검색결과
게시물 키워드""에 대한 9093개의 검색결과를 찾았습니다.
저농도 CO2→CO 직접 전환기술 개발
- 공장 배기가스 수준의 저농도 이산화탄소로도 높은 효율로 전환 가능 - 전기화학적 이산화탄소 전환기술 경제성 확보 공장 배기가스의 저농도 이산화탄소(CO2)를 포집해 산업현장에서 주요한 원료로 사용되는 일산화탄소(CO)를 만들 수 있는 기술을 국내 연구진이 개발했다. 한국과학기술연구원(KIST, 원장 윤석진)은 청정에너지연구센터 원다혜·이웅 박사팀과 서울대학교(서울대, 총장 오세정) 황윤정 교수 연구팀이 공장 배기가스 수준의 저농도 이산화탄소를 반응물로 사용해 높은 반응효율로 일산화탄소를 생산할 수 있도록 하는 촉매 및 공정 기술을 개발했다고 밝혔다. 이산화탄소를 유용한 화합물로 전환하는 기술은 탄소를 줄이는 핵심기술의 하나로 활발히 연구되고 있다. 하지만, 이 기술은 고순도의 이산화탄소 가스를 반응 원료로 공급해야 한다는 걸림돌이 존재했다. 이산화탄소는 화학적으로 굉장히 안정적인 물질이어서 다른 물질로의 전환이 어려워 고순도의 이산화탄소를 공급해 반응 속도와 효율을 높여야 하기 때문이다. 실제 산업현장에서 나오는 배기가스는 질소, 산소, 질소산화물 등과 함께 이산화탄소가 10%가량 포함되어 있는데, 지금까지는 이러한 저농도의 배기가스로는 충분한 효율을 확보할 수 없었다. 이산화탄소를 전기화학적 방법으로 일산화탄소로 전환하는 과정에서 일산화탄소 생성효율이 높은 은(Ag) 촉매가 주로 사용되고 있다. 상용화된 은 촉매를 사용해 고순도(99.99%) 이산화탄소를 전환하면 생성물의 95%가 일산화탄소로 생성되는데, 저농도(10%) 이산화탄소를 사용한 경우에는 40%의 일산화탄소와 60%의 수소가 발생한다. KIST 연구진은 수소 발생을 줄여 일산화탄소 발생효율을 높일 수 있도록 니켈 단원자 촉매를 개발했다. 그동안 철, 니켈 등 일반 금속은 귀금속보다는 반응성이 좋지 않아 이산화탄소 전환 촉매로 만들 수 없었는데, 단일 원자 형태로 만들면 효율이 높아진다는 최근 연구결과에 착안해 연구팀은 새로운 촉매를 개발했다. 또한, 이산화탄소를 물에 녹인 후 반응시키던 기존 방식과는 다르게 기체 상태 그대로 전환 반응을 일으킬 수 있도록 최적의 구동 기술까지 개발했다. 개발된 니켈 단원자 촉매는 배기가스 수준의 저농도(10%) 이산화탄소로도 결과물의 93%를 일산화탄소로 생성할 수 있었는데, 귀금속이 아닌 니켈 및 탄소 등 저가 재료로 촉매를 제작해 경제성도 확보할 수 있게 되었다. KIST 원다혜 박사는 “이번에 개발한 촉매 및 구동 기술은 저농도 이산화탄소를 활용하는 다양한 전기화학적 전환 시스템에 응용될 수 있다.”라며 “전기화학적 이산화탄소 전환 기술의 경제성을 확보하기 위해 배기가스를 별도의 정제과정 없이 직접 활용하기 위한 다양한 기술도 함께 개발 중이다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 임혜숙) 지원을 받아 KIST 주요사업 및 유용물질 생산을 위한 Carbon to X 기술개발사업(단장 정광덕)을 통해 수행되었으며 연구결과는 에너지 분야 국제학술지 ‘ACS Energy Letters’ (IF:23.101, JCR 분야 상위 3.302%) 최신 호에 게재되었다. * (논문명) Electrocatalytic Reduction of Low Concentrations of CO2 Gas in a Membrane Electrode Assembly Electrolyzer - (제 1저자) 한국과학기술연구원/고려대학교 김동진 학생연구원 - (교신저자) 한국과학기술연구원 이웅 선임연구원 - (교신저자) 서울대학교 황윤정 교수 - (교신저자) 한국과학기술연구원 원다혜 선임연구원 그림 설명 이산화탄소 농도에 따른 니켈 단원자 촉매와 상용 은 촉매의 성능 비교
저농도 CO2→CO 직접 전환기술 개발
- 공장 배기가스 수준의 저농도 이산화탄소로도 높은 효율로 전환 가능 - 전기화학적 이산화탄소 전환기술 경제성 확보 공장 배기가스의 저농도 이산화탄소(CO2)를 포집해 산업현장에서 주요한 원료로 사용되는 일산화탄소(CO)를 만들 수 있는 기술을 국내 연구진이 개발했다. 한국과학기술연구원(KIST, 원장 윤석진)은 청정에너지연구센터 원다혜·이웅 박사팀과 서울대학교(서울대, 총장 오세정) 황윤정 교수 연구팀이 공장 배기가스 수준의 저농도 이산화탄소를 반응물로 사용해 높은 반응효율로 일산화탄소를 생산할 수 있도록 하는 촉매 및 공정 기술을 개발했다고 밝혔다. 이산화탄소를 유용한 화합물로 전환하는 기술은 탄소를 줄이는 핵심기술의 하나로 활발히 연구되고 있다. 하지만, 이 기술은 고순도의 이산화탄소 가스를 반응 원료로 공급해야 한다는 걸림돌이 존재했다. 