듈을 개발했다. *페로브스카이트 : 빛을 전기로 혹은 전기를 빛으로 바꾸는 특성이 있는 육방면체 구조의 반도체 물질 3D 프린팅 기술은 공간배치에 따라 성능이 극대화될 수 있는 태양전지를 포함한 에너지 소자 분야에 활용할 때 잠재력이 클 것으로 기대되고 있으나, 3D 프린팅 기술을 활용한 에너지 소자 모듈에 관한 연구는 많지 않은 실정이다. 3차원 설계가 가능한 에너지 소자 모듈 기술은 태양전지를 포함한 기존 에너지 소자의 성능 및 적용 분야의 큰 확장이 가능하다는 측면에서 많은 연구가 필요하다. 기존에 신축성 소자 제작을 위해서는 주로 섬-다리(island-bridge) 구조를 활용했다. 하지만, 이 구조에서는 신축성을 높이게 되면 에너지 소자의 집적도가 저하되고, 집적도를 높이게 되면 신축성이 저하되는 문제가 있었다. 공동 연구진은 3D 프린터 공정과 종이접기 기술**(오리가미, 키리가미 구조)을 활용하여, 신축성을 가지는 태양전지 연결부를 3차원상에 효율적으로 배치했다. 이를 통해 만들어진 페로브스카이트 태양전지 모듈은 100%에 가까운 태양전지 집적도를 달성하여 태양전지 소자로 기판을 가득 채울 수 있었다. 또한, 초기 상태 대비 5배까지 늘어나도 문제가 없었다. 제작된 페로브스카이트 태양전지 모듈은 5배로 늘이는, 1000번의 반복적인 인장 시험에서도 초기의 성능을 유지하였다. **오리가미(Origami) : 한 장의 종이를 접어 개서 다양한 형태의 모양을 만드는 종이접기 **키리가미(Kirigami) : 접은 종이를 절단하여 여러 가지 모양을 만드는 예술 이는 기존에 발표된 반도체 공정 혹은 2차원 기반 인쇄공정으로 제작된 기존 신축성 소자와 비교하여, 월등한 집적도 및 시스템 신축성을 동시에 달성한 결과이다. 공동 연구팀이 도입한 접근법을 활용하게 되면 3차원 배치에 따라 집적도 및 신축도를 한계 없이 얼마든지 늘리는 것이 가능하다. 해당 고 신축성·전도성 플랫폼 기술은 태양전지 외에도 에너지 소자, 센서, 액츄에이터 등 다양한 전자 소자에 적용이 용이하며, 3차원 설계에 따른 다양한 소자의 성능 향상을 기대할 수 있다. 또한, 의류, 패션 분야 적용에 강점을 갖는 3D 프린팅 기술을 복합적으로 활용하게 될 경우, 웨어러블 소자와 같은 생활 밀착형, 고부가 가치 사업 분야로의 확장이 가능하다. KIST 이필립 박사는 “이번 성과는 3D 프린팅 기술과 에너지 소자와의 융합을 통해 기존 2차원 기반의 소자가 갖는 한계를 극복하는 접근법을 제시한 것으로, 앞으로 태양전지 유연화 및 경량화, 3차원 설계기술 제어, 그리고 형상기억 고분자 기술과의 융합을 통해 시너지 효과를 낼 수 있을 것”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 한국연구재단 기후변화대응기술개발사업, 글로벌프런티어사업, 멀티스케일 에너지시스템연구단 및 미래소재디스커버리사업의 지원으로 수행되었다. 이번 연구결과는 소재 분야 국제 저널인 ‘ACS Nano’ (IF: 13.903, JCR 분야 상위 5.74%) 최신호에 게재되었다. * (논문명) 3D Printer-Based Encapsulated Origami Electronics for Extreme System Stretchability and High Areal Coverage - (제1저자) 한국과학기술연구원/고려대학교 조만식 박사(現, 공군) - (교신저자) 한국과학기술연구원 이필립 선임연구원 - (교신저자) 한양대학교 고민재 교수 <그림설명> [그림 1] (a) 3D 프린팅을 활용한 고 신축성 태양전지 모듈 제작 공정 (b) 제작된 고 신축성 페로브스카이트 태양전지 모듈 (좌) 및 반복 인장 특성 (우) (좌측) 페로브스카이트 태양전지 모듈 인장 사진 (우측) 1000회의 반복적인 400% 시스템 인장에 따른 성능 변화 그래프
