검색결과
게시물 키워드""에 대한 9094개의 검색결과를 찾았습니다.
약물 구조 정밀 규명 가능한 NMR 분석법 개발
- 1회 측정으로 초고해상도 탄소 원자 핵자기공명 정보 분석 - 거대 복잡구조 천연물과 이성질체 혼합물의 정밀분석결과 최초 제시 1950년대 후반부터 1960년대까지 임산부들의 입덧 방지용 약으로 판매되었던 탈리도마이드의 부작용으로 팔, 다리가 짧은 1만 2천여명의 기형아가 태어났다. 비극의 원인은 약물의 부작용 매커니즘을 파악하지 못했기 때문인데, 다양한 화합물의 분자구조를 결정하는 연구는 생명현상의 이해와 질병 치료용 약물을 개발하는데 필수적이며, 주로 핵자기공명분광법(NMR)을 통해 측정한 주파수 신호를 해석한다. 한국과학기술연구원(KIST, 원장 윤석진) 천연물인포매틱스연구센터 차진욱, 박진수 박사팀은 1회 측정을 통해 특정 수소와 연결된 탄소 원자핵의 정보를 선택적으로 측정할 수 있는 NMR 분석법(Ultraselective Heteronuclear Polarization Transfer Method, UHPT)을 최초로 개발했다고 밝혔다. 100억 원을 호가하는 기존의 초고자장 NMR 장비에서조차 특정 수소 원자핵에 대한 선택적 NMR 신호 측정만이 가능했으나, 그와 연결된 탄소 원자핵 신호의 신속한 측정은 불가능하여 미세한 수준의 특정 수소-탄소 NMR 신호 분해능의 확보가 어려웠다. 또한, 의약품 원료와 독성 우려 약물의 화학구조 규명에도 한계가 있었다. 연구팀은 UHPT 분석법을 통해 복잡한 탄소핵 NMR 신호 사이에서 단 한 번의 측정만으로 특정 수소 원자핵과 연결된 탄소를 구분했으며, 수 헤르츠(Hz) 수준의 탄소핵 신호 분해능을 확보했다. 이를 통해 항암제로 이용되는 파클리탁셀처럼 여러 종의 약물로 개발되어 온 분자구조가 복잡한 천연 유래 물질의 구조를 명확하게 분석할 수 있게 됐다. 또한, 천연 유래 항암 물질인 닥티노마이신(dactinomycin)을 구성하는 아미노산의 광학이성질체와 살균 물질인 이프로발리카브(iprovalicarb)를 구성하는 부분입체이성질체 혼합물의 개별 탄소 핵 NMR 신호를 정밀 분석하는 데 최초로 성공했다. UHPT 분석법은 기존의 분석법 대비 빠르고, 정확하면서 경제적이다. 대학이나 기업에서 보유하고 있는 NMR 장비에 적용할 경우 초고자장 NMR 장비 대비 약 1/5 수준의 측정시간으로 동등한 수준의 NMR 신호 분해능을 확보할 수 있음을 확인했다. KIST 차진욱 박사는 “새로운 NMR 분석법은 천연물 바이오 산업계에서 신규 소재의 유효성분 규명 및 규격화를 위한 표준 분석기술로 활용할 수 있다.”면서, “의약품 개발과정에서 유효성과 안전성 규명에 결정적인 역할을 하는 부분입체이성질체의 구조 규명에 활용해 신약 개발 과정의 난제를 해결함으로써 천연물 바이오 산업 육성에 기여할 것으로 기대한다.”고 밝혔다. 본 연구는 과학기술정보통신부(장관 이종호) 지원을 받아 KIST 주요사업(2E32611)을 통해 수행되었으며 화학 분야의 학술지인 「앙게반테 케미(Angewandte Chemie International Edition, IF 16.82)」 최신 호에 표지논문으로 6월 2일 게재됐다. * A Single-Scan Ultraselective Heteronuclear Polarization Transfer Method for Unambiguous Complex Structure Assignment [그림1] 저널 inside 표지 그림 [그림2] 본 UHPT 분석법을 활용한 부분입체이성질체 혼합물의 화학구조분석 과정 ○ 논문명: A Single-Scan Ultraselective Heteronuclear Polarization Transfer Method for Unambiguous Complex Structure Assignment ○ 학술지: Angewandte Chemie International Edition ○ 게재일: 2023. 6. 2. ○ DOI: https://doi.org/10.1002/anie.202304196 ○ 논문저자 - 차진욱 선임연구원(제1저자∙교신저자/KIST 천연물인포매틱스연구센터), - 박진수 선임연구원(교신저자/KIST 천연물인포매틱스연구센터)
약물 구조 정밀 규명 가능한 NMR 분석법 개발
