검색결과
게시물 키워드""에 대한 9093개의 검색결과를 찾았습니다.
임상연구 도운 과학자 아버지...치매 조기진단 新 이정표
류훈·남민호 박사팀, 뇌 속 반응성 별세포와 신경세포 영상화 성공 알츠하이머 치매 촉진 새로운 원인 규명, 치료제 표적 제시 "완치 어려운 치매, 과학계 新 발견과 도전 인정해줘야" 남민호 박사는 KIST 유일 신경과학을 연구하는 한의사다. 개원해 환자를 돌보는 대신 연구를 택했다. 한의학을 기반으로 신경과학을 연구하는 사람은 드문 편이다. 현재 침치료를 통한 신경생물학적 기전 등을 연구한다. 류훈 박사는 신경유전자 발현과 후성 유전체학을 선도하는 과학자다. 퇴행성 뇌질환 '헌팅턴병'을 치료할 새로운 기전을 밝히는 등 다양한 연구성과로 주목받는다. 지난 2019년 해외우수연구자로 KIST에 영입된 그는 퇴행성 뇌질환 치료 돌파구 모색연구에 집중하고 있다. 서로 다른 전공의 선후배 과학자가 '알츠하이머 치매 정복'이라는 공동의 목표를 위해 손잡았다. 이들은 최근 알츠하이머 진단연구에서 새로운 성과를 냈다. 두 연구자가 주목한 것은 다름 아닌 뇌 속의 작은 별 '별세포'다. 류훈·남민호 박사팀이 별세포에 기반을 둔 알츠하이머를 촉진시키는 원인을 찾았다. 또 이를 이미징기술로 촬영해 치매 조기진단 가능성과 새로운 치매 치료제의 표적을 제시했다. 이번 연구에서 남 박사의 아버지와 지인은 직접 참여해 임상연구를 도왔다. 이 외에도 뇌질환 환자들의 임상연구 협조, 타 기관 연구자와의 협력 등 다양한 구성원의 노력과 열정이 연구에 녹아져있다. 해당 연구를 통해 앞으로 알츠하이머 진단과 치료는 어떤 방향을 제시할 수 있을까. 연구를 주도한 두 연구자를 만나 자세한 이야기를 들었다. 110여년 풀리지 않은 치매 치료...연구자들 '별세포'주목하다 알츠하이머병은 치매를 일으키는 가장 흔한 퇴행성 뇌질환으로 알려진다. 1907년 독일의 정신과 의사 알로아 알츠하이머 박사에 의해 최초로 보고됐다. 병이 보고된 지 110여년이 지났지만 정확한 발병기전과 원인에 대해서는 알려져 있지 않다. 알츠하이머 치료는 완치가 아닌 조기 발견해 진행속도를 늦추는데 초점이 맞춰져있다. 류 박사와 IBS의 이창준 단장은 공동연구를 통해 알츠하이머 치료에 반응성 별세포를 주목해왔다. 별모양의 별세포는 우리 뇌에 가장 많은 수를 차지하는 세포다. 뇌 속 많은 지분을 갖지만 그동안 신경세포를 돕는 조연쯤으로 여겨졌다. 본격적으로 주목받기 시작한 것은 1990년대다. 별세포가 신경세포에 다양하게 개입한다는 사실이 알려지면서 치매와의 연관성도 연구되고 있다. 류 박사는 "알츠하이머는 뇌 염증을 동반하는데, 이 때 가장 먼저 발생하는 현상 중 하나가 별세포의 크기와 기능이 변하는 반응성 별세포화"라며 알츠하이머와 별세포의 연관성을 설명했다. 류 박사는 많은 연구로 둘의 연관성도 증명해냈다. 반응성 별세포에서 억제성 신경전달물질인 가바(GABA)가 주변신경세포를 억제하고, 가바가 만들어지는 과정에 발생하는 과산화수소가 신경세포를 죽여 기억력을 감퇴시킨다고 보고 등이다. 하지만 반응성 별세포의 임상적 중요성에도 불구하고 이 세포를 영상화해 관찰 및 진단할 수 있는 뇌신경 이미징 기술이 없는 가운데, 두 연구자가 공동연구로 한계를 뛰어넘었다. 연구는 우연을 가장한 끊임없는 연구교류에서 꽃을 피웠다. 암 진단 사용 물질 치매 진단에 적용 新 진단마커 기대 류훈·남민호 박사팀이 별세포에 기반을 둔 알츠하이머를 촉진시키는 원인을 찾았다. 또 이를 이미징기술로 촬영해 치매 조기진단 가능성과 새로운 치매 치료제의 표적을 제시했다. "윤미진 연세대 교수, 이창준 IBS 단장과는 오랜 동료로 과학적 교류를 해오고 있습니다. 서로 알츠하이머를 예방하고 진단하기 위한 고민을 털어놓았고 협동연구를 시작했죠."(류훈 박사) 류 박사팀은 반응성 별세포를 영상화해 관찰하면 조기 알츠하이머 치료를 할 수 있을 것이라 기대했다. 이 같은 고민을 들은 핵의학 전문가 윤미진 교수는 류 박사팀과 협업해 양전자 방출 단층 촬영(Positron Emission Tomography, 이하 PET)영상을 활용해보기로 했다. PET영상은 종양, 뇌질환, 심장질환 등을 진단하고 치료하는데 널리 사용되는 방법이다. 연구팀은 기존 암 진단에 활발히 사용됐던 '탄소11-아세트산'과 뇌 활성을 확인하기 위해 사용됐던 '불소-18 플루오로데옥시글루코오스'를 함께 활용해 알츠하이머 동물 모델과 실제 환자, 정상군을 대조해 PET영상으로 뇌를 찍었다. 그 결과 연구팀은 알츠하이머 환자군에서 반응성 별세포화가 식초로도 잘 알려진 아세트산을 활발히 대사함과 동시에 포도당 대사를 억제를 유도하는 것을 확인했다. 또 연구진은 PET 영상 등 다각적 분석으로 아세트산이 반응성 별세포화를 촉진시켜 푸트레신 및 가바의 생성을 유도, 치매를 유발한다는 것을 처음 규명했다. 이와 함께 반응성 별세포화를 억제하거나 별세포에서 특이적으로 발현하는 모노카복실산 수송체1(Monocarboxylate transporter 1, MCT1)의 발현을 억제했을 때 아세트산 대사와 주변 신경세포의 포도당 대사가 정상 회복되는 것도 확인했다. 반응성 별세포 동물 모델에서 PET 영상 촬영을 통해 관찰되는 11C-아세트산 흡수 증가와 18F-FDG 흡수 감소 연구진에 따르면 지금까지 치매 주원인으로 알려진 아밀로이드 베타를 표적으로 하는 PET 영상은 임상에서 환자를 진단하는 데 한계가 있었다. 