종이접기 기술과 3D 프린팅 기술로 제작한 태양전지, 5배 이상 늘어나도 성능 유지
- 종이접기 활용한 3D프린팅 기술, 태양전지의 집적도 및 신축도 대폭 향상 - 전자소자 3차원 설계, 향후 3D 프린팅 의류 및 웨어러블 소자 적용 기대 한국과학기술연구원(KIST, 원장 이병권) 광전하이브리드연구센터 이필립 박사, 조만식 박사, 한양대학교 고민재 교수 공동 연구팀은 전도성 나노물질을 활용한 3D 프린팅 기술과 종이접기 기술을 융합하여, 집적도 및 신축도에 대한 자유로운 제어가 가능한 고신축성 페로브스카이트* 태양전지 모듈을 개발했다. *페로브스카이트 : 빛을 전기로 혹은 전기를 빛으로 바꾸는 특성이 있는 육방면체 구조의 반도체 물질 3D 프린팅 기술은 공간배치에 따라 성능이 극대화될 수 있는 태양전지를 포함한 에너지 소자 분야에 활용할 때 잠재력이 클 것으로 기대되고 있으나, 3D 프린팅 기술을 활용한 에너지 소자 모듈에 관한 연구는 많지 않은 실정이다. 3차원 설계가 가능한 에너지 소자 모듈 기술은 태양전지를 포함한 기존 에너지 소자의 성능 및 적용 분야의 큰 확장이 가능하다는 측면에서 많은 연구가 필요하다. 기존에 신축성 소자 제작을 위해서는 주로 섬-다리(island-bridge) 구조를 활용했다. 하지만, 이 구조에서는 신축성을 높이게 되면 에너지 소자의 집적도가 저하되고, 집적도를 높이게 되면 신축성이 저하되는 문제가 있었다. 공동 연구진은 3D 프린터 공정과 종이접기 기술**(오리가미, 키리가미 구조)을 활용하여, 신축성을 가지는 태양전지 연결부를 3차원상에 효율적으로 배치했다. 이를 통해 만들어진 페로브스카이트 태양전지 모듈은 100%에 가까운 태양전지 집적도를 달성하여 태양전지 소자로 기판을 가득 채울 수 있었다. 또한, 초기 상태 대비 5배까지 늘어나도 문제가 없었다. 제작된 페로브스카이트 태양전지 모듈은 5배로 늘이는, 1000번의 반복적인 인장 시험에서도 초기의 성능을 유지하였다. **오리가미(Origami) : 한 장의 종이를 접어 개서 다양한 형태의 모양을 만드는 종이접기 **키리가미(Kirigami) : 접은 종이를 절단하여 여러 가지 모양을 만드는 예술 이는 기존에 발표된 반도체 공정 혹은 2차원 기반 인쇄공정으로 제작된 기존 신축성 소자와 비교하여, 월등한 집적도 및 시스템 신축성을 동시에 달성한 결과이다. 공동 연구팀이 도입한 접근법을 활용하게 되면 3차원 배치에 따라 집적도 및 신축도를 한계 없이 얼마든지 늘리는 것이 가능하다. 해당 고 신축성·전도성 플랫폼 기술은 태양전지 외에도 에너지 소자, 센서, 액츄에이터 등 다양한 전자 소자에 적용이 용이하며, 3차원 설계에 따른 다양한 소자의 성능 향상을 기대할 수 있다. 또한, 의류, 패션 분야 적용에 강점을 갖는 3D 프린팅 기술을 복합적으로 활용하게 될 경우, 웨어러블 소자와 같은 생활 밀착형, 고부가 가치 사업 분야로의 확장이 가능하다. KIST 이필립 박사는 “이번 성과는 3D 프린팅 기술과 에너지 소자와의 융합을 통해 기존 2차원 기반의 소자가 갖는 한계를 극복하는 접근법을 제시한 것으로, 앞으로 태양전지 유연화 및 경량화, 3차원 설계기술 제어, 그리고 형상기억 고분자 기술과의 융합을 통해 시너지 효과를 낼 수 있을 것”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 한국연구재단 기후변화대응기술개발사업, 글로벌프런티어사업, 멀티스케일 에너지시스템연구단 및 미래소재디스커버리사업의 지원으로 수행되었다. 