- 1회 측정으로 초고해상도 탄소 원자 핵자기공명 정보 분석 - 거대 복잡구조 천연물과 이성질체 혼합물의 정밀분석결과 최초 제시 1950년대 후반부터 1960년대까지 임산부들의 입덧 방지용 약으로 판매되었던 탈리도마이드의 부작용으로 팔, 다리가 짧은 1만 2천여명의 기형아가 태어났다. 비극의 원인은 약물의 부작용 매커니즘을 파악하지 못했기 때문인데, 다양한 화합물의 분자구조를 결정하는 연구는 생명현상의 이해와 질병 치료용 약물을 개발하는데 필수적이며, 주로 핵자기공명분광법(NMR)을 통해 측정한 주파수 신호를 해석한다. 한국과학기술연구원(KIST, 원장 윤석진) 천연물인포매틱스연구센터 차진욱, 박진수 박사팀은 1회 측정을 통해 특정 수소와 연결된 탄소 원자핵의 정보를 선택적으로 측정할 수 있는 NMR 분석법(Ultraselective Heteronuclear Polarization Transfer Method, UHPT)을 최초로 개발했다고 밝혔다. 100억 원을 호가하는 기존의 초고자장 NMR 장비에서조차 특정 수소 원자핵에 대한 선택적 NMR 신호 측정만이 가능했으나, 그와 연결된 탄소 원자핵 신호의 신속한 측정은 불가능하여 미세한 수준의 특정 수소-탄소 NMR 신호 분해능의 확보가 어려웠다. 또한, 의약품 원료와 독성 우려 약물의 화학구조 규명에도 한계가 있었다. 연구팀은 UHPT 분석법을 통해 복잡한 탄소핵 NMR 신호 사이에서 단 한 번의 측정만으로 특정 수소 원자핵과 연결된 탄소를 구분했으며, 수 헤르츠(Hz) 수준의 탄소핵 신호 분해능을 확보했다. 이를 통해 항암제로 이용되는 파클리탁셀처럼 여러 종의 약물로 개발되어 온 분자구조가 복잡한 천연 유래 물질의 구조를 명확하게 분석할 수 있게 됐다. 또한, 천연 유래 항암 물질인 닥티노마이신(dactinomycin)을 구성하는 아미노산의 광학이성질체와 살균 물질인 이프로발리카브(iprovalicarb)를 구성하는 부분입체이성질체 혼합물의 개별 탄소 핵 NMR 신호를 정밀 분석하는 데 최초로 성공했다. UHPT 분석법은 기존의 분석법 대비 빠르고, 정확하면서 경제적이다. 대학이나 기업에서 보유하고 있는 NMR 장비에 적용할 경우 초고자장 NMR 장비 대비 약 1/5 수준의 측정시간으로 동등한 수준의 NMR 신호 분해능을 확보할 수 있음을 확인했다. KIST 차진욱 박사는 “새로운 NMR 분석법은 천연물 바이오 산업계에서 신규 소재의 유효성분 규명 및 규격화를 위한 표준 분석기술로 활용할 수 있다.”면서, “의약품 개발과정에서 유효성과 안전성 규명에 결정적인 역할을 하는 부분입체이성질체의 구조 규명에 활용해 신약 개발 과정의 난제를 해결함으로써 천연물 바이오 산업 육성에 기여할 것으로 기대한다.”고 밝혔다. 본 연구는 과학기술정보통신부(장관 이종호) 지원을 받아 KIST 주요사업(2E32611)을 통해 수행되었으며 화학 분야의 학술지인 「앙게반테 케미(Angewandte Chemie International Edition, IF 16.82)」 최신 호에 표지논문으로 6월 2일 게재됐다. * A Single-Scan Ultraselective Heteronuclear Polarization Transfer Method for Unambiguous Complex Structure Assignment [그림1] 저널 inside 표지 그림 [그림2] 본 UHPT 분석법을 활용한 부분입체이성질체 혼합물의 화학구조분석 과정 ○ 논문명: A Single-Scan Ultraselective Heteronuclear Polarization Transfer Method for Unambiguous Complex Structure Assignment ○ 학술지: Angewandte Chemie International Edition ○ 게재일: 2023. 6. 2. ○ DOI: https://doi.org/10.1002/anie.202304196 ○ 논문저자 - 차진욱 선임연구원(제1저자∙교신저자/KIST 천연물인포매틱스연구센터), - 박진수 선임연구원(교신저자/KIST 천연물인포매틱스연구센터)
약한 전기만으로 물 속 오염물을 제거한다
- 낮은 전압으로 촉매 표면 활성화, 기존 2배 이상의 분해효율 나타내 - 물과 전기만으로 오염물 제거, 반영구적인 수처리 촉매 상용화 앞당겨 최근 강화되는 수질규제와 끊임없는 수질개선 요구가 잇따르고 있어 새로운 수처리 방식의 개발이 시급한 시점이다. 최근 더 깨끗한 물을 사용하기 위해서 하수나 폐수에 존재하는 염료, 항생제 등 기존 방식으로는 분해하기 어려운 오염물들을 효율적, 지속적으로 분해하는 공정 개발에 대한 필요성이 제기되고 있다. 한국과학기술연구원(KIST, 원장 이병권) 물질구조제어연구센터 김종식 박사팀은 분해가 어려웠던 수용성 오염물들을 효율적이고 지속적으로 분해시킬 수 있는 촉매와 그에 필요한 공정을 개발했다고 밝혔다. 기존에 상용화된 공정은 오염물들을 수질에 무해한 물 및 이산화탄소 등으로 전환하는 강력한 분해제인 라디칼*을 이용하여 오염물을 분해한다. 