이산화탄소는 화학적으로 굉장히 안정적인 물질이어서 다른 물질로의 전환이 어려워 고순도의 이산화탄소를 공급해 반응 속도와 효율을 높여야 하기 때문이다. 실제 산업현장에서 나오는 배기가스는 질소, 산소, 질소산화물 등과 함께 이산화탄소가 10%가량 포함되어 있는데, 지금까지는 이러한 저농도의 배기가스로는 충분한 효율을 확보할 수 없었다. 이산화탄소를 전기화학적 방법으로 일산화탄소로 전환하는 과정에서 일산화탄소 생성효율이 높은 은(Ag) 촉매가 주로 사용되고 있다. 상용화된 은 촉매를 사용해 고순도(99.99%) 이산화탄소를 전환하면 생성물의 95%가 일산화탄소로 생성되는데, 저농도(10%) 이산화탄소를 사용한 경우에는 40%의 일산화탄소와 60%의 수소가 발생한다. KIST 연구진은 수소 발생을 줄여 일산화탄소 발생효율을 높일 수 있도록 니켈 단원자 촉매를 개발했다. 그동안 철, 니켈 등 일반 금속은 귀금속보다는 반응성이 좋지 않아 이산화탄소 전환 촉매로 만들 수 없었는데, 단일 원자 형태로 만들면 효율이 높아진다는 최근 연구결과에 착안해 연구팀은 새로운 촉매를 개발했다. 또한, 이산화탄소를 물에 녹인 후 반응시키던 기존 방식과는 다르게 기체 상태 그대로 전환 반응을 일으킬 수 있도록 최적의 구동 기술까지 개발했다. 개발된 니켈 단원자 촉매는 배기가스 수준의 저농도(10%) 이산화탄소로도 결과물의 93%를 일산화탄소로 생성할 수 있었는데, 귀금속이 아닌 니켈 및 탄소 등 저가 재료로 촉매를 제작해 경제성도 확보할 수 있게 되었다. KIST 원다혜 박사는 “이번에 개발한 촉매 및 구동 기술은 저농도 이산화탄소를 활용하는 다양한 전기화학적 전환 시스템에 응용될 수 있다.”라며 “전기화학적 이산화탄소 전환 기술의 경제성을 확보하기 위해 배기가스를 별도의 정제과정 없이 직접 활용하기 위한 다양한 기술도 함께 개발 중이다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 임혜숙) 지원을 받아 KIST 주요사업 및 유용물질 생산을 위한 Carbon to X 기술개발사업(단장 정광덕)을 통해 수행되었으며 연구결과는 에너지 분야 국제학술지 ‘ACS Energy Letters’ (IF:23.101, JCR 분야 상위 3.302%) 최신 호에 게재되었다. * (논문명) Electrocatalytic Reduction of Low Concentrations of CO2 Gas in a Membrane Electrode Assembly Electrolyzer - (제 1저자) 한국과학기술연구원/고려대학교 김동진 학생연구원 - (교신저자) 한국과학기술연구원 이웅 선임연구원 - (교신저자) 서울대학교 황윤정 교수 - (교신저자) 한국과학기술연구원 원다혜 선임연구원 그림 설명 이산화탄소 농도에 따른 니켈 단원자 촉매와 상용 은 촉매의 성능 비교
저농도 CO2→CO 직접 전환기술 개발
- 공장 배기가스 수준의 저농도 이산화탄소로도 높은 효율로 전환 가능 - 전기화학적 이산화탄소 전환기술 경제성 확보 공장 배기가스의 저농도 이산화탄소(CO2)를 포집해 산업현장에서 주요한 원료로 사용되는 일산화탄소(CO)를 만들 수 있는 기술을 국내 연구진이 개발했다. 한국과학기술연구원(KIST, 원장 윤석진)은 청정에너지연구센터 원다혜·이웅 박사팀과 서울대학교(서울대, 총장 오세정) 황윤정 교수 연구팀이 공장 배기가스 수준의 저농도 이산화탄소를 반응물로 사용해 높은 반응효율로 일산화탄소를 생산할 수 있도록 하는 촉매 및 공정 기술을 개발했다고 밝혔다. 이산화탄소를 유용한 화합물로 전환하는 기술은 탄소를 줄이는 핵심기술의 하나로 활발히 연구되고 있다. 하지만, 이 기술은 고순도의 이산화탄소 가스를 반응 원료로 공급해야 한다는 걸림돌이 존재했다. 이산화탄소는 화학적으로 굉장히 안정적인 물질이어서 다른 물질로의 전환이 어려워 고순도의 이산화탄소를 공급해 반응 속도와 효율을 높여야 하기 때문이다. 실제 산업현장에서 나오는 배기가스는 질소, 산소, 질소산화물 등과 함께 이산화탄소가 10%가량 포함되어 있는데, 지금까지는 이러한 저농도의 배기가스로는 충분한 효율을 확보할 수 없었다. 이산화탄소를 전기화학적 방법으로 일산화탄소로 전환하는 과정에서 일산화탄소 생성효율이 높은 은(Ag) 촉매가 주로 사용되고 있다. 상용화된 은 촉매를 사용해 고순도(99.99%) 이산화탄소를 전환하면 생성물의 95%가 일산화탄소로 생성되는데, 저농도(10%) 이산화탄소를 사용한 경우에는 40%의 일산화탄소와 60%의 수소가 발생한다. KIST 연구진은 수소 발생을 줄여 일산화탄소 발생효율을 높일 수 있도록 니켈 단원자 촉매를 개발했다. 그동안 철, 니켈 등 일반 금속은 귀금속보다는 반응성이 좋지 않아 이산화탄소 전환 촉매로 만들 수 없었는데, 단일 원자 형태로 만들면 효율이 높아진다는 최근 연구결과에 착안해 연구팀은 새로운 촉매를 개발했다. 