또 아밀로이드 베타를 제거하는 것을 목표로 하는 치매 치료제도 모두 실패했다. 반면 탄소11-아세테이트산과 불소-18 플루오로데옥시글루코오스를 활용한 PET영상은 반응성 별세포와 기능적으로 억제된 신경세포를 임상 수준에서 진단하는 데 활용될 수 있음을 확인할 수 있었다. 남 박사는 "본 연구에서는 반응성 별세포가 정상에 비해 아세트산을 과다하게 섭취하는 것을 확인하였다. 아세트산의 섭취 과다가 알츠하이머병의 진단마커가 될 수 있을 것"이라고 설명했다. 연구결과는 뇌과학 분야의 대표적인 학술지인 ‘브레인’에 4월 17일 온라인 게재됐다. 완치 어려운 알츠하이머, 과학계 新 발견과 도전 인정해줘야 진보 "전 세계적으로 알츠하이머는 100명 중 1명도 고치기 어렵다고 알려집니다. 불치병으로 알려진 백혈병 완치율(약 80%)과 비교하면 정말 낮은 수치지요. 알츠하이머를 정복하려면 새로운 발견과 도전이 필요합니다."(류훈 박사) 통계청에 따르면 2021년 국민기대수명은 83.6년으로 10년 전보다 3년 늘었다. 반면 2021년 알츠하이머병 사망률은 인구 10만 명당 15.6명으로 2000년 0.3명과 비교하면 52배 증가한 상황이다. 류훈 박사와 남민호 박사는 알츠하이머 치료를 위해 과학기술계가 다각적인 연구에 도전하고 이를 받아들이는 자세가 필요하다고 강조했다. 그런 의미에서 이번 연구에서 '탄소11-아세트산'을 알츠하이머의 새로운 표지마커로 내세운 것도 큰 도전이었다. 류 박사는 "탄소11-아세트산은 지금껏 알츠하이머 영상화에 쓰인 적이 없어 과학계에서 새로운 표지마커를 받아들이기까지 오랜 시간이 걸렸다"면서 "과학계가 기존의 관념들을 깨고 새로운 발견을 인정해줘야 질병에 대한 조기진단과 치료가 가능해진다고 생각한다. 남 박사의 노력이 알츠하이머 진단과 치료에 새로운 이정표를 세우고 더 나은 과학계 연구성과가 나오는 기반이 되길 바란다"고 강조했다. 알츠하이머 환자 뇌조직의 모노카복실산 수송체1(MCT1) 및 포도당 수송체-3(GLUT3) 변화 앞으로 두 연구자는 알츠하이머 정복 연구를 계속할 계획이다. 남 박사는 "탄소11-아세트산을 통한 영상화에 성공했지만 반감기가 짧다는 태생적 한계가 있다. 이를 극복하기 위한 추가연구 등이 필요하다"며 "이 외에도 치매환자에서 반응성 별세포와 신경세포를 영상화할 수 있는 다양한 연구를 진행할 계획"이라고 말했다. 한편, 두 연구자는 임상연구에 참여해준 환자분들과 시민에게도 감사인사를 전했다. 연구결과의 임상적 의미를 확인하기 위해서는 통계적으로 유의미한 임상데이터의 확보가 중요하다. 이에 정상군과 환자군을 모집해 많은 실험을 할 필요가 있었다. 하지만 임상은 주로 병원에서 진행되기 때문에 정상군을 모집하는 것은 생각보다 쉽지 않다. 이에 남 박사는 직접 부친과 친구분에게 뇌의 PET촬영을 제안했다. 류 박사는 "훌륭한 동료과학자 (윤미진 교수, 이창준 박사) 분들과 연구열정이 대단한 박사후 연구원과 대학원생들, 그리고 참여해주신 많은 분들의 숨은 노력이 있어 연구가 성공적으로 진행될 수 있었다. 이 자리를 통해 다시 한 번 감사인사를 드리고 싶다"고 덧붙였다.
임유라 선생님 이메일
024333@kist.re.kr 으로 CHR 인턴 문의 메일 보냈는데 휴직이시라고 '임유라 선생님'께 문의 드리라는 메일을 받았습니다. 임유라 선생님 이메일을 알고 싶습니다.
임플란트, 인공수정체, 인공관절… 생체재료는 ‘100세 시대’ 여는 열쇠
[과학 라운지] 고대 이집트서 치아 대용으로 조개껍데기 쓴 흔적 나온 것처럼 생체재료 역사는 오래됐지만 면역거부 반응 같은 한계 여전 “길어야 40년!” 어느 보험회사의 광고 카피 문구다. 수술을 마치고 나오는 60세 정도로 보이는 환자의 아들에게 의사가 해주는 말이었다. 의학의 발달과 함께 인간의 수명은 점차 길어져 이제는 기대수명 100세 시대라는 말이 나오고 있다. 통계청 발표에 따르면 지난해 우리나라 65세 이상 고령인구는 전체 인구의 16.5%인데 2025년에는 20%, 2060년에는 43%에 이를 것으로 예상된다. 이렇게 고령화 인구가 증가하는 상황에서 단지 수명만 늘어나는 것이 더 이상 반갑지만은 않다. 수명은 늘어났지만, 우리 신체의 노화는 여전히 진행 중이다. 바야흐로 유병장수의 시대다. 통계청의 ‘2021 고령자 통계’에서 65세 이상 고령자가 자신의 건강 상태가 좋다고 응답한 비율은 24.3%였다. 고령자 4명 중 3명은 자신이 건강하지 않다고 생각한다는 의미다. 나이가 들면서 신체의 구조와 기능이 전체적으로 퇴화하게 되는 것이 노화이다. 고령자가 증가함에 따라 이제는 노화로 장기(臟器)가 기능을 잃어가는 비율이 점차 늘어가고 있다. 생체재료는 인체에 삽입하는 의료장치, 손상된 장기나 조직을 대신하기 위한 인공장기에 사용하는 재료를 의미한다. 우리에게 가장 익숙한 생체재료는 치과용 임플란트라고 할 수 있다. 치과용 임플란트는 치아가 결손된 부위에 생체용 금속으로 만든 인공치근을 이식해 본래 갖고 있던 치아와 같은 기능을 하도록 하는 의료기기다. 눈과 관련한 대표적인 노인성 질환으로 꼽히는 백내장은 사물이 안개가 낀 것처럼 흐릿하게 보이는 증상이 있다. 약물로 치료가 어렵기 때문에 혼탁해진 수정체를 제거하고, 인공수정체를 삽입하는 수술로 치료한다. 