하지만 지속적인 오염물 분해를 위한 촉매의 수명이 1회성이어서, 라디칼을 형성하는 라디칼 전구체**를 끊임없이 공급해야 하는 치명적인 단점들을 가진다. *라디칼(Radicals) : 물에 잘 분해되지 않는 오염물들의 산화분해에 의한 물 및 이산화탄소 생성에 적용되는 산화제 **라디칼전구체(Radical precursors): 라디칼 형성을 위한 재료 KIST 연구진이 개발한 새로운 공정은 단순한 전기화학 설비로 구성되어 있으며, 추가적인 분해제의 공급이 필요하지 않다. 또한, 낮은 전압의 전원만 걸어주면 상용공정 대비 최소 2배 이상의 오염물 분해효율을 반영구적으로 제공한다. KIST에서 개발된 공정은 단순하고 저렴한 방법에 의하여 내구성 및 수명이 극대화된 라디칼 생성용 촉매 사용을 핵심으로 한다. 기존 공정에 적용된 촉매의 주요 역할은 라디칼 생산에만 국한되어 있는데, 이와는 대조적으로 KIST 연구진이 개발한 촉매는 단순히 라디칼을 생산하는 것 이외에 생성된 라디칼들을 촉매표면에 고정시킬 수 있다는 차별점을 지닌다. 또한, 낮은 전압만 걸어주면 촉매표면에 라디칼들을 반영구적으로 고정시킬 수 있음이 실험과학(KIST 김종식 박사) 및 계산과학(육군사관학교 정근홍 교수)으로 규명되었다. KIST 김종식 박사는 “이와 같은 라디칼에 의한 표면활성화 기작은 지금까지 보고된 바가 없는, 기존 수처리 촉매들의 한계를 넘어서는 창조적인 발견으로, 현재 실험·계산 융합연구 및 공정최적화 연구를 진행 중이며, 하/폐수 처리장으로 상용화될 수 있을 것으로 기대한다.”고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민) 지원으로 KIST 기관고유사업과 한국연구재단 중견핵심사업으로 수행되었으며, 연구 결과는 촉매분야 최고 수준의 과학전문지인 ‘Applied Catalysis B: Environmental’ (IF:11.698, JCR 분야 상위 1.00%) 최신호에 온라인 게재되었다. * (논문명) Enhancing the Decomposition of Refractory Contaminants on SO42―Functionalized Iron Oxide to Accommodate Surface SO4?- Generated via Radical Transfer from ?OH - (제1저자 및 교신저자) KIST 물질구조제어연구센터 김종식 선임연구원 - (공저자) 육군사관학교 정근홍 부교수 <그림설명> (a) 개질된 산화철(Fe2O3/Fe3O4) 표면 도식 (b) Feδ+ 활성종에 의한 H2O2 분해 및 ?OH의 생성 (c) ?OH에 의한 표면 SO42- 기능기(Fe-SO42-)의 활성화 및 이에 기반한 (d) 표면 SO4?- 라디칼(Fe-SO4?-)로의 전환
약한 전기만으로 물 속 오염물을 제거한다
- 낮은 전압으로 촉매 표면 활성화, 기존 2배 이상의 분해효율 나타내 - 물과 전기만으로 오염물 제거, 반영구적인 수처리 촉매 상용화 앞당겨 최근 강화되는 수질규제와 끊임없는 수질개선 요구가 잇따르고 있어 새로운 수처리 방식의 개발이 시급한 시점이다. 최근 더 깨끗한 물을 사용하기 위해서 하수나 폐수에 존재하는 염료, 항생제 등 기존 방식으로는 분해하기 어려운 오염물들을 효율적, 지속적으로 분해하는 공정 개발에 대한 필요성이 제기되고 있다. 한국과학기술연구원(KIST, 원장 이병권) 물질구조제어연구센터 김종식 박사팀은 분해가 어려웠던 수용성 오염물들을 효율적이고 지속적으로 분해시킬 수 있는 촉매와 그에 필요한 공정을 개발했다고 밝혔다. 기존에 상용화된 공정은 오염물들을 수질에 무해한 물 및 이산화탄소 등으로 전환하는 강력한 분해제인 라디칼*을 이용하여 오염물을 분해한다. 하지만 지속적인 오염물 분해를 위한 촉매의 수명이 1회성이어서, 라디칼을 형성하는 라디칼 전구체**를 끊임없이 공급해야 하는 치명적인 단점들을 가진다. *라디칼(Radicals) : 물에 잘 분해되지 않는 오염물들의 산화분해에 의한 물 및 이산화탄소 생성에 적용되는 산화제 **라디칼전구체(Radical precursors): 라디칼 형성을 위한 재료 KIST 연구진이 개발한 새로운 공정은 단순한 전기화학 설비로 구성되어 있으며, 추가적인 분해제의 공급이 필요하지 않다. 또한, 낮은 전압의 전원만 걸어주면 상용공정 대비 최소 2배 이상의 오염물 분해효율을 반영구적으로 제공한다. KIST에서 개발된 공정은 단순하고 저렴한 방법에 의하여 내구성 및 수명이 극대화된 라디칼 생성용 촉매 사용을 핵심으로 한다. 기존 공정에 적용된 촉매의 주요 역할은 라디칼 생산에만 국한되어 있는데, 이와는 대조적으로 KIST 연구진이 개발한 촉매는 단순히 라디칼을 생산하는 것 이외에 생성된 라디칼들을 촉매표면에 고정시킬 수 있다는 차별점을 지닌다. 