또한, 이산화탄소를 물에 녹인 후 반응시키던 기존 방식과는 다르게 기체 상태 그대로 전환 반응을 일으킬 수 있도록 최적의 구동 기술까지 개발했다. 개발된 니켈 단원자 촉매는 배기가스 수준의 저농도(10%) 이산화탄소로도 결과물의 93%를 일산화탄소로 생성할 수 있었는데, 귀금속이 아닌 니켈 및 탄소 등 저가 재료로 촉매를 제작해 경제성도 확보할 수 있게 되었다. KIST 원다혜 박사는 “이번에 개발한 촉매 및 구동 기술은 저농도 이산화탄소를 활용하는 다양한 전기화학적 전환 시스템에 응용될 수 있다.”라며 “전기화학적 이산화탄소 전환 기술의 경제성을 확보하기 위해 배기가스를 별도의 정제과정 없이 직접 활용하기 위한 다양한 기술도 함께 개발 중이다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 임혜숙) 지원을 받아 KIST 주요사업 및 유용물질 생산을 위한 Carbon to X 기술개발사업(단장 정광덕)을 통해 수행되었으며 연구결과는 에너지 분야 국제학술지 ‘ACS Energy Letters’ (IF:23.101, JCR 분야 상위 3.302%) 최신 호에 게재되었다. * (논문명) Electrocatalytic Reduction of Low Concentrations of CO2 Gas in a Membrane Electrode Assembly Electrolyzer - (제 1저자) 한국과학기술연구원/고려대학교 김동진 학생연구원 - (교신저자) 한국과학기술연구원 이웅 선임연구원 - (교신저자) 서울대학교 황윤정 교수 - (교신저자) 한국과학기술연구원 원다혜 선임연구원 그림 설명 이산화탄소 농도에 따른 니켈 단원자 촉매와 상용 은 촉매의 성능 비교
저농도 CO2→CO 직접 전환기술 개발
- 공장 배기가스 수준의 저농도 이산화탄소로도 높은 효율로 전환 가능 - 전기화학적 이산화탄소 전환기술 경제성 확보 공장 배기가스의 저농도 이산화탄소(CO2)를 포집해 산업현장에서 주요한 원료로 사용되는 일산화탄소(CO)를 만들 수 있는 기술을 국내 연구진이 개발했다. 한국과학기술연구원(KIST, 원장 윤석진)은 청정에너지연구센터 원다혜·이웅 박사팀과 서울대학교(서울대, 총장 오세정) 황윤정 교수 연구팀이 공장 배기가스 수준의 저농도 이산화탄소를 반응물로 사용해 높은 반응효율로 일산화탄소를 생산할 수 있도록 하는 촉매 및 공정 기술을 개발했다고 밝혔다. 이산화탄소를 유용한 화합물로 전환하는 기술은 탄소를 줄이는 핵심기술의 하나로 활발히 연구되고 있다. 하지만, 이 기술은 고순도의 이산화탄소 가스를 반응 원료로 공급해야 한다는 걸림돌이 존재했다. 이산화탄소는 화학적으로 굉장히 안정적인 물질이어서 다른 물질로의 전환이 어려워 고순도의 이산화탄소를 공급해 반응 속도와 효율을 높여야 하기 때문이다. 실제 산업현장에서 나오는 배기가스는 질소, 산소, 질소산화물 등과 함께 이산화탄소가 10%가량 포함되어 있는데, 지금까지는 이러한 저농도의 배기가스로는 충분한 효율을 확보할 수 없었다. 이산화탄소를 전기화학적 방법으로 일산화탄소로 전환하는 과정에서 일산화탄소 생성효율이 높은 은(Ag) 촉매가 주로 사용되고 있다. 상용화된 은 촉매를 사용해 고순도(99.99%) 이산화탄소를 전환하면 생성물의 95%가 일산화탄소로 생성되는데, 저농도(10%) 이산화탄소를 사용한 경우에는 40%의 일산화탄소와 60%의 수소가 발생한다. KIST 연구진은 수소 발생을 줄여 일산화탄소 발생효율을 높일 수 있도록 니켈 단원자 촉매를 개발했다. 그동안 철, 니켈 등 일반 금속은 귀금속보다는 반응성이 좋지 않아 이산화탄소 전환 촉매로 만들 수 없었는데, 단일 원자 형태로 만들면 효율이 높아진다는 최근 연구결과에 착안해 연구팀은 새로운 촉매를 개발했다. 또한, 이산화탄소를 물에 녹인 후 반응시키던 기존 방식과는 다르게 기체 상태 그대로 전환 반응을 일으킬 수 있도록 최적의 구동 기술까지 개발했다. 개발된 니켈 단원자 촉매는 배기가스 수준의 저농도(10%) 이산화탄소로도 결과물의 93%를 일산화탄소로 생성할 수 있었는데, 귀금속이 아닌 니켈 및 탄소 등 저가 재료로 촉매를 제작해 경제성도 확보할 수 있게 되었다. KIST 원다혜 박사는 “이번에 개발한 촉매 및 구동 기술은 저농도 이산화탄소를 활용하는 다양한 전기화학적 전환 시스템에 응용될 수 있다.”