이 경우에 사용하는 인공수정체 역시 대표적인 생체소재라고 할 수 있다. 뼈와 뼈 사이의 연골이 닳아서 발생하는 퇴행성 관절염을 치료하기 위해 인공관절을 이용하기도 하고, 연골의 재생을 위해 줄기세포를 이용한 치료도 한다. 뼈를 부위별로 다른 강도로 맞춤형으로 재생시키는 기술도 개발되고 있다. 머리부터 발끝까지, 단단한 부위에서부터 물렁한 부위까지 생체재료가 닿지 않는 곳이 없다. 생체재료의 역사는 우리 생각보다 훨씬 더 오래되었다. 기원후 100~200년경 로마시대에 살았던 사람의 시체에서 철로 만들어진 치아가 발견됐고, 그보다 훨씬 과거인 기원전 2000년경 고대 이집트에서는 조개껍데기를 치아 대용으로 사용한 흔적이 발견되었다. 지금 가장 널리 사용되는 생체용 금속인 티타늄은 1950년대 이미 골접합용 소재로 알려지기 시작했고, 1965년에 최초로 환자의 치조골에 이식됐다. 이처럼 생체재료가 질병 치료의 목적으로 사용된 역사가 짧진 않지만, 지금의 생체재료를 완전하다고 볼 수는 없다. 이식에 따른 면역거부 반응, 시간이 지나면서 기능이 퇴화되는 등 생체재료의 한계가 여전하기 때문이다. 하지만 최근에는 주변 조직의 재생치유를 돕는 소재, 질병 치료를 목적으로 새로운 기능성을 가지는 소재들이 개발되고 있다. 환자맞춤형 의료기기를 제작하기 위한 3D 프린팅과 같은 새로운 공정기법들도 속속 나오고 있다. 노화는 불가역적 현상이 아니라 진단·예방·치료로 대응할 수 있다는 인식의 변화가 생긴 것도 생체재료에 대한 기대가 커졌기 때문이다. 100세 시대를 여는 열쇠로 생체재료의 기술적 발전이 꼽히는 이유다. 3D프린팅으로 만든 인공심장으로 치유된 심장병 환자가 100세의 나이에도 42.195㎞를 완주하는 미래를 그려본다. 출처: 조선일보 (링크)
임플란트에 인공뼈 코팅해서 염증 해결한다
- 생산 공정 단계, 시간, 비용 대폭 줄이면서도 기존 임상 제품 보다 코팅 성능 우월 - 금속, 고분자 소재 표면에 인공뼈 합성과 코팅을 동시에 구현 인구 노령화와 함께 현대 사회로 발전하면서 골질환이 급증하고 있으며, 골질환 치료를 위한 치과용/정형외과용 임플란트의 사용이 증가하고 있다. A.D. 1세기경 로마시대에 철을 치아 대용으로 사용했을 정도로 임플란트의 역사는 오래되었다. 하지만 오랜 역사에도 불구하고 체내 뼈조직과 결합이 빨리 이루어지지 않아 헐거워지거나 염증이 생겨 2차 수술을 해야 하는 등의 문제가 발생한다. 뼈와 동일한 성분으로 이루어진 인공뼈를 임플란트 소재에 코팅하여 이러한 문제를 해결하기 위한 방법이 시도되고 있다. 기존의 인공뼈 코팅 방법들은 인공뼈 물질을 제작하기 위한 별도의 합성 공정 과정과 장시간의 코팅 공정 시간이 필요하다. 또한, 모재와 인공뼈 코팅층 간의 결합력이 약하여 쉽게 손상되거나 뜯겨 나가는 경우가 많아 실제 임상에서 환자에게 사용될 수 있을 만큼 강한 코팅 방법은 부족한 상황이었다. 그런 가운데, 한국과학기술연구원(KIST, 원장 윤석진) 생체재료연구센터 전호정 박사팀은 생체 이식용 재료 표면에 기존보다 세 배 이상 우수한 결합강도를 갖는 세라믹 인공뼈 코팅 기술을 개발했다고 밝혔다. KIST 연구진은 하루 이상의 시간과 수십 단계의 공정이 필요했던 기존 인공뼈 코팅을 단 하나의 공정만으로 한 시간 이내에 구현 가능한 기술을 개발했다. 이 공정 기법을 이용하면 인공뼈 코팅을 위한 원료 물질을 합성하는 별도의 과정도 필요하지 않고, 고가의 장비와 부수적인 열처리 과정 없이 나노초 레이저(nanosecond laser) 장비 하나만으로 코팅할 수 있다. 그 뿐만 아니라 현재 임상에서 사용되고 있는 소수의 인공뼈 코팅 기법들보다 더 강한 결합력을 갖는 코팅층을 형성할 수 있다. 또한, 이 공정을 사용할 경우에 금속 표면뿐만 아니라 기존의 공정으로는 구현하지 못하였던 정형외과용 플라스틱 임플란트 등 고분자 소재 표면에도 강한 코팅을 구현할 수 있는 장점이 있다. 전호정 박사팀은 공정 단계와 시간을 단축 하면서도 강력한 코팅을 구현하기 위해, 뼈의 주 성분인 칼슘과 인으로 이루어진 용액 속에 코팅 하고자 하는 재료를 위치시키고 레이저를 조사하는 방법을 사용했다. 이때 레이저의 초점 영역에 국소적으로 온도가 증가하면서 칼슘과 인 성분이 반응하여 세라믹 인공뼈(하이드록시아파타이트)가 합성되고 동시에 코팅층이 형성되었다. 이 방법은 기존의 코팅법들이 재료 표면에 코팅 하고자 하는 성분을 쌓아 올리는 방식과는 다르게, 레이저에 의해 인공뼈 성분의 합성이 일어나면서 동시에 재료의 표면이 녹는점 이상으로 가열되어 녹은 후 합성된 채로 다시 굳기 때문에 코팅 결합력을 극도로 증가시킬 수 있었다. KIST 전호정 박사는 “나노초레이저를 이용한 하이드록시아파타이트 코팅 기법은 현재 생체재료로 많이 사용되고 있는 티타늄, PEEK와 같은 생체비활성 소재의 표면을 간단한 방법으로 생체활성화 시킬 수 있는 기술로, 골융합을 필요로하는 다양한 의료기기로 확대 적용이 가능하게 하는 게임 체인저 역할을 할 수 있을 것으로 기대된다.”고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 한국연구재단 중견연구자지원사업으로 수행되었으며, 이번 연구결과는 기능성 재료 분야 국제 저널인 ‘Advanced Functional Materials’ (IF: 16.836, JCR 분야 상위 3.981%) 최신 호에 게재되었다. * (논문명) Robust hydroxyapatite coating by laser-induced hydrothermal synthesis - (제 1저자) 한국과학기술연구원 엄승훈 학생연구원 - (제 1저자) 한국과학기술연구원 정용우 학생연구원(現, LASERVAL) - (교신저자) 한국과학기술연구원 전호정 책임연구원 <그림설명> [그림 1] KIST 연구진이 레이저를 이용하여 인골 뼈를 세계 최고속 수준으로 구현한 방법과 이로 인해 형성된 코팅층의 구조를 보여주는 모식도 [그림 2] 레이저를 이용한 인공뼈의 합성과 코팅이 동시에 일어나는 원리를 나타낸 모식도 [그림 3] 코팅 방법에 따른 인공뼈 코팅 강도 비교표