또한, 낮은 전압만 걸어주면 촉매표면에 라디칼들을 반영구적으로 고정시킬 수 있음이 실험과학(KIST 김종식 박사) 및 계산과학(육군사관학교 정근홍 교수)으로 규명되었다. KIST 김종식 박사는 “이와 같은 라디칼에 의한 표면활성화 기작은 지금까지 보고된 바가 없는, 기존 수처리 촉매들의 한계를 넘어서는 창조적인 발견으로, 현재 실험·계산 융합연구 및 공정최적화 연구를 진행 중이며, 하/폐수 처리장으로 상용화될 수 있을 것으로 기대한다.”고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민) 지원으로 KIST 기관고유사업과 한국연구재단 중견핵심사업으로 수행되었으며, 연구 결과는 촉매분야 최고 수준의 과학전문지인 ‘Applied Catalysis B: Environmental’ (IF:11.698, JCR 분야 상위 1.00%) 최신호에 온라인 게재되었다. * (논문명) Enhancing the Decomposition of Refractory Contaminants on SO42―Functionalized Iron Oxide to Accommodate Surface SO4?- Generated via Radical Transfer from ?OH - (제1저자 및 교신저자) KIST 물질구조제어연구센터 김종식 선임연구원 - (공저자) 육군사관학교 정근홍 부교수 <그림설명> (a) 개질된 산화철(Fe2O3/Fe3O4) 표면 도식 (b) Feδ+ 활성종에 의한 H2O2 분해 및 ?OH의 생성 (c) ?OH에 의한 표면 SO42- 기능기(Fe-SO42-)의 활성화 및 이에 기반한 (d) 표면 SO4?- 라디칼(Fe-SO4?-)로의 전환
약한 전기만으로 물 속 오염물을 제거한다
- 낮은 전압으로 촉매 표면 활성화, 기존 2배 이상의 분해효율 나타내 - 물과 전기만으로 오염물 제거, 반영구적인 수처리 촉매 상용화 앞당겨 최근 강화되는 수질규제와 끊임없는 수질개선 요구가 잇따르고 있어 새로운 수처리 방식의 개발이 시급한 시점이다. 최근 더 깨끗한 물을 사용하기 위해서 하수나 폐수에 존재하는 염료, 항생제 등 기존 방식으로는 분해하기 어려운 오염물들을 효율적, 지속적으로 분해하는 공정 개발에 대한 필요성이 제기되고 있다. 한국과학기술연구원(KIST, 원장 이병권) 물질구조제어연구센터 김종식 박사팀은 분해가 어려웠던 수용성 오염물들을 효율적이고 지속적으로 분해시킬 수 있는 촉매와 그에 필요한 공정을 개발했다고 밝혔다. 기존에 상용화된 공정은 오염물들을 수질에 무해한 물 및 이산화탄소 등으로 전환하는 강력한 분해제인 라디칼*을 이용하여 오염물을 분해한다. 하지만 지속적인 오염물 분해를 위한 촉매의 수명이 1회성이어서, 라디칼을 형성하는 라디칼 전구체**를 끊임없이 공급해야 하는 치명적인 단점들을 가진다. *라디칼(Radicals) : 물에 잘 분해되지 않는 오염물들의 산화분해에 의한 물 및 이산화탄소 생성에 적용되는 산화제 **라디칼전구체(Radical precursors): 라디칼 형성을 위한 재료 KIST 연구진이 개발한 새로운 공정은 단순한 전기화학 설비로 구성되어 있으며, 추가적인 분해제의 공급이 필요하지 않다. 또한, 낮은 전압의 전원만 걸어주면 상용공정 대비 최소 2배 이상의 오염물 분해효율을 반영구적으로 제공한다. KIST에서 개발된 공정은 단순하고 저렴한 방법에 의하여 내구성 및 수명이 극대화된 라디칼 생성용 촉매 사용을 핵심으로 한다. 기존 공정에 적용된 촉매의 주요 역할은 라디칼 생산에만 국한되어 있는데, 이와는 대조적으로 KIST 연구진이 개발한 촉매는 단순히 라디칼을 생산하는 것 이외에 생성된 라디칼들을 촉매표면에 고정시킬 수 있다는 차별점을 지닌다. 또한, 낮은 전압만 걸어주면 촉매표면에 라디칼들을 반영구적으로 고정시킬 수 있음이 실험과학(KIST 김종식 박사) 및 계산과학(육군사관학교 정근홍 교수)으로 규명되었다. KIST 김종식 박사는 “이와 같은 라디칼에 의한 표면활성화 기작은 지금까지 보고된 바가 없는, 기존 수처리 촉매들의 한계를 넘어서는 창조적인 발견으로, 현재 실험·계산 융합연구 및 공정최적화 연구를 진행 중이며, 하/폐수 처리장으로 상용화될 수 있을 것으로 기대한다.”고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민) 지원으로 KIST 기관고유사업과 한국연구재단 중견핵심사업으로 수행되었으며, 연구 결과는 촉매분야 최고 수준의 과학전문지인 ‘Applied Catalysis B: Environmental’ (IF:11.698, JCR 분야 상위 1.00%) 최신호에 온라인 게재되었다. * (논문명) Enhancing the Decomposition of Refractory Contaminants on SO42―Functionalized Iron Oxide to Accommodate Surface SO4?- Generated via Radical Transfer from ?OH - (제1저자 및 교신저자) KIST 물질구조제어연구센터 김종식 선임연구원 - (공저자) 육군사관학교 정근홍 부교수 <그림설명> (a) 개질된 산화철(Fe2O3/Fe3O4) 표면 도식 (b) Feδ+ 활성종에 의한 H2O2 분해 및 ?OH의 생성 (c) ?OH에 의한 표면 SO42- 기능기(Fe-SO42-)의 활성화 및 이에 기반한 (d) 표면 SO4?- 라디칼(Fe-SO4?-)로의 전환