라며 “전기화학적 이산화탄소 전환 기술의 경제성을 확보하기 위해 배기가스를 별도의 정제과정 없이 직접 활용하기 위한 다양한 기술도 함께 개발 중이다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 임혜숙) 지원을 받아 KIST 주요사업 및 유용물질 생산을 위한 Carbon to X 기술개발사업(단장 정광덕)을 통해 수행되었으며 연구결과는 에너지 분야 국제학술지 ‘ACS Energy Letters’ (IF:23.101, JCR 분야 상위 3.302%) 최신 호에 게재되었다. * (논문명) Electrocatalytic Reduction of Low Concentrations of CO2 Gas in a Membrane Electrode Assembly Electrolyzer - (제 1저자) 한국과학기술연구원/고려대학교 김동진 학생연구원 - (교신저자) 한국과학기술연구원 이웅 선임연구원 - (교신저자) 서울대학교 황윤정 교수 - (교신저자) 한국과학기술연구원 원다혜 선임연구원 그림 설명 이산화탄소 농도에 따른 니켈 단원자 촉매와 상용 은 촉매의 성능 비교
저농도 CO2→CO 직접 전환기술 개발
- 공장 배기가스 수준의 저농도 이산화탄소로도 높은 효율로 전환 가능 - 전기화학적 이산화탄소 전환기술 경제성 확보 공장 배기가스의 저농도 이산화탄소(CO2)를 포집해 산업현장에서 주요한 원료로 사용되는 일산화탄소(CO)를 만들 수 있는 기술을 국내 연구진이 개발했다. 한국과학기술연구원(KIST, 원장 윤석진)은 청정에너지연구센터 원다혜·이웅 박사팀과 서울대학교(서울대, 총장 오세정) 황윤정 교수 연구팀이 공장 배기가스 수준의 저농도 이산화탄소를 반응물로 사용해 높은 반응효율로 일산화탄소를 생산할 수 있도록 하는 촉매 및 공정 기술을 개발했다고 밝혔다. 이산화탄소를 유용한 화합물로 전환하는 기술은 탄소를 줄이는 핵심기술의 하나로 활발히 연구되고 있다. 하지만, 이 기술은 고순도의 이산화탄소 가스를 반응 원료로 공급해야 한다는 걸림돌이 존재했다. 이산화탄소는 화학적으로 굉장히 안정적인 물질이어서 다른 물질로의 전환이 어려워 고순도의 이산화탄소를 공급해 반응 속도와 효율을 높여야 하기 때문이다. 실제 산업현장에서 나오는 배기가스는 질소, 산소, 질소산화물 등과 함께 이산화탄소가 10%가량 포함되어 있는데, 지금까지는 이러한 저농도의 배기가스로는 충분한 효율을 확보할 수 없었다. 이산화탄소를 전기화학적 방법으로 일산화탄소로 전환하는 과정에서 일산화탄소 생성효율이 높은 은(Ag) 촉매가 주로 사용되고 있다. 상용화된 은 촉매를 사용해 고순도(99.99%) 이산화탄소를 전환하면 생성물의 95%가 일산화탄소로 생성되는데, 저농도(10%) 이산화탄소를 사용한 경우에는 40%의 일산화탄소와 60%의 수소가 발생한다. KIST 연구진은 수소 발생을 줄여 일산화탄소 발생효율을 높일 수 있도록 니켈 단원자 촉매를 개발했다. 그동안 철, 니켈 등 일반 금속은 귀금속보다는 반응성이 좋지 않아 이산화탄소 전환 촉매로 만들 수 없었는데, 단일 원자 형태로 만들면 효율이 높아진다는 최근 연구결과에 착안해 연구팀은 새로운 촉매를 개발했다. 또한, 이산화탄소를 물에 녹인 후 반응시키던 기존 방식과는 다르게 기체 상태 그대로 전환 반응을 일으킬 수 있도록 최적의 구동 기술까지 개발했다. 개발된 니켈 단원자 촉매는 배기가스 수준의 저농도(10%) 이산화탄소로도 결과물의 93%를 일산화탄소로 생성할 수 있었는데, 귀금속이 아닌 니켈 및 탄소 등 저가 재료로 촉매를 제작해 경제성도 확보할 수 있게 되었다. KIST 원다혜 박사는 “이번에 개발한 촉매 및 구동 기술은 저농도 이산화탄소를 활용하는 다양한 전기화학적 전환 시스템에 응용될 수 있다.”라며 “전기화학적 이산화탄소 전환 기술의 경제성을 확보하기 위해 배기가스를 별도의 정제과정 없이 직접 활용하기 위한 다양한 기술도 함께 개발 중이다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 임혜숙) 지원을 받아 KIST 주요사업 및 유용물질 생산을 위한 Carbon to X 기술개발사업(단장 정광덕)을 통해 수행되었으며 연구결과는 에너지 분야 국제학술지 ‘ACS Energy Letters’ (IF:23.101, JCR 분야 상위 3.302%) 최신 호에 게재되었다. * (논문명) Electrocatalytic Reduction of Low Concentrations of CO2 Gas in a Membrane Electrode Assembly Electrolyzer - (제 1저자) 한국과학기술연구원/고려대학교 김동진 학생연구원 - (교신저자) 한국과학기술연구원 이웅 선임연구원 - (교신저자) 서울대학교 황윤정 교수 - (교신저자) 한국과학기술연구원 원다혜 선임연구원 그림 설명 이산화탄소 농도에 따른 니켈 단원자 촉매와 상용 은 촉매의 성능 비교
저농도 CO2→CO 직접 전환기술 개발