임플란트에 인공뼈 코팅해서 염증 해결한다
- 생산 공정 단계, 시간, 비용 대폭 줄이면서도 기존 임상 제품 보다 코팅 성능 우월 - 금속, 고분자 소재 표면에 인공뼈 합성과 코팅을 동시에 구현 인구 노령화와 함께 현대 사회로 발전하면서 골질환이 급증하고 있으며, 골질환 치료를 위한 치과용/정형외과용 임플란트의 사용이 증가하고 있다. A.D. 1세기경 로마시대에 철을 치아 대용으로 사용했을 정도로 임플란트의 역사는 오래되었다. 하지만 오랜 역사에도 불구하고 체내 뼈조직과 결합이 빨리 이루어지지 않아 헐거워지거나 염증이 생겨 2차 수술을 해야 하는 등의 문제가 발생한다. 뼈와 동일한 성분으로 이루어진 인공뼈를 임플란트 소재에 코팅하여 이러한 문제를 해결하기 위한 방법이 시도되고 있다. 기존의 인공뼈 코팅 방법들은 인공뼈 물질을 제작하기 위한 별도의 합성 공정 과정과 장시간의 코팅 공정 시간이 필요하다. 또한, 모재와 인공뼈 코팅층 간의 결합력이 약하여 쉽게 손상되거나 뜯겨 나가는 경우가 많아 실제 임상에서 환자에게 사용될 수 있을 만큼 강한 코팅 방법은 부족한 상황이었다. 그런 가운데, 한국과학기술연구원(KIST, 원장 윤석진) 생체재료연구센터 전호정 박사팀은 생체 이식용 재료 표면에 기존보다 세 배 이상 우수한 결합강도를 갖는 세라믹 인공뼈 코팅 기술을 개발했다고 밝혔다. KIST 연구진은 하루 이상의 시간과 수십 단계의 공정이 필요했던 기존 인공뼈 코팅을 단 하나의 공정만으로 한 시간 이내에 구현 가능한 기술을 개발했다. 이 공정 기법을 이용하면 인공뼈 코팅을 위한 원료 물질을 합성하는 별도의 과정도 필요하지 않고, 고가의 장비와 부수적인 열처리 과정 없이 나노초 레이저(nanosecond laser) 장비 하나만으로 코팅할 수 있다. 그 뿐만 아니라 현재 임상에서 사용되고 있는 소수의 인공뼈 코팅 기법들보다 더 강한 결합력을 갖는 코팅층을 형성할 수 있다. 또한, 이 공정을 사용할 경우에 금속 표면뿐만 아니라 기존의 공정으로는 구현하지 못하였던 정형외과용 플라스틱 임플란트 등 고분자 소재 표면에도 강한 코팅을 구현할 수 있는 장점이 있다. 전호정 박사팀은 공정 단계와 시간을 단축 하면서도 강력한 코팅을 구현하기 위해, 뼈의 주 성분인 칼슘과 인으로 이루어진 용액 속에 코팅 하고자 하는 재료를 위치시키고 레이저를 조사하는 방법을 사용했다. 이때 레이저의 초점 영역에 국소적으로 온도가 증가하면서 칼슘과 인 성분이 반응하여 세라믹 인공뼈(하이드록시아파타이트)가 합성되고 동시에 코팅층이 형성되었다. 이 방법은 기존의 코팅법들이 재료 표면에 코팅 하고자 하는 성분을 쌓아 올리는 방식과는 다르게, 레이저에 의해 인공뼈 성분의 합성이 일어나면서 동시에 재료의 표면이 녹는점 이상으로 가열되어 녹은 후 합성된 채로 다시 굳기 때문에 코팅 결합력을 극도로 증가시킬 수 있었다. KIST 전호정 박사는 “나노초레이저를 이용한 하이드록시아파타이트 코팅 기법은 현재 생체재료로 많이 사용되고 있는 티타늄, PEEK와 같은 생체비활성 소재의 표면을 간단한 방법으로 생체활성화 시킬 수 있는 기술로, 골융합을 필요로하는 다양한 의료기기로 확대 적용이 가능하게 하는 게임 체인저 역할을 할 수 있을 것으로 기대된다.”고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 한국연구재단 중견연구자지원사업으로 수행되었으며, 이번 연구결과는 기능성 재료 분야 국제 저널인 ‘Advanced Functional Materials’ (IF: 16.836, JCR 분야 상위 3.981%) 최신 호에 게재되었다. * (논문명) Robust hydroxyapatite coating by laser-induced hydrothermal synthesis - (제 1저자) 한국과학기술연구원 엄승훈 학생연구원 - (제 1저자) 한국과학기술연구원 정용우 학생연구원(現, LASERVAL) - (교신저자) 한국과학기술연구원 전호정 책임연구원 <그림설명> [그림 1] KIST 연구진이 레이저를 이용하여 인골 뼈를 세계 최고속 수준으로 구현한 방법과 이로 인해 형성된 코팅층의 구조를 보여주는 모식도 [그림 2] 레이저를 이용한 인공뼈의 합성과 코팅이 동시에 일어나는 원리를 나타낸 모식도 [그림 3] 코팅 방법에 따른 인공뼈 코팅 강도 비교표
임플란트에 인공뼈 코팅해서 염증 해결한다