약한 전기만으로 물 속 오염물을 제거한다
- 낮은 전압으로 촉매 표면 활성화, 기존 2배 이상의 분해효율 나타내 - 물과 전기만으로 오염물 제거, 반영구적인 수처리 촉매 상용화 앞당겨 최근 강화되는 수질규제와 끊임없는 수질개선 요구가 잇따르고 있어 새로운 수처리 방식의 개발이 시급한 시점이다. 최근 더 깨끗한 물을 사용하기 위해서 하수나 폐수에 존재하는 염료, 항생제 등 기존 방식으로는 분해하기 어려운 오염물들을 효율적, 지속적으로 분해하는 공정 개발에 대한 필요성이 제기되고 있다. 한국과학기술연구원(KIST, 원장 이병권) 물질구조제어연구센터 김종식 박사팀은 분해가 어려웠던 수용성 오염물들을 효율적이고 지속적으로 분해시킬 수 있는 촉매와 그에 필요한 공정을 개발했다고 밝혔다. 기존에 상용화된 공정은 오염물들을 수질에 무해한 물 및 이산화탄소 등으로 전환하는 강력한 분해제인 라디칼*을 이용하여 오염물을 분해한다. 하지만 지속적인 오염물 분해를 위한 촉매의 수명이 1회성이어서, 라디칼을 형성하는 라디칼 전구체**를 끊임없이 공급해야 하는 치명적인 단점들을 가진다. *라디칼(Radicals) : 물에 잘 분해되지 않는 오염물들의 산화분해에 의한 물 및 이산화탄소 생성에 적용되는 산화제 **라디칼전구체(Radical precursors): 라디칼 형성을 위한 재료 KIST 연구진이 개발한 새로운 공정은 단순한 전기화학 설비로 구성되어 있으며, 추가적인 분해제의 공급이 필요하지 않다. 또한, 낮은 전압의 전원만 걸어주면 상용공정 대비 최소 2배 이상의 오염물 분해효율을 반영구적으로 제공한다. KIST에서 개발된 공정은 단순하고 저렴한 방법에 의하여 내구성 및 수명이 극대화된 라디칼 생성용 촉매 사용을 핵심으로 한다. 기존 공정에 적용된 촉매의 주요 역할은 라디칼 생산에만 국한되어 있는데, 이와는 대조적으로 KIST 연구진이 개발한 촉매는 단순히 라디칼을 생산하는 것 이외에 생성된 라디칼들을 촉매표면에 고정시킬 수 있다는 차별점을 지닌다. 또한, 낮은 전압만 걸어주면 촉매표면에 라디칼들을 반영구적으로 고정시킬 수 있음이 실험과학(KIST 김종식 박사) 및 계산과학(육군사관학교 정근홍 교수)으로 규명되었다. KIST 김종식 박사는 “이와 같은 라디칼에 의한 표면활성화 기작은 지금까지 보고된 바가 없는, 기존 수처리 촉매들의 한계를 넘어서는 창조적인 발견으로, 현재 실험·계산 융합연구 및 공정최적화 연구를 진행 중이며, 하/폐수 처리장으로 상용화될 수 있을 것으로 기대한다.”고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민) 지원으로 KIST 기관고유사업과 한국연구재단 중견핵심사업으로 수행되었으며, 연구 결과는 촉매분야 최고 수준의 과학전문지인 ‘Applied Catalysis B: Environmental’ (IF:11.698, JCR 분야 상위 1.00%) 최신호에 온라인 게재되었다. * (논문명) Enhancing the Decomposition of Refractory Contaminants on SO42―Functionalized Iron Oxide to Accommodate Surface SO4?- Generated via Radical Transfer from ?OH - (제1저자 및 교신저자) KIST 물질구조제어연구센터 김종식 선임연구원 - (공저자) 육군사관학교 정근홍 부교수 <그림설명> (a) 개질된 산화철(Fe2O3/Fe3O4) 표면 도식 (b) Feδ+ 활성종에 의한 H2O2 분해 및 ?OH의 생성 (c) ?OH에 의한 표면 SO42- 기능기(Fe-SO42-)의 활성화 및 이에 기반한 (d) 표면 SO4?- 라디칼(Fe-SO4?-)로의 전환
약한 전기만으로 물 속 오염물을 제거한다