- 공장 배기가스 수준의 저농도 이산화탄소로도 높은 효율로 전환 가능 - 전기화학적 이산화탄소 전환기술 경제성 확보 공장 배기가스의 저농도 이산화탄소(CO2)를 포집해 산업현장에서 주요한 원료로 사용되는 일산화탄소(CO)를 만들 수 있는 기술을 국내 연구진이 개발했다. 한국과학기술연구원(KIST, 원장 윤석진)은 청정에너지연구센터 원다혜·이웅 박사팀과 서울대학교(서울대, 총장 오세정) 황윤정 교수 연구팀이 공장 배기가스 수준의 저농도 이산화탄소를 반응물로 사용해 높은 반응효율로 일산화탄소를 생산할 수 있도록 하는 촉매 및 공정 기술을 개발했다고 밝혔다. 이산화탄소를 유용한 화합물로 전환하는 기술은 탄소를 줄이는 핵심기술의 하나로 활발히 연구되고 있다. 하지만, 이 기술은 고순도의 이산화탄소 가스를 반응 원료로 공급해야 한다는 걸림돌이 존재했다. 이산화탄소는 화학적으로 굉장히 안정적인 물질이어서 다른 물질로의 전환이 어려워 고순도의 이산화탄소를 공급해 반응 속도와 효율을 높여야 하기 때문이다. 실제 산업현장에서 나오는 배기가스는 질소, 산소, 질소산화물 등과 함께 이산화탄소가 10%가량 포함되어 있는데, 지금까지는 이러한 저농도의 배기가스로는 충분한 효율을 확보할 수 없었다. 이산화탄소를 전기화학적 방법으로 일산화탄소로 전환하는 과정에서 일산화탄소 생성효율이 높은 은(Ag) 촉매가 주로 사용되고 있다. 상용화된 은 촉매를 사용해 고순도(99.99%) 이산화탄소를 전환하면 생성물의 95%가 일산화탄소로 생성되는데, 저농도(10%) 이산화탄소를 사용한 경우에는 40%의 일산화탄소와 60%의 수소가 발생한다. KIST 연구진은 수소 발생을 줄여 일산화탄소 발생효율을 높일 수 있도록 니켈 단원자 촉매를 개발했다. 그동안 철, 니켈 등 일반 금속은 귀금속보다는 반응성이 좋지 않아 이산화탄소 전환 촉매로 만들 수 없었는데, 단일 원자 형태로 만들면 효율이 높아진다는 최근 연구결과에 착안해 연구팀은 새로운 촉매를 개발했다. 또한, 이산화탄소를 물에 녹인 후 반응시키던 기존 방식과는 다르게 기체 상태 그대로 전환 반응을 일으킬 수 있도록 최적의 구동 기술까지 개발했다. 개발된 니켈 단원자 촉매는 배기가스 수준의 저농도(10%) 이산화탄소로도 결과물의 93%를 일산화탄소로 생성할 수 있었는데, 귀금속이 아닌 니켈 및 탄소 등 저가 재료로 촉매를 제작해 경제성도 확보할 수 있게 되었다. KIST 원다혜 박사는 “이번에 개발한 촉매 및 구동 기술은 저농도 이산화탄소를 활용하는 다양한 전기화학적 전환 시스템에 응용될 수 있다.”라며 “전기화학적 이산화탄소 전환 기술의 경제성을 확보하기 위해 배기가스를 별도의 정제과정 없이 직접 활용하기 위한 다양한 기술도 함께 개발 중이다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 임혜숙) 지원을 받아 KIST 주요사업 및 유용물질 생산을 위한 Carbon to X 기술개발사업(단장 정광덕)을 통해 수행되었으며 연구결과는 에너지 분야 국제학술지 ‘ACS Energy Letters’ (IF:23.101, JCR 분야 상위 3.302%) 최신 호에 게재되었다. * (논문명) Electrocatalytic Reduction of Low Concentrations of CO2 Gas in a Membrane Electrode Assembly Electrolyzer - (제 1저자) 한국과학기술연구원/고려대학교 김동진 학생연구원 - (교신저자) 한국과학기술연구원 이웅 선임연구원 - (교신저자) 서울대학교 황윤정 교수 - (교신저자) 한국과학기술연구원 원다혜 선임연구원 그림 설명 이산화탄소 농도에 따른 니켈 단원자 촉매와 상용 은 촉매의 성능 비교
저렴한 알칼리 연료전지용 촉매 개발, 대량생산 통해 상용화 앞당긴다
- 기존 고가의 백금 촉매 대체 가능한 금속유기골격체(MOF)계 탄소 촉매 개발 - 성능 및 대량생산성으로 상용화 기대, 향후 차세대 비 백금계 촉매 연구 기여 한국과학기술연구원(KIST, 원장 이병권) 수소·연료전지연구단 유성종 박사팀은 경희대학교 김진수 교수와의 공동연구를 통해, 최근 차세대 연료전지로 각광받고 있는 알칼라인 연료전지에 사용되는 고가의 촉매인 백금을 대체할 수 있는 저가형 촉매를 개발했다고 밝혔다. 이 촉매는 대량생산이 가능하여 알칼라인 연료전지의 상용화를 앞당길 수 있을 것으로 보인다. 연료전지는 수소와 산소의 전기화학 반응으로 전기를 생산하며 이산화탄소나 질소산화물 등 공해물질의 배출 없이 물만 배출하는 친환경 발전장치이다. 하지만 연료전지에서 일어나는 반응(산소환원반응)이 느린 속도로 일어나기 때문에 이 속도를 빠르게 하는 역할을 하는 촉매는 연료전지의 발전 효율을 증가시킬 수 있는 핵심이다. 따라서 성능을 올리기 위해서는 촉매의 역할이 굉장히 중요한데, 주로 백금계열 촉매가 사용돼왔다. 