- 생산 공정 단계, 시간, 비용 대폭 줄이면서도 기존 임상 제품 보다 코팅 성능 우월 - 금속, 고분자 소재 표면에 인공뼈 합성과 코팅을 동시에 구현 인구 노령화와 함께 현대 사회로 발전하면서 골질환이 급증하고 있으며, 골질환 치료를 위한 치과용/정형외과용 임플란트의 사용이 증가하고 있다. A.D. 1세기경 로마시대에 철을 치아 대용으로 사용했을 정도로 임플란트의 역사는 오래되었다. 하지만 오랜 역사에도 불구하고 체내 뼈조직과 결합이 빨리 이루어지지 않아 헐거워지거나 염증이 생겨 2차 수술을 해야 하는 등의 문제가 발생한다. 뼈와 동일한 성분으로 이루어진 인공뼈를 임플란트 소재에 코팅하여 이러한 문제를 해결하기 위한 방법이 시도되고 있다. 기존의 인공뼈 코팅 방법들은 인공뼈 물질을 제작하기 위한 별도의 합성 공정 과정과 장시간의 코팅 공정 시간이 필요하다. 또한, 모재와 인공뼈 코팅층 간의 결합력이 약하여 쉽게 손상되거나 뜯겨 나가는 경우가 많아 실제 임상에서 환자에게 사용될 수 있을 만큼 강한 코팅 방법은 부족한 상황이었다. 그런 가운데, 한국과학기술연구원(KIST, 원장 윤석진) 생체재료연구센터 전호정 박사팀은 생체 이식용 재료 표면에 기존보다 세 배 이상 우수한 결합강도를 갖는 세라믹 인공뼈 코팅 기술을 개발했다고 밝혔다. KIST 연구진은 하루 이상의 시간과 수십 단계의 공정이 필요했던 기존 인공뼈 코팅을 단 하나의 공정만으로 한 시간 이내에 구현 가능한 기술을 개발했다. 이 공정 기법을 이용하면 인공뼈 코팅을 위한 원료 물질을 합성하는 별도의 과정도 필요하지 않고, 고가의 장비와 부수적인 열처리 과정 없이 나노초 레이저(nanosecond laser) 장비 하나만으로 코팅할 수 있다. 그 뿐만 아니라 현재 임상에서 사용되고 있는 소수의 인공뼈 코팅 기법들보다 더 강한 결합력을 갖는 코팅층을 형성할 수 있다. 또한, 이 공정을 사용할 경우에 금속 표면뿐만 아니라 기존의 공정으로는 구현하지 못하였던 정형외과용 플라스틱 임플란트 등 고분자 소재 표면에도 강한 코팅을 구현할 수 있는 장점이 있다. 전호정 박사팀은 공정 단계와 시간을 단축 하면서도 강력한 코팅을 구현하기 위해, 뼈의 주 성분인 칼슘과 인으로 이루어진 용액 속에 코팅 하고자 하는 재료를 위치시키고 레이저를 조사하는 방법을 사용했다. 이때 레이저의 초점 영역에 국소적으로 온도가 증가하면서 칼슘과 인 성분이 반응하여 세라믹 인공뼈(하이드록시아파타이트)가 합성되고 동시에 코팅층이 형성되었다. 이 방법은 기존의 코팅법들이 재료 표면에 코팅 하고자 하는 성분을 쌓아 올리는 방식과는 다르게, 레이저에 의해 인공뼈 성분의 합성이 일어나면서 동시에 재료의 표면이 녹는점 이상으로 가열되어 녹은 후 합성된 채로 다시 굳기 때문에 코팅 결합력을 극도로 증가시킬 수 있었다. KIST 전호정 박사는 “나노초레이저를 이용한 하이드록시아파타이트 코팅 기법은 현재 생체재료로 많이 사용되고 있는 티타늄, PEEK와 같은 생체비활성 소재의 표면을 간단한 방법으로 생체활성화 시킬 수 있는 기술로, 골융합을 필요로하는 다양한 의료기기로 확대 적용이 가능하게 하는 게임 체인저 역할을 할 수 있을 것으로 기대된다.”고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 한국연구재단 중견연구자지원사업으로 수행되었으며, 이번 연구결과는 기능성 재료 분야 국제 저널인 ‘Advanced Functional Materials’ (IF: 16.836, JCR 분야 상위 3.981%) 최신 호에 게재되었다. * (논문명) Robust hydroxyapatite coating by laser-induced hydrothermal synthesis - (제 1저자) 한국과학기술연구원 엄승훈 학생연구원 - (제 1저자) 한국과학기술연구원 정용우 학생연구원(現, LASERVAL) - (교신저자) 한국과학기술연구원 전호정 책임연구원 <그림설명> [그림 1] KIST 연구진이 레이저를 이용하여 인골 뼈를 세계 최고속 수준으로 구현한 방법과 이로 인해 형성된 코팅층의 구조를 보여주는 모식도 [그림 2] 레이저를 이용한 인공뼈의 합성과 코팅이 동시에 일어나는 원리를 나타낸 모식도 [그림 3] 코팅 방법에 따른 인공뼈 코팅 강도 비교표
임플란트에 인공뼈 코팅해서 염증 해결한다
- 생산 공정 단계, 시간, 비용 대폭 줄이면서도 기존 임상 제품 보다 코팅 성능 우월 - 금속, 고분자 소재 표면에 인공뼈 합성과 코팅을 동시에 구현 인구 노령화와 함께 현대 사회로 발전하면서 골질환이 급증하고 있으며, 골질환 치료를 위한 치과용/정형외과용 임플란트의 사용이 증가하고 있다. A.D. 1세기경 로마시대에 철을 치아 대용으로 사용했을 정도로 임플란트의 역사는 오래되었다. 하지만 오랜 역사에도 불구하고 체내 뼈조직과 결합이 빨리 이루어지지 않아 헐거워지거나 염증이 생겨 2차 수술을 해야 하는 등의 문제가 발생한다. 뼈와 동일한 성분으로 이루어진 인공뼈를 임플란트 소재에 코팅하여 이러한 문제를 해결하기 위한 방법이 시도되고 있다. 기존의 인공뼈 코팅 방법들은 인공뼈 물질을 제작하기 위한 별도의 합성 공정 과정과 장시간의 코팅 공정 시간이 필요하다. 또한, 모재와 인공뼈 코팅층 간의 결합력이 약하여 쉽게 손상되거나 뜯겨 나가는 경우가 많아 실제 임상에서 환자에게 사용될 수 있을 만큼 강한 코팅 방법은 부족한 상황이었다. 