- 낮은 전압으로 촉매 표면 활성화, 기존 2배 이상의 분해효율 나타내 - 물과 전기만으로 오염물 제거, 반영구적인 수처리 촉매 상용화 앞당겨 최근 강화되는 수질규제와 끊임없는 수질개선 요구가 잇따르고 있어 새로운 수처리 방식의 개발이 시급한 시점이다. 최근 더 깨끗한 물을 사용하기 위해서 하수나 폐수에 존재하는 염료, 항생제 등 기존 방식으로는 분해하기 어려운 오염물들을 효율적, 지속적으로 분해하는 공정 개발에 대한 필요성이 제기되고 있다. 한국과학기술연구원(KIST, 원장 이병권) 물질구조제어연구센터 김종식 박사팀은 분해가 어려웠던 수용성 오염물들을 효율적이고 지속적으로 분해시킬 수 있는 촉매와 그에 필요한 공정을 개발했다고 밝혔다. 기존에 상용화된 공정은 오염물들을 수질에 무해한 물 및 이산화탄소 등으로 전환하는 강력한 분해제인 라디칼*을 이용하여 오염물을 분해한다. 하지만 지속적인 오염물 분해를 위한 촉매의 수명이 1회성이어서, 라디칼을 형성하는 라디칼 전구체**를 끊임없이 공급해야 하는 치명적인 단점들을 가진다. *라디칼(Radicals) : 물에 잘 분해되지 않는 오염물들의 산화분해에 의한 물 및 이산화탄소 생성에 적용되는 산화제 **라디칼전구체(Radical precursors): 라디칼 형성을 위한 재료 KIST 연구진이 개발한 새로운 공정은 단순한 전기화학 설비로 구성되어 있으며, 추가적인 분해제의 공급이 필요하지 않다. 또한, 낮은 전압의 전원만 걸어주면 상용공정 대비 최소 2배 이상의 오염물 분해효율을 반영구적으로 제공한다. KIST에서 개발된 공정은 단순하고 저렴한 방법에 의하여 내구성 및 수명이 극대화된 라디칼 생성용 촉매 사용을 핵심으로 한다. 기존 공정에 적용된 촉매의 주요 역할은 라디칼 생산에만 국한되어 있는데, 이와는 대조적으로 KIST 연구진이 개발한 촉매는 단순히 라디칼을 생산하는 것 이외에 생성된 라디칼들을 촉매표면에 고정시킬 수 있다는 차별점을 지닌다. 또한, 낮은 전압만 걸어주면 촉매표면에 라디칼들을 반영구적으로 고정시킬 수 있음이 실험과학(KIST 김종식 박사) 및 계산과학(육군사관학교 정근홍 교수)으로 규명되었다. KIST 김종식 박사는 “이와 같은 라디칼에 의한 표면활성화 기작은 지금까지 보고된 바가 없는, 기존 수처리 촉매들의 한계를 넘어서는 창조적인 발견으로, 현재 실험·계산 융합연구 및 공정최적화 연구를 진행 중이며, 하/폐수 처리장으로 상용화될 수 있을 것으로 기대한다.”고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민) 지원으로 KIST 기관고유사업과 한국연구재단 중견핵심사업으로 수행되었으며, 연구 결과는 촉매분야 최고 수준의 과학전문지인 ‘Applied Catalysis B: Environmental’ (IF:11.698, JCR 분야 상위 1.00%) 최신호에 온라인 게재되었다. * (논문명) Enhancing the Decomposition of Refractory Contaminants on SO42―Functionalized Iron Oxide to Accommodate Surface SO4?- Generated via Radical Transfer from ?OH - (제1저자 및 교신저자) KIST 물질구조제어연구센터 김종식 선임연구원 - (공저자) 육군사관학교 정근홍 부교수 <그림설명> (a) 개질된 산화철(Fe2O3/Fe3O4) 표면 도식 (b) Feδ+ 활성종에 의한 H2O2 분해 및 ?OH의 생성 (c) ?OH에 의한 표면 SO42- 기능기(Fe-SO42-)의 활성화 및 이에 기반한 (d) 표면 SO4?- 라디칼(Fe-SO4?-)로의 전환
약한 전기만으로 물 속 오염물을 제거한다
- 낮은 전압으로 촉매 표면 활성화, 기존 2배 이상의 분해효율 나타내 - 물과 전기만으로 오염물 제거, 반영구적인 수처리 촉매 상용화 앞당겨 최근 강화되는 수질규제와 끊임없는 수질개선 요구가 잇따르고 있어 새로운 수처리 방식의 개발이 시급한 시점이다. 최근 더 깨끗한 물을 사용하기 위해서 하수나 폐수에 존재하는 염료, 항생제 등 기존 방식으로는 분해하기 어려운 오염물들을 효율적, 지속적으로 분해하는 공정 개발에 대한 필요성이 제기되고 있다. 한국과학기술연구원(KIST, 원장 이병권) 물질구조제어연구센터 김종식 박사팀은 분해가 어려웠던 수용성 오염물들을 효율적이고 지속적으로 분해시킬 수 있는 촉매와 그에 필요한 공정을 개발했다고 밝혔다. 기존에 상용화된 공정은 오염물들을 수질에 무해한 물 및 이산화탄소 등으로 전환하는 강력한 분해제인 라디칼*을 이용하여 오염물을 분해한다. 하지만 지속적인 오염물 분해를 위한 촉매의 수명이 1회성이어서, 라디칼을 형성하는 라디칼 전구체**를 끊임없이 공급해야 하는 치명적인 단점들을 가진다. *라디칼(Radicals) : 물에 잘 분해되지 않는 오염물들의 산화분해에 의한 물 및 이산화탄소 생성에 적용되는 산화제 **라디칼전구체(Radical precursors): 라디칼 형성을 위한 재료 KIST 연구진이 개발한 새로운 공정은 단순한 전기화학 설비로 구성되어 있으며, 추가적인 분해제의 공급이 필요하지 않다. 또한, 낮은 전압의 전원만 걸어주면 상용공정 대비 최소 2배 이상의 오염물 분해효율을 반영구적으로 제공한다. KIST에서 개발된 공정은 단순하고 저렴한 방법에 의하여 내구성 및 수명이 극대화된 라디칼 생성용 촉매 사용을 핵심으로 한다. 