이번 연구결과는 소재 분야 국제 저널인 ‘ACS Nano’ (IF: 13.903, JCR 분야 상위 5.74%) 최신호에 게재되었다. * (논문명) 3D Printer-Based Encapsulated Origami Electronics for Extreme System Stretchability and High Areal Coverage - (제1저자) 한국과학기술연구원/고려대학교 조만식 박사(現, 공군) - (교신저자) 한국과학기술연구원 이필립 선임연구원 - (교신저자) 한양대학교 고민재 교수 <그림설명> [그림 1] (a) 3D 프린팅을 활용한 고 신축성 태양전지 모듈 제작 공정 (b) 제작된 고 신축성 페로브스카이트 태양전지 모듈 (좌) 및 반복 인장 특성 (우) (좌측) 페로브스카이트 태양전지 모듈 인장 사진 (우측) 1000회의 반복적인 400% 시스템 인장에 따른 성능 변화 그래프
종이접기 기술과 3D 프린팅 기술로 제작한 태양전지, 5배 이상 늘어나도 성능 유지
- 종이접기 활용한 3D프린팅 기술, 태양전지의 집적도 및 신축도 대폭 향상 - 전자소자 3차원 설계, 향후 3D 프린팅 의류 및 웨어러블 소자 적용 기대 한국과학기술연구원(KIST, 원장 이병권) 광전하이브리드연구센터 이필립 박사, 조만식 박사, 한양대학교 고민재 교수 공동 연구팀은 전도성 나노물질을 활용한 3D 프린팅 기술과 종이접기 기술을 융합하여, 집적도 및 신축도에 대한 자유로운 제어가 가능한 고신축성 페로브스카이트* 태양전지 모듈을 개발했다. *페로브스카이트 : 빛을 전기로 혹은 전기를 빛으로 바꾸는 특성이 있는 육방면체 구조의 반도체 물질 3D 프린팅 기술은 공간배치에 따라 성능이 극대화될 수 있는 태양전지를 포함한 에너지 소자 분야에 활용할 때 잠재력이 클 것으로 기대되고 있으나, 3D 프린팅 기술을 활용한 에너지 소자 모듈에 관한 연구는 많지 않은 실정이다. 3차원 설계가 가능한 에너지 소자 모듈 기술은 태양전지를 포함한 기존 에너지 소자의 성능 및 적용 분야의 큰 확장이 가능하다는 측면에서 많은 연구가 필요하다. 기존에 신축성 소자 제작을 위해서는 주로 섬-다리(island-bridge) 구조를 활용했다. 하지만, 이 구조에서는 신축성을 높이게 되면 에너지 소자의 집적도가 저하되고, 집적도를 높이게 되면 신축성이 저하되는 문제가 있었다. 공동 연구진은 3D 프린터 공정과 종이접기 기술**(오리가미, 키리가미 구조)을 활용하여, 신축성을 가지는 태양전지 연결부를 3차원상에 효율적으로 배치했다. 이를 통해 만들어진 페로브스카이트 태양전지 모듈은 100%에 가까운 태양전지 집적도를 달성하여 태양전지 소자로 기판을 가득 채울 수 있었다. 또한, 초기 상태 대비 5배까지 늘어나도 문제가 없었다. 제작된 페로브스카이트 태양전지 모듈은 5배로 늘이는, 1000번의 반복적인 인장 시험에서도 초기의 성능을 유지하였다. **오리가미(Origami) : 한 장의 종이를 접어 개서 다양한 형태의 모양을 만드는 종이접기 **키리가미(Kirigami) : 접은 종이를 절단하여 여러 가지 모양을 만드는 예술 이는 기존에 발표된 반도체 공정 혹은 2차원 기반 인쇄공정으로 제작된 기존 신축성 소자와 비교하여, 월등한 집적도 및 시스템 신축성을 동시에 달성한 결과이다. 공동 연구팀이 도입한 접근법을 활용하게 되면 3차원 배치에 따라 집적도 및 신축도를 한계 없이 얼마든지 늘리는 것이 가능하다. 