그런 가운데, 한국과학기술연구원(KIST, 원장 윤석진) 생체재료연구센터 전호정 박사팀은 생체 이식용 재료 표면에 기존보다 세 배 이상 우수한 결합강도를 갖는 세라믹 인공뼈 코팅 기술을 개발했다고 밝혔다. KIST 연구진은 하루 이상의 시간과 수십 단계의 공정이 필요했던 기존 인공뼈 코팅을 단 하나의 공정만으로 한 시간 이내에 구현 가능한 기술을 개발했다. 이 공정 기법을 이용하면 인공뼈 코팅을 위한 원료 물질을 합성하는 별도의 과정도 필요하지 않고, 고가의 장비와 부수적인 열처리 과정 없이 나노초 레이저(nanosecond laser) 장비 하나만으로 코팅할 수 있다. 그 뿐만 아니라 현재 임상에서 사용되고 있는 소수의 인공뼈 코팅 기법들보다 더 강한 결합력을 갖는 코팅층을 형성할 수 있다. 또한, 이 공정을 사용할 경우에 금속 표면뿐만 아니라 기존의 공정으로는 구현하지 못하였던 정형외과용 플라스틱 임플란트 등 고분자 소재 표면에도 강한 코팅을 구현할 수 있는 장점이 있다. 전호정 박사팀은 공정 단계와 시간을 단축 하면서도 강력한 코팅을 구현하기 위해, 뼈의 주 성분인 칼슘과 인으로 이루어진 용액 속에 코팅 하고자 하는 재료를 위치시키고 레이저를 조사하는 방법을 사용했다. 이때 레이저의 초점 영역에 국소적으로 온도가 증가하면서 칼슘과 인 성분이 반응하여 세라믹 인공뼈(하이드록시아파타이트)가 합성되고 동시에 코팅층이 형성되었다. 이 방법은 기존의 코팅법들이 재료 표면에 코팅 하고자 하는 성분을 쌓아 올리는 방식과는 다르게, 레이저에 의해 인공뼈 성분의 합성이 일어나면서 동시에 재료의 표면이 녹는점 이상으로 가열되어 녹은 후 합성된 채로 다시 굳기 때문에 코팅 결합력을 극도로 증가시킬 수 있었다. KIST 전호정 박사는 “나노초레이저를 이용한 하이드록시아파타이트 코팅 기법은 현재 생체재료로 많이 사용되고 있는 티타늄, PEEK와 같은 생체비활성 소재의 표면을 간단한 방법으로 생체활성화 시킬 수 있는 기술로, 골융합을 필요로하는 다양한 의료기기로 확대 적용이 가능하게 하는 게임 체인저 역할을 할 수 있을 것으로 기대된다.”고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 한국연구재단 중견연구자지원사업으로 수행되었으며, 이번 연구결과는 기능성 재료 분야 국제 저널인 ‘Advanced Functional Materials’ (IF: 16.836, JCR 분야 상위 3.981%) 최신 호에 게재되었다. * (논문명) Robust hydroxyapatite coating by laser-induced hydrothermal synthesis - (제 1저자) 한국과학기술연구원 엄승훈 학생연구원 - (제 1저자) 한국과학기술연구원 정용우 학생연구원(現, LASERVAL) - (교신저자) 한국과학기술연구원 전호정 책임연구원 <그림설명> [그림 1] KIST 연구진이 레이저를 이용하여 인골 뼈를 세계 최고속 수준으로 구현한 방법과 이로 인해 형성된 코팅층의 구조를 보여주는 모식도 [그림 2] 레이저를 이용한 인공뼈의 합성과 코팅이 동시에 일어나는 원리를 나타낸 모식도 [그림 3] 코팅 방법에 따른 인공뼈 코팅 강도 비교표
임플란트에 인공뼈 코팅해서 염증 해결한다
- 생산 공정 단계, 시간, 비용 대폭 줄이면서도 기존 임상 제품 보다 코팅 성능 우월 - 금속, 고분자 소재 표면에 인공뼈 합성과 코팅을 동시에 구현 인구 노령화와 함께 현대 사회로 발전하면서 골질환이 급증하고 있으며, 골질환 치료를 위한 치과용/정형외과용 임플란트의 사용이 증가하고 있다. A.D. 1세기경 로마시대에 철을 치아 대용으로 사용했을 정도로 임플란트의 역사는 오래되었다. 하지만 오랜 역사에도 불구하고 체내 뼈조직과 결합이 빨리 이루어지지 않아 헐거워지거나 염증이 생겨 2차 수술을 해야 하는 등의 문제가 발생한다. 뼈와 동일한 성분으로 이루어진 인공뼈를 임플란트 소재에 코팅하여 이러한 문제를 해결하기 위한 방법이 시도되고 있다. 기존의 인공뼈 코팅 방법들은 인공뼈 물질을 제작하기 위한 별도의 합성 공정 과정과 장시간의 코팅 공정 시간이 필요하다. 또한, 모재와 인공뼈 코팅층 간의 결합력이 약하여 쉽게 손상되거나 뜯겨 나가는 경우가 많아 실제 임상에서 환자에게 사용될 수 있을 만큼 강한 코팅 방법은 부족한 상황이었다. 그런 가운데, 한국과학기술연구원(KIST, 원장 윤석진) 생체재료연구센터 전호정 박사팀은 생체 이식용 재료 표면에 기존보다 세 배 이상 우수한 결합강도를 갖는 세라믹 인공뼈 코팅 기술을 개발했다고 밝혔다. KIST 연구진은 하루 이상의 시간과 수십 단계의 공정이 필요했던 기존 인공뼈 코팅을 단 하나의 공정만으로 한 시간 이내에 구현 가능한 기술을 개발했다. 이 공정 기법을 이용하면 인공뼈 코팅을 위한 원료 물질을 합성하는 별도의 과정도 필요하지 않고, 고가의 장비와 부수적인 열처리 과정 없이 나노초 레이저(nanosecond laser) 장비 하나만으로 코팅할 수 있다. 그 뿐만 아니라 현재 임상에서 사용되고 있는 소수의 인공뼈 코팅 기법들보다 더 강한 결합력을 갖는 코팅층을 형성할 수 있다. 또한, 이 공정을 사용할 경우에 금속 표면뿐만 아니라 기존의 공정으로는 구현하지 못하였던 정형외과용 플라스틱 임플란트 등 고분자 소재 표면에도 강한 코팅을 구현할 수 있는 장점이 있다. 전호정 박사팀은 공정 단계와 시간을 단축 하면서도 강력한 코팅을 구현하기 위해, 뼈의 주 성분인 칼슘과 인으로 이루어진 용액 속에 코팅 하고자 하는 재료를 위치시키고 레이저를 조사하는 방법을 사용했다. 