그러나, 귀금속인 백금계열 촉매는 가격이 비싸고 특정 지역에서만 생산되는 한계를 갖고 있었다. 백금 소재를 대체하고자 금속이나 질소가 첨가된 탄소계 촉매에 관한 연구들이 활발하게 진행 중이다. 현재까지 개발된 탄소계 소재의 촉매들은 우수한 효율을 보이지만, 그 원리를 정확히 알지 못한다는 문제점 등이 있어 실제 알칼라인 연료전지를 구동할 수는 없었다. KIST 연구진은 백금을 대체할 촉매로 차세대 촉매로서 꾸준히 보고되었으나, 낮은 생산 수율과 후처리 공정 문제 등 상용화에 어려움을 겪고 있는 금속유기골격체(Metal Organic Frameworks)를 활용했다. KIST-경희대학교 공동연구진은, 스프레이 열분해법을 통해 코발트 및 질소가 도핑된 MOF계 촉매를 개발하였다. 스프레이 열분해법은 연속적인 공정으로 대량생산이 가능하고 공업용 가습기를 이용하여 입자를 만들기 때문에, 필요한 구조의 입자를 쉽게 제조할 수 있었다. 개발된 촉매는 상용 백금 촉매보다 40% 성능이 향상되었다. KIST 유성종 박사는 “본 연구는 스프레이 열분해법의 도입으로 MOF계열 촉매의 성능 향상뿐만 아니라 MOF재료의 대량생산의 가능성을 가지고 있어 연료전지 산소환원반응 촉매 분야 및 흡착제, 배터리 분야 등 다양한 분야에 응용될 수 있을 것으로 기대한다.”라고 연구 의의를 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST의 주요사업과 기후변화대응기술개발사업, 글로벌프론티어 멀티스케일에너지시스템연구사업 및 결정기능화공정기술센터(ERC)사업으로 수행되었으며, 경희대학교와의 공동연구로 진행된 이번 연구결과는 에너지 환경 분야 국제 저널인 ‘Applied Catalysis B-Environmental’ (IF: 14.229, JCR 분야 상위 0.962%) 최신 호에 게재되었다. * (논문명) Hollow-sphere Co-NC synthesis by incorporation of ultrasonic spray pyrolysis and pseudomorphic replication and its enhanced oxygen reduction reaction - (제 1저자) 한국과학기술연구원 임경민 박사과정 - (제 1저자) 경희대학교 화학공학과 김동휘 석사과정 - (교신저자) 한국과학기술연구원 유성종 책임연구원 - (교신저자) 경희대학교 화학공학과 김진수 교수 <그림설명> [그림 1] (a) 스프레이 열분해 공정 (Ultrasonic spray pyrolysis) 모식도 (b) 개발된 중공 입자 구조 촉매의 합성 과정 [그림 2] (a) 제조된 촉매와 상용 촉매 산소화원반응 결과 (b) 알칼라인 연료전지 구동 시 성능 결과
저렴한 알칼리 연료전지용 촉매 개발, 대량생산 통해 상용화 앞당긴다
- 기존 고가의 백금 촉매 대체 가능한 금속유기골격체(MOF)계 탄소 촉매 개발 - 성능 및 대량생산성으로 상용화 기대, 향후 차세대 비 백금계 촉매 연구 기여 한국과학기술연구원(KIST, 원장 이병권) 수소·연료전지연구단 유성종 박사팀은 경희대학교 김진수 교수와의 공동연구를 통해, 최근 차세대 연료전지로 각광받고 있는 알칼라인 연료전지에 사용되는 고가의 촉매인 백금을 대체할 수 있는 저가형 촉매를 개발했다고 밝혔다. 이 촉매는 대량생산이 가능하여 알칼라인 연료전지의 상용화를 앞당길 수 있을 것으로 보인다. 연료전지는 수소와 산소의 전기화학 반응으로 전기를 생산하며 이산화탄소나 질소산화물 등 공해물질의 배출 없이 물만 배출하는 친환경 발전장치이다. 하지만 연료전지에서 일어나는 반응(산소환원반응)이 느린 속도로 일어나기 때문에 이 속도를 빠르게 하는 역할을 하는 촉매는 연료전지의 발전 효율을 증가시킬 수 있는 핵심이다. 따라서 성능을 올리기 위해서는 촉매의 역할이 굉장히 중요한데, 주로 백금계열 촉매가 사용돼왔다. 그러나, 귀금속인 백금계열 촉매는 가격이 비싸고 특정 지역에서만 생산되는 한계를 갖고 있었다. 백금 소재를 대체하고자 금속이나 질소가 첨가된 탄소계 촉매에 관한 연구들이 활발하게 진행 중이다. 현재까지 개발된 탄소계 소재의 촉매들은 우수한 효율을 보이지만, 그 원리를 정확히 알지 못한다는 문제점 등이 있어 실제 알칼라인 연료전지를 구동할 수는 없었다. KIST 연구진은 백금을 대체할 촉매로 차세대 촉매로서 꾸준히 보고되었으나, 낮은 생산 수율과 후처리 공정 문제 등 상용화에 어려움을 겪고 있는 금속유기골격체(Metal Organic Frameworks)를 활용했다. KIST-경희대학교 공동연구진은, 스프레이 열분해법을 통해 코발트 및 질소가 도핑된 MOF계 촉매를 개발하였다. 스프레이 열분해법은 연속적인 공정으로 대량생산이 가능하고 공업용 가습기를 이용하여 입자를 만들기 때문에, 필요한 구조의 입자를 쉽게 제조할 수 있었다. 