해당 고 신축성·전도성 플랫폼 기술은 태양전지 외에도 에너지 소자, 센서, 액츄에이터 등 다양한 전자 소자에 적용이 용이하며, 3차원 설계에 따른 다양한 소자의 성능 향상을 기대할 수 있다. 또한, 의류, 패션 분야 적용에 강점을 갖는 3D 프린팅 기술을 복합적으로 활용하게 될 경우, 웨어러블 소자와 같은 생활 밀착형, 고부가 가치 사업 분야로의 확장이 가능하다. KIST 이필립 박사는 “이번 성과는 3D 프린팅 기술과 에너지 소자와의 융합을 통해 기존 2차원 기반의 소자가 갖는 한계를 극복하는 접근법을 제시한 것으로, 앞으로 태양전지 유연화 및 경량화, 3차원 설계기술 제어, 그리고 형상기억 고분자 기술과의 융합을 통해 시너지 효과를 낼 수 있을 것”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 한국연구재단 기후변화대응기술개발사업, 글로벌프런티어사업, 멀티스케일 에너지시스템연구단 및 미래소재디스커버리사업의 지원으로 수행되었다. 이번 연구결과는 소재 분야 국제 저널인 ‘ACS Nano’ (IF: 13.903, JCR 분야 상위 5.74%) 최신호에 게재되었다. * (논문명) 3D Printer-Based Encapsulated Origami Electronics for Extreme System Stretchability and High Areal Coverage - (제1저자) 한국과학기술연구원/고려대학교 조만식 박사(現, 공군) - (교신저자) 한국과학기술연구원 이필립 선임연구원 - (교신저자) 한양대학교 고민재 교수 <그림설명> [그림 1] (a) 3D 프린팅을 활용한 고 신축성 태양전지 모듈 제작 공정 (b) 제작된 고 신축성 페로브스카이트 태양전지 모듈 (좌) 및 반복 인장 특성 (우) (좌측) 페로브스카이트 태양전지 모듈 인장 사진 (우측) 1000회의 반복적인 400% 시스템 인장에 따른 성능 변화 그래프
종이접기 기술과 3D 프린팅 기술로 제작한 태양전지, 5배 이상 늘어나도 성능 유지
- 종이접기 활용한 3D프린팅 기술, 태양전지의 집적도 및 신축도 대폭 향상 - 전자소자 3차원 설계, 향후 3D 프린팅 의류 및 웨어러블 소자 적용 기대 한국과학기술연구원(KIST, 원장 이병권) 광전하이브리드연구센터 이필립 박사, 조만식 박사, 한양대학교 고민재 교수 공동 연구팀은 전도성 나노물질을 활용한 3D 프린팅 기술과 종이접기 기술을 융합하여, 집적도 및 신축도에 대한 자유로운 제어가 가능한 고신축성 페로브스카이트* 태양전지 모듈을 개발했다. *페로브스카이트 : 빛을 전기로 혹은 전기를 빛으로 바꾸는 특성이 있는 육방면체 구조의 반도체 물질 3D 프린팅 기술은 공간배치에 따라 성능이 극대화될 수 있는 태양전지를 포함한 에너지 소자 분야에 활용할 때 잠재력이 클 것으로 기대되고 있으나, 3D 프린팅 기술을 활용한 에너지 소자 모듈에 관한 연구는 많지 않은 실정이다. 3차원 설계가 가능한 에너지 소자 모듈 기술은 태양전지를 포함한 기존 에너지 소자의 성능 및 적용 분야의 큰 확장이 가능하다는 측면에서 많은 연구가 필요하다. 기존에 신축성 소자 제작을 위해서는 주로 섬-다리(island-bridge) 구조를 활용했다. 하지만, 이 구조에서는 신축성을 높이게 되면 에너지 소자의 집적도가 저하되고, 집적도를 높이게 되면 신축성이 저하되는 문제가 있었다. 공동 연구진은 3D 프린터 공정과 종이접기 기술**(오리가미, 키리가미 구조)을 활용하여, 신축성을 가지는 태양전지 연결부를 3차원상에 효율적으로 배치했다. 