기존 공정에 적용된 촉매의 주요 역할은 라디칼 생산에만 국한되어 있는데, 이와는 대조적으로 KIST 연구진이 개발한 촉매는 단순히 라디칼을 생산하는 것 이외에 생성된 라디칼들을 촉매표면에 고정시킬 수 있다는 차별점을 지닌다. 또한, 낮은 전압만 걸어주면 촉매표면에 라디칼들을 반영구적으로 고정시킬 수 있음이 실험과학(KIST 김종식 박사) 및 계산과학(육군사관학교 정근홍 교수)으로 규명되었다. KIST 김종식 박사는 “이와 같은 라디칼에 의한 표면활성화 기작은 지금까지 보고된 바가 없는, 기존 수처리 촉매들의 한계를 넘어서는 창조적인 발견으로, 현재 실험·계산 융합연구 및 공정최적화 연구를 진행 중이며, 하/폐수 처리장으로 상용화될 수 있을 것으로 기대한다.”고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민) 지원으로 KIST 기관고유사업과 한국연구재단 중견핵심사업으로 수행되었으며, 연구 결과는 촉매분야 최고 수준의 과학전문지인 ‘Applied Catalysis B: Environmental’ (IF:11.698, JCR 분야 상위 1.00%) 최신호에 온라인 게재되었다. * (논문명) Enhancing the Decomposition of Refractory Contaminants on SO42―Functionalized Iron Oxide to Accommodate Surface SO4?- Generated via Radical Transfer from ?OH - (제1저자 및 교신저자) KIST 물질구조제어연구센터 김종식 선임연구원 - (공저자) 육군사관학교 정근홍 부교수 <그림설명> (a) 개질된 산화철(Fe2O3/Fe3O4) 표면 도식 (b) Feδ+ 활성종에 의한 H2O2 분해 및 ?OH의 생성 (c) ?OH에 의한 표면 SO42- 기능기(Fe-SO42-)의 활성화 및 이에 기반한 (d) 표면 SO4?- 라디칼(Fe-SO4?-)로의 전환
약한 전기만으로 물 속 오염물을 제거한다
- 낮은 전압으로 촉매 표면 활성화, 기존 2배 이상의 분해효율 나타내 - 물과 전기만으로 오염물 제거, 반영구적인 수처리 촉매 상용화 앞당겨 최근 강화되는 수질규제와 끊임없는 수질개선 요구가 잇따르고 있어 새로운 수처리 방식의 개발이 시급한 시점이다. 최근 더 깨끗한 물을 사용하기 위해서 하수나 폐수에 존재하는 염료, 항생제 등 기존 방식으로는 분해하기 어려운 오염물들을 효율적, 지속적으로 분해하는 공정 개발에 대한 필요성이 제기되고 있다. 한국과학기술연구원(KIST, 원장 이병권) 물질구조제어연구센터 김종식 박사팀은 분해가 어려웠던 수용성 오염물들을 효율적이고 지속적으로 분해시킬 수 있는 촉매와 그에 필요한 공정을 개발했다고 밝혔다. 기존에 상용화된 공정은 오염물들을 수질에 무해한 물 및 이산화탄소 등으로 전환하는 강력한 분해제인 라디칼*을 이용하여 오염물을 분해한다. 하지만 지속적인 오염물 분해를 위한 촉매의 수명이 1회성이어서, 라디칼을 형성하는 라디칼 전구체**를 끊임없이 공급해야 하는 치명적인 단점들을 가진다. *라디칼(Radicals) : 물에 잘 분해되지 않는 오염물들의 산화분해에 의한 물 및 이산화탄소 생성에 적용되는 산화제 **라디칼전구체(Radical precursors): 라디칼 형성을 위한 재료 KIST 연구진이 개발한 새로운 공정은 단순한 전기화학 설비로 구성되어 있으며, 추가적인 분해제의 공급이 필요하지 않다. 또한, 낮은 전압의 전원만 걸어주면 상용공정 대비 최소 2배 이상의 오염물 분해효율을 반영구적으로 제공한다. KIST에서 개발된 공정은 단순하고 저렴한 방법에 의하여 내구성 및 수명이 극대화된 라디칼 생성용 촉매 사용을 핵심으로 한다. 기존 공정에 적용된 촉매의 주요 역할은 라디칼 생산에만 국한되어 있는데, 이와는 대조적으로 KIST 연구진이 개발한 촉매는 단순히 라디칼을 생산하는 것 이외에 생성된 라디칼들을 촉매표면에 고정시킬 수 있다는 차별점을 지닌다. 또한, 낮은 전압만 걸어주면 촉매표면에 라디칼들을 반영구적으로 고정시킬 수 있음이 실험과학(KIST 김종식 박사) 및 계산과학(육군사관학교 정근홍 교수)으로 규명되었다. KIST 김종식 박사는 “이와 같은 라디칼에 의한 표면활성화 기작은 지금까지 보고된 바가 없는, 기존 수처리 촉매들의 한계를 넘어서는 창조적인 발견으로, 현재 실험·계산 융합연구 및 공정최적화 연구를 진행 중이며, 하/폐수 처리장으로 상용화될 수 있을 것으로 기대한다.”