개발된 촉매는 상용 백금 촉매보다 40% 성능이 향상되었다. KIST 유성종 박사는 “본 연구는 스프레이 열분해법의 도입으로 MOF계열 촉매의 성능 향상뿐만 아니라 MOF재료의 대량생산의 가능성을 가지고 있어 연료전지 산소환원반응 촉매 분야 및 흡착제, 배터리 분야 등 다양한 분야에 응용될 수 있을 것으로 기대한다.”라고 연구 의의를 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST의 주요사업과 기후변화대응기술개발사업, 글로벌프론티어 멀티스케일에너지시스템연구사업 및 결정기능화공정기술센터(ERC)사업으로 수행되었으며, 경희대학교와의 공동연구로 진행된 이번 연구결과는 에너지 환경 분야 국제 저널인 ‘Applied Catalysis B-Environmental’ (IF: 14.229, JCR 분야 상위 0.962%) 최신 호에 게재되었다. * (논문명) Hollow-sphere Co-NC synthesis by incorporation of ultrasonic spray pyrolysis and pseudomorphic replication and its enhanced oxygen reduction reaction - (제 1저자) 한국과학기술연구원 임경민 박사과정 - (제 1저자) 경희대학교 화학공학과 김동휘 석사과정 - (교신저자) 한국과학기술연구원 유성종 책임연구원 - (교신저자) 경희대학교 화학공학과 김진수 교수 <그림설명> [그림 1] (a) 스프레이 열분해 공정 (Ultrasonic spray pyrolysis) 모식도 (b) 개발된 중공 입자 구조 촉매의 합성 과정 [그림 2] (a) 제조된 촉매와 상용 촉매 산소화원반응 결과 (b) 알칼라인 연료전지 구동 시 성능 결과
저렴한 알칼리 연료전지용 촉매 개발, 대량생산 통해 상용화 앞당긴다
- 기존 고가의 백금 촉매 대체 가능한 금속유기골격체(MOF)계 탄소 촉매 개발 - 성능 및 대량생산성으로 상용화 기대, 향후 차세대 비 백금계 촉매 연구 기여 한국과학기술연구원(KIST, 원장 이병권) 수소·연료전지연구단 유성종 박사팀은 경희대학교 김진수 교수와의 공동연구를 통해, 최근 차세대 연료전지로 각광받고 있는 알칼라인 연료전지에 사용되는 고가의 촉매인 백금을 대체할 수 있는 저가형 촉매를 개발했다고 밝혔다. 이 촉매는 대량생산이 가능하여 알칼라인 연료전지의 상용화를 앞당길 수 있을 것으로 보인다. 연료전지는 수소와 산소의 전기화학 반응으로 전기를 생산하며 이산화탄소나 질소산화물 등 공해물질의 배출 없이 물만 배출하는 친환경 발전장치이다. 하지만 연료전지에서 일어나는 반응(산소환원반응)이 느린 속도로 일어나기 때문에 이 속도를 빠르게 하는 역할을 하는 촉매는 연료전지의 발전 효율을 증가시킬 수 있는 핵심이다. 따라서 성능을 올리기 위해서는 촉매의 역할이 굉장히 중요한데, 주로 백금계열 촉매가 사용돼왔다. 그러나, 귀금속인 백금계열 촉매는 가격이 비싸고 특정 지역에서만 생산되는 한계를 갖고 있었다. 백금 소재를 대체하고자 금속이나 질소가 첨가된 탄소계 촉매에 관한 연구들이 활발하게 진행 중이다. 현재까지 개발된 탄소계 소재의 촉매들은 우수한 효율을 보이지만, 그 원리를 정확히 알지 못한다는 문제점 등이 있어 실제 알칼라인 연료전지를 구동할 수는 없었다. KIST 연구진은 백금을 대체할 촉매로 차세대 촉매로서 꾸준히 보고되었으나, 낮은 생산 수율과 후처리 공정 문제 등 상용화에 어려움을 겪고 있는 금속유기골격체(Metal Organic Frameworks)를 활용했다. KIST-경희대학교 공동연구진은, 스프레이 열분해법을 통해 코발트 및 질소가 도핑된 MOF계 촉매를 개발하였다. 스프레이 열분해법은 연속적인 공정으로 대량생산이 가능하고 공업용 가습기를 이용하여 입자를 만들기 때문에, 필요한 구조의 입자를 쉽게 제조할 수 있었다. 개발된 촉매는 상용 백금 촉매보다 40% 성능이 향상되었다. KIST 유성종 박사는 “본 연구는 스프레이 열분해법의 도입으로 MOF계열 촉매의 성능 향상뿐만 아니라 MOF재료의 대량생산의 가능성을 가지고 있어 연료전지 산소환원반응 촉매 분야 및 흡착제, 배터리 분야 등 다양한 분야에 응용될 수 있을 것으로 기대한다.”