이를 통해 만들어진 페로브스카이트 태양전지 모듈은 100%에 가까운 태양전지 집적도를 달성하여 태양전지 소자로 기판을 가득 채울 수 있었다. 또한, 초기 상태 대비 5배까지 늘어나도 문제가 없었다. 제작된 페로브스카이트 태양전지 모듈은 5배로 늘이는, 1000번의 반복적인 인장 시험에서도 초기의 성능을 유지하였다. **오리가미(Origami) : 한 장의 종이를 접어 개서 다양한 형태의 모양을 만드는 종이접기 **키리가미(Kirigami) : 접은 종이를 절단하여 여러 가지 모양을 만드는 예술 이는 기존에 발표된 반도체 공정 혹은 2차원 기반 인쇄공정으로 제작된 기존 신축성 소자와 비교하여, 월등한 집적도 및 시스템 신축성을 동시에 달성한 결과이다. 공동 연구팀이 도입한 접근법을 활용하게 되면 3차원 배치에 따라 집적도 및 신축도를 한계 없이 얼마든지 늘리는 것이 가능하다. 해당 고 신축성·전도성 플랫폼 기술은 태양전지 외에도 에너지 소자, 센서, 액츄에이터 등 다양한 전자 소자에 적용이 용이하며, 3차원 설계에 따른 다양한 소자의 성능 향상을 기대할 수 있다. 또한, 의류, 패션 분야 적용에 강점을 갖는 3D 프린팅 기술을 복합적으로 활용하게 될 경우, 웨어러블 소자와 같은 생활 밀착형, 고부가 가치 사업 분야로의 확장이 가능하다. KIST 이필립 박사는 “이번 성과는 3D 프린팅 기술과 에너지 소자와의 융합을 통해 기존 2차원 기반의 소자가 갖는 한계를 극복하는 접근법을 제시한 것으로, 앞으로 태양전지 유연화 및 경량화, 3차원 설계기술 제어, 그리고 형상기억 고분자 기술과의 융합을 통해 시너지 효과를 낼 수 있을 것”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 한국연구재단 기후변화대응기술개발사업, 글로벌프런티어사업, 멀티스케일 에너지시스템연구단 및 미래소재디스커버리사업의 지원으로 수행되었다. 이번 연구결과는 소재 분야 국제 저널인 ‘ACS Nano’ (IF: 13.903, JCR 분야 상위 5.74%) 최신호에 게재되었다. * (논문명) 3D Printer-Based Encapsulated Origami Electronics for Extreme System Stretchability and High Areal Coverage - (제1저자) 한국과학기술연구원/고려대학교 조만식 박사(現, 공군) - (교신저자) 한국과학기술연구원 이필립 선임연구원 - (교신저자) 한양대학교 고민재 교수 <그림설명> [그림 1] (a) 3D 프린팅을 활용한 고 신축성 태양전지 모듈 제작 공정 (b) 제작된 고 신축성 페로브스카이트 태양전지 모듈 (좌) 및 반복 인장 특성 (우) (좌측) 페로브스카이트 태양전지 모듈 인장 사진 (우측) 1000회의 반복적인 400% 시스템 인장에 따른 성능 변화 그래프
종이접기 기술과 3D 프린팅 기술로 제작한 태양전지, 5배 이상 늘어나도 성능 유지
- 종이접기 활용한 3D프린팅 기술, 태양전지의 집적도 및 신축도 대폭 향상 - 전자소자 3차원 설계, 향후 3D 프린팅 의류 및 웨어러블 소자 적용 기대 한국과학기술연구원(KIST, 원장 이병권) 광전하이브리드연구센터 이필립 박사, 조만식 박사, 한양대학교 고민재 교수 공동 연구팀은 전도성 나노물질을 활용한 3D 프린팅 기술과 종이접기 기술을 융합하여, 집적도 및 신축도에 대한 자유로운 제어가 가능한 고신축성 페로브스카이트* 태양전지 모듈을 개발했다. *페로브스카이트 : 빛을 전기로 혹은 전기를 빛으로 바꾸는 특성이 있는 육방면체 구조의 반도체 물질 3D 프린팅 기술은 공간배치에 따라 성능이 극대화될 수 있는 태양전지를 포함한 에너지 소자 분야에 활용할 때 잠재력이 클 것으로 기대되고 있으나, 3D 프린팅 기술을 활용한 에너지 소자 모듈에 관한 연구는 많지 않은 실정이다. 3차원 설계가 가능한 에너지 소자 모듈 기술은 태양전지를 포함한 기존 에너지 소자의 성능 및 적용 분야의 큰 확장이 가능하다는 측면에서 많은 연구가 필요하다. 