이때 레이저의 초점 영역에 국소적으로 온도가 증가하면서 칼슘과 인 성분이 반응하여 세라믹 인공뼈(하이드록시아파타이트)가 합성되고 동시에 코팅층이 형성되었다. 이 방법은 기존의 코팅법들이 재료 표면에 코팅 하고자 하는 성분을 쌓아 올리는 방식과는 다르게, 레이저에 의해 인공뼈 성분의 합성이 일어나면서 동시에 재료의 표면이 녹는점 이상으로 가열되어 녹은 후 합성된 채로 다시 굳기 때문에 코팅 결합력을 극도로 증가시킬 수 있었다. KIST 전호정 박사는 “나노초레이저를 이용한 하이드록시아파타이트 코팅 기법은 현재 생체재료로 많이 사용되고 있는 티타늄, PEEK와 같은 생체비활성 소재의 표면을 간단한 방법으로 생체활성화 시킬 수 있는 기술로, 골융합을 필요로하는 다양한 의료기기로 확대 적용이 가능하게 하는 게임 체인저 역할을 할 수 있을 것으로 기대된다.”고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 한국연구재단 중견연구자지원사업으로 수행되었으며, 이번 연구결과는 기능성 재료 분야 국제 저널인 ‘Advanced Functional Materials’ (IF: 16.836, JCR 분야 상위 3.981%) 최신 호에 게재되었다. * (논문명) Robust hydroxyapatite coating by laser-induced hydrothermal synthesis - (제 1저자) 한국과학기술연구원 엄승훈 학생연구원 - (제 1저자) 한국과학기술연구원 정용우 학생연구원(現, LASERVAL) - (교신저자) 한국과학기술연구원 전호정 책임연구원 <그림설명> [그림 1] KIST 연구진이 레이저를 이용하여 인골 뼈를 세계 최고속 수준으로 구현한 방법과 이로 인해 형성된 코팅층의 구조를 보여주는 모식도 [그림 2] 레이저를 이용한 인공뼈의 합성과 코팅이 동시에 일어나는 원리를 나타낸 모식도 [그림 3] 코팅 방법에 따른 인공뼈 코팅 강도 비교표
임플란트에 인공뼈 코팅해서 염증 해결한다
- 생산 공정 단계, 시간, 비용 대폭 줄이면서도 기존 임상 제품 보다 코팅 성능 우월 - 금속, 고분자 소재 표면에 인공뼈 합성과 코팅을 동시에 구현 인구 노령화와 함께 현대 사회로 발전하면서 골질환이 급증하고 있으며, 골질환 치료를 위한 치과용/정형외과용 임플란트의 사용이 증가하고 있다. A.D. 1세기경 로마시대에 철을 치아 대용으로 사용했을 정도로 임플란트의 역사는 오래되었다. 하지만 오랜 역사에도 불구하고 체내 뼈조직과 결합이 빨리 이루어지지 않아 헐거워지거나 염증이 생겨 2차 수술을 해야 하는 등의 문제가 발생한다. 뼈와 동일한 성분으로 이루어진 인공뼈를 임플란트 소재에 코팅하여 이러한 문제를 해결하기 위한 방법이 시도되고 있다. 기존의 인공뼈 코팅 방법들은 인공뼈 물질을 제작하기 위한 별도의 합성 공정 과정과 장시간의 코팅 공정 시간이 필요하다. 또한, 모재와 인공뼈 코팅층 간의 결합력이 약하여 쉽게 손상되거나 뜯겨 나가는 경우가 많아 실제 임상에서 환자에게 사용될 수 있을 만큼 강한 코팅 방법은 부족한 상황이었다. 그런 가운데, 한국과학기술연구원(KIST, 원장 윤석진) 생체재료연구센터 전호정 박사팀은 생체 이식용 재료 표면에 기존보다 세 배 이상 우수한 결합강도를 갖는 세라믹 인공뼈 코팅 기술을 개발했다고 밝혔다. KIST 연구진은 하루 이상의 시간과 수십 단계의 공정이 필요했던 기존 인공뼈 코팅을 단 하나의 공정만으로 한 시간 이내에 구현 가능한 기술을 개발했다. 이 공정 기법을 이용하면 인공뼈 코팅을 위한 원료 물질을 합성하는 별도의 과정도 필요하지 않고, 고가의 장비와 부수적인 열처리 과정 없이 나노초 레이저(nanosecond laser) 장비 하나만으로 코팅할 수 있다. 그 뿐만 아니라 현재 임상에서 사용되고 있는 소수의 인공뼈 코팅 기법들보다 더 강한 결합력을 갖는 코팅층을 형성할 수 있다. 또한, 이 공정을 사용할 경우에 금속 표면뿐만 아니라 기존의 공정으로는 구현하지 못하였던 정형외과용 플라스틱 임플란트 등 고분자 소재 표면에도 강한 코팅을 구현할 수 있는 장점이 있다. 전호정 박사팀은 공정 단계와 시간을 단축 하면서도 강력한 코팅을 구현하기 위해, 뼈의 주 성분인 칼슘과 인으로 이루어진 용액 속에 코팅 하고자 하는 재료를 위치시키고 레이저를 조사하는 방법을 사용했다. 이때 레이저의 초점 영역에 국소적으로 온도가 증가하면서 칼슘과 인 성분이 반응하여 세라믹 인공뼈(하이드록시아파타이트)가 합성되고 동시에 코팅층이 형성되었다. 이 방법은 기존의 코팅법들이 재료 표면에 코팅 하고자 하는 성분을 쌓아 올리는 방식과는 다르게, 레이저에 의해 인공뼈 성분의 합성이 일어나면서 동시에 재료의 표면이 녹는점 이상으로 가열되어 녹은 후 합성된 채로 다시 굳기 때문에 코팅 결합력을 극도로 증가시킬 수 있었다. KIST 전호정 박사는 “나노초레이저를 이용한 하이드록시아파타이트 코팅 기법은 현재 생체재료로 많이 사용되고 있는 티타늄, PEEK와 같은 생체비활성 소재의 표면을 간단한 방법으로 생체활성화 시킬 수 있는 기술로, 골융합을 필요로하는 다양한 의료기기로 확대 적용이 가능하게 하는 게임 체인저 역할을 할 수 있을 것으로 기대된다.”