라고 연구 의의를 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST의 주요사업과 기후변화대응기술개발사업, 글로벌프론티어 멀티스케일에너지시스템연구사업 및 결정기능화공정기술센터(ERC)사업으로 수행되었으며, 경희대학교와의 공동연구로 진행된 이번 연구결과는 에너지 환경 분야 국제 저널인 ‘Applied Catalysis B-Environmental’ (IF: 14.229, JCR 분야 상위 0.962%) 최신 호에 게재되었다. * (논문명) Hollow-sphere Co-NC synthesis by incorporation of ultrasonic spray pyrolysis and pseudomorphic replication and its enhanced oxygen reduction reaction - (제 1저자) 한국과학기술연구원 임경민 박사과정 - (제 1저자) 경희대학교 화학공학과 김동휘 석사과정 - (교신저자) 한국과학기술연구원 유성종 책임연구원 - (교신저자) 경희대학교 화학공학과 김진수 교수 <그림설명> [그림 1] (a) 스프레이 열분해 공정 (Ultrasonic spray pyrolysis) 모식도 (b) 개발된 중공 입자 구조 촉매의 합성 과정 [그림 2] (a) 제조된 촉매와 상용 촉매 산소화원반응 결과 (b) 알칼라인 연료전지 구동 시 성능 결과
저렴한 알칼리 연료전지용 촉매 개발, 대량생산 통해 상용화 앞당긴다
- 기존 고가의 백금 촉매 대체 가능한 금속유기골격체(MOF)계 탄소 촉매 개발 - 성능 및 대량생산성으로 상용화 기대, 향후 차세대 비 백금계 촉매 연구 기여 한국과학기술연구원(KIST, 원장 이병권) 수소·연료전지연구단 유성종 박사팀은 경희대학교 김진수 교수와의 공동연구를 통해, 최근 차세대 연료전지로 각광받고 있는 알칼라인 연료전지에 사용되는 고가의 촉매인 백금을 대체할 수 있는 저가형 촉매를 개발했다고 밝혔다. 이 촉매는 대량생산이 가능하여 알칼라인 연료전지의 상용화를 앞당길 수 있을 것으로 보인다. 연료전지는 수소와 산소의 전기화학 반응으로 전기를 생산하며 이산화탄소나 질소산화물 등 공해물질의 배출 없이 물만 배출하는 친환경 발전장치이다. 하지만 연료전지에서 일어나는 반응(산소환원반응)이 느린 속도로 일어나기 때문에 이 속도를 빠르게 하는 역할을 하는 촉매는 연료전지의 발전 효율을 증가시킬 수 있는 핵심이다. 따라서 성능을 올리기 위해서는 촉매의 역할이 굉장히 중요한데, 주로 백금계열 촉매가 사용돼왔다. 그러나, 귀금속인 백금계열 촉매는 가격이 비싸고 특정 지역에서만 생산되는 한계를 갖고 있었다. 백금 소재를 대체하고자 금속이나 질소가 첨가된 탄소계 촉매에 관한 연구들이 활발하게 진행 중이다. 현재까지 개발된 탄소계 소재의 촉매들은 우수한 효율을 보이지만, 그 원리를 정확히 알지 못한다는 문제점 등이 있어 실제 알칼라인 연료전지를 구동할 수는 없었다. KIST 연구진은 백금을 대체할 촉매로 차세대 촉매로서 꾸준히 보고되었으나, 낮은 생산 수율과 후처리 공정 문제 등 상용화에 어려움을 겪고 있는 금속유기골격체(Metal Organic Frameworks)를 활용했다. KIST-경희대학교 공동연구진은, 스프레이 열분해법을 통해 코발트 및 질소가 도핑된 MOF계 촉매를 개발하였다. 스프레이 열분해법은 연속적인 공정으로 대량생산이 가능하고 공업용 가습기를 이용하여 입자를 만들기 때문에, 필요한 구조의 입자를 쉽게 제조할 수 있었다. 개발된 촉매는 상용 백금 촉매보다 40% 성능이 향상되었다. KIST 유성종 박사는 “본 연구는 스프레이 열분해법의 도입으로 MOF계열 촉매의 성능 향상뿐만 아니라 MOF재료의 대량생산의 가능성을 가지고 있어 연료전지 산소환원반응 촉매 분야 및 흡착제, 배터리 분야 등 다양한 분야에 응용될 수 있을 것으로 기대한다.”라고 연구 의의를 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST의 주요사업과 기후변화대응기술개발사업, 글로벌프론티어 멀티스케일에너지시스템연구사업 및 결정기능화공정기술센터(ERC)사업으로 수행되었으며, 경희대학교와의 공동연구로 진행된 이번 연구결과는 에너지 환경 분야 국제 저널인 ‘Applied Catalysis B-Environmental’ (IF: 14.229, JCR 분야 상위 0.962%) 최신 호에 게재되었다. * (논문명) Hollow-sphere Co-NC synthesis by incorporation of ultrasonic spray pyrolysis and pseudomorphic replication and its enhanced oxygen reduction reaction - (제 1저자) 한국과학기술연구원 임경민 박사과정 - (제 1저자) 경희대학교 화학공학과 김동휘 석사과정 - (교신저자) 한국과학기술연구원 유성종 책임연구원 - (교신저자) 경희대학교 화학공학과 김진수 교수 <그림설명> [그림 1] (a) 스프레이 열분해 공정 (Ultrasonic spray pyrolysis) 모식도 (b) 개발된 중공 입자 구조 촉매의 합성 과정 [그림 2] (a) 제조된 촉매와 상용 촉매 산소화원반응 결과 (b) 알칼라인 연료전지 구동 시 성능 결과