기존에 신축성 소자 제작을 위해서는 주로 섬-다리(island-bridge) 구조를 활용했다. 하지만, 이 구조에서는 신축성을 높이게 되면 에너지 소자의 집적도가 저하되고, 집적도를 높이게 되면 신축성이 저하되는 문제가 있었다. 공동 연구진은 3D 프린터 공정과 종이접기 기술**(오리가미, 키리가미 구조)을 활용하여, 신축성을 가지는 태양전지 연결부를 3차원상에 효율적으로 배치했다. 이를 통해 만들어진 페로브스카이트 태양전지 모듈은 100%에 가까운 태양전지 집적도를 달성하여 태양전지 소자로 기판을 가득 채울 수 있었다. 또한, 초기 상태 대비 5배까지 늘어나도 문제가 없었다. 제작된 페로브스카이트 태양전지 모듈은 5배로 늘이는, 1000번의 반복적인 인장 시험에서도 초기의 성능을 유지하였다. **오리가미(Origami) : 한 장의 종이를 접어 개서 다양한 형태의 모양을 만드는 종이접기 **키리가미(Kirigami) : 접은 종이를 절단하여 여러 가지 모양을 만드는 예술 이는 기존에 발표된 반도체 공정 혹은 2차원 기반 인쇄공정으로 제작된 기존 신축성 소자와 비교하여, 월등한 집적도 및 시스템 신축성을 동시에 달성한 결과이다. 공동 연구팀이 도입한 접근법을 활용하게 되면 3차원 배치에 따라 집적도 및 신축도를 한계 없이 얼마든지 늘리는 것이 가능하다. 해당 고 신축성·전도성 플랫폼 기술은 태양전지 외에도 에너지 소자, 센서, 액츄에이터 등 다양한 전자 소자에 적용이 용이하며, 3차원 설계에 따른 다양한 소자의 성능 향상을 기대할 수 있다. 또한, 의류, 패션 분야 적용에 강점을 갖는 3D 프린팅 기술을 복합적으로 활용하게 될 경우, 웨어러블 소자와 같은 생활 밀착형, 고부가 가치 사업 분야로의 확장이 가능하다. KIST 이필립 박사는 “이번 성과는 3D 프린팅 기술과 에너지 소자와의 융합을 통해 기존 2차원 기반의 소자가 갖는 한계를 극복하는 접근법을 제시한 것으로, 앞으로 태양전지 유연화 및 경량화, 3차원 설계기술 제어, 그리고 형상기억 고분자 기술과의 융합을 통해 시너지 효과를 낼 수 있을 것”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 한국연구재단 기후변화대응기술개발사업, 글로벌프런티어사업, 멀티스케일 에너지시스템연구단 및 미래소재디스커버리사업의 지원으로 수행되었다. 이번 연구결과는 소재 분야 국제 저널인 ‘ACS Nano’ (IF: 13.903, JCR 분야 상위 5.74%) 최신호에 게재되었다. * (논문명) 3D Printer-Based Encapsulated Origami Electronics for Extreme System Stretchability and High Areal Coverage - (제1저자) 한국과학기술연구원/고려대학교 조만식 박사(現, 공군) - (교신저자) 한국과학기술연구원 이필립 선임연구원 - (교신저자) 한양대학교 고민재 교수 <그림설명> [그림 1] (a) 3D 프린팅을 활용한 고 신축성 태양전지 모듈 제작 공정 (b) 제작된 고 신축성 페로브스카이트 태양전지 모듈 (좌) 및 반복 인장 특성 (우) (좌측) 페로브스카이트 태양전지 모듈 인장 사진 (우측) 1000회의 반복적인 400% 시스템 인장에 따른 성능 변화 그래프