고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 한국연구재단 중견연구자지원사업으로 수행되었으며, 이번 연구결과는 기능성 재료 분야 국제 저널인 ‘Advanced Functional Materials’ (IF: 16.836, JCR 분야 상위 3.981%) 최신 호에 게재되었다. * (논문명) Robust hydroxyapatite coating by laser-induced hydrothermal synthesis - (제 1저자) 한국과학기술연구원 엄승훈 학생연구원 - (제 1저자) 한국과학기술연구원 정용우 학생연구원(現, LASERVAL) - (교신저자) 한국과학기술연구원 전호정 책임연구원 <그림설명> [그림 1] KIST 연구진이 레이저를 이용하여 인골 뼈를 세계 최고속 수준으로 구현한 방법과 이로 인해 형성된 코팅층의 구조를 보여주는 모식도 [그림 2] 레이저를 이용한 인공뼈의 합성과 코팅이 동시에 일어나는 원리를 나타낸 모식도 [그림 3] 코팅 방법에 따른 인공뼈 코팅 강도 비교표
임플란트에 인공뼈 코팅해서 염증 해결한다
- 생산 공정 단계, 시간, 비용 대폭 줄이면서도 기존 임상 제품 보다 코팅 성능 우월 - 금속, 고분자 소재 표면에 인공뼈 합성과 코팅을 동시에 구현 인구 노령화와 함께 현대 사회로 발전하면서 골질환이 급증하고 있으며, 골질환 치료를 위한 치과용/정형외과용 임플란트의 사용이 증가하고 있다. A.D. 1세기경 로마시대에 철을 치아 대용으로 사용했을 정도로 임플란트의 역사는 오래되었다. 하지만 오랜 역사에도 불구하고 체내 뼈조직과 결합이 빨리 이루어지지 않아 헐거워지거나 염증이 생겨 2차 수술을 해야 하는 등의 문제가 발생한다. 뼈와 동일한 성분으로 이루어진 인공뼈를 임플란트 소재에 코팅하여 이러한 문제를 해결하기 위한 방법이 시도되고 있다. 기존의 인공뼈 코팅 방법들은 인공뼈 물질을 제작하기 위한 별도의 합성 공정 과정과 장시간의 코팅 공정 시간이 필요하다. 또한, 모재와 인공뼈 코팅층 간의 결합력이 약하여 쉽게 손상되거나 뜯겨 나가는 경우가 많아 실제 임상에서 환자에게 사용될 수 있을 만큼 강한 코팅 방법은 부족한 상황이었다. 그런 가운데, 한국과학기술연구원(KIST, 원장 윤석진) 생체재료연구센터 전호정 박사팀은 생체 이식용 재료 표면에 기존보다 세 배 이상 우수한 결합강도를 갖는 세라믹 인공뼈 코팅 기술을 개발했다고 밝혔다. KIST 연구진은 하루 이상의 시간과 수십 단계의 공정이 필요했던 기존 인공뼈 코팅을 단 하나의 공정만으로 한 시간 이내에 구현 가능한 기술을 개발했다. 이 공정 기법을 이용하면 인공뼈 코팅을 위한 원료 물질을 합성하는 별도의 과정도 필요하지 않고, 고가의 장비와 부수적인 열처리 과정 없이 나노초 레이저(nanosecond laser) 장비 하나만으로 코팅할 수 있다. 그 뿐만 아니라 현재 임상에서 사용되고 있는 소수의 인공뼈 코팅 기법들보다 더 강한 결합력을 갖는 코팅층을 형성할 수 있다. 또한, 이 공정을 사용할 경우에 금속 표면뿐만 아니라 기존의 공정으로는 구현하지 못하였던 정형외과용 플라스틱 임플란트 등 고분자 소재 표면에도 강한 코팅을 구현할 수 있는 장점이 있다. 전호정 박사팀은 공정 단계와 시간을 단축 하면서도 강력한 코팅을 구현하기 위해, 뼈의 주 성분인 칼슘과 인으로 이루어진 용액 속에 코팅 하고자 하는 재료를 위치시키고 레이저를 조사하는 방법을 사용했다. 이때 레이저의 초점 영역에 국소적으로 온도가 증가하면서 칼슘과 인 성분이 반응하여 세라믹 인공뼈(하이드록시아파타이트)가 합성되고 동시에 코팅층이 형성되었다. 이 방법은 기존의 코팅법들이 재료 표면에 코팅 하고자 하는 성분을 쌓아 올리는 방식과는 다르게, 레이저에 의해 인공뼈 성분의 합성이 일어나면서 동시에 재료의 표면이 녹는점 이상으로 가열되어 녹은 후 합성된 채로 다시 굳기 때문에 코팅 결합력을 극도로 증가시킬 수 있었다. KIST 전호정 박사는 “나노초레이저를 이용한 하이드록시아파타이트 코팅 기법은 현재 생체재료로 많이 사용되고 있는 티타늄, PEEK와 같은 생체비활성 소재의 표면을 간단한 방법으로 생체활성화 시킬 수 있는 기술로, 골융합을 필요로하는 다양한 의료기기로 확대 적용이 가능하게 하는 게임 체인저 역할을 할 수 있을 것으로 기대된다.”고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 한국연구재단 중견연구자지원사업으로 수행되었으며, 이번 연구결과는 기능성 재료 분야 국제 저널인 ‘Advanced Functional Materials’ (IF: 16.836, JCR 분야 상위 3.981%) 최신 호에 게재되었다. * (논문명) Robust hydroxyapatite coating by laser-induced hydrothermal synthesis - (제 1저자) 한국과학기술연구원 엄승훈 학생연구원 - (제 1저자) 한국과학기술연구원 정용우 학생연구원(現, LASERVAL) - (교신저자) 한국과학기술연구원 전호정 책임연구원 <그림설명> [그림 1] KIST 연구진이 레이저를 이용하여 인골 뼈를 세계 최고속 수준으로 구현한 방법과 이로 인해 형성된 코팅층의 구조를 보여주는 모식도 [그림 2] 레이저를 이용한 인공뼈의 합성과 코팅이 동시에 일어나는 원리를 나타낸 모식도 [그림 3] 코팅 방법에 따른 인공뼈 코팅 강도 비교표