고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민) 지원으로 KIST 기관고유사업과 한국연구재단 중견핵심사업으로 수행되었으며, 연구 결과는 촉매분야 최고 수준의 과학전문지인 ‘Applied Catalysis B: Environmental’ (IF:11.698, JCR 분야 상위 1.00%) 최신호에 온라인 게재되었다. * (논문명) Enhancing the Decomposition of Refractory Contaminants on SO42―Functionalized Iron Oxide to Accommodate Surface SO4?- Generated via Radical Transfer from ?OH - (제1저자 및 교신저자) KIST 물질구조제어연구센터 김종식 선임연구원 - (공저자) 육군사관학교 정근홍 부교수 <그림설명> (a) 개질된 산화철(Fe2O3/Fe3O4) 표면 도식 (b) Feδ+ 활성종에 의한 H2O2 분해 및 ?OH의 생성 (c) ?OH에 의한 표면 SO42- 기능기(Fe-SO42-)의 활성화 및 이에 기반한 (d) 표면 SO4?- 라디칼(Fe-SO4?-)로의 전환
약한 전기만으로 물 속 오염물을 제거한다
- 낮은 전압으로 촉매 표면 활성화, 기존 2배 이상의 분해효율 나타내 - 물과 전기만으로 오염물 제거, 반영구적인 수처리 촉매 상용화 앞당겨 최근 강화되는 수질규제와 끊임없는 수질개선 요구가 잇따르고 있어 새로운 수처리 방식의 개발이 시급한 시점이다. 최근 더 깨끗한 물을 사용하기 위해서 하수나 폐수에 존재하는 염료, 항생제 등 기존 방식으로는 분해하기 어려운 오염물들을 효율적, 지속적으로 분해하는 공정 개발에 대한 필요성이 제기되고 있다. 한국과학기술연구원(KIST, 원장 이병권) 물질구조제어연구센터 김종식 박사팀은 분해가 어려웠던 수용성 오염물들을 효율적이고 지속적으로 분해시킬 수 있는 촉매와 그에 필요한 공정을 개발했다고 밝혔다. 기존에 상용화된 공정은 오염물들을 수질에 무해한 물 및 이산화탄소 등으로 전환하는 강력한 분해제인 라디칼*을 이용하여 오염물을 분해한다. 하지만 지속적인 오염물 분해를 위한 촉매의 수명이 1회성이어서, 라디칼을 형성하는 라디칼 전구체**를 끊임없이 공급해야 하는 치명적인 단점들을 가진다. *라디칼(Radicals) : 물에 잘 분해되지 않는 오염물들의 산화분해에 의한 물 및 이산화탄소 생성에 적용되는 산화제 **라디칼전구체(Radical precursors): 라디칼 형성을 위한 재료 KIST 연구진이 개발한 새로운 공정은 단순한 전기화학 설비로 구성되어 있으며, 추가적인 분해제의 공급이 필요하지 않다. 또한, 낮은 전압의 전원만 걸어주면 상용공정 대비 최소 2배 이상의 오염물 분해효율을 반영구적으로 제공한다. KIST에서 개발된 공정은 단순하고 저렴한 방법에 의하여 내구성 및 수명이 극대화된 라디칼 생성용 촉매 사용을 핵심으로 한다. 기존 공정에 적용된 촉매의 주요 역할은 라디칼 생산에만 국한되어 있는데, 이와는 대조적으로 KIST 연구진이 개발한 촉매는 단순히 라디칼을 생산하는 것 이외에 생성된 라디칼들을 촉매표면에 고정시킬 수 있다는 차별점을 지닌다. 또한, 낮은 전압만 걸어주면 촉매표면에 라디칼들을 반영구적으로 고정시킬 수 있음이 실험과학(KIST 김종식 박사) 및 계산과학(육군사관학교 정근홍 교수)으로 규명되었다. KIST 김종식 박사는 “이와 같은 라디칼에 의한 표면활성화 기작은 지금까지 보고된 바가 없는, 기존 수처리 촉매들의 한계를 넘어서는 창조적인 발견으로, 현재 실험·계산 융합연구 및 공정최적화 연구를 진행 중이며, 하/폐수 처리장으로 상용화될 수 있을 것으로 기대한다.”고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민) 지원으로 KIST 기관고유사업과 한국연구재단 중견핵심사업으로 수행되었으며, 연구 결과는 촉매분야 최고 수준의 과학전문지인 ‘Applied Catalysis B: Environmental’ (IF:11.698, JCR 분야 상위 1.00%) 최신호에 온라인 게재되었다. * (논문명) Enhancing the Decomposition of Refractory Contaminants on SO42―Functionalized Iron Oxide to Accommodate Surface SO4?- Generated via Radical Transfer from ?OH - (제1저자 및 교신저자) KIST 물질구조제어연구센터 김종식 선임연구원 - (공저자) 육군사관학교 정근홍 부교수 <그림설명> (a) 개질된 산화철(Fe2O3/Fe3O4) 표면 도식 (b) Feδ+ 활성종에 의한 H2O2 분해 및 ?OH의 생성 (c) ?OH에 의한 표면 SO42- 기능기(Fe-SO42-)의 활성화 및 이에 기반한 (d) 표면 SO4?- 라디칼(Fe-SO4?-)로의 전환