검색결과
게시물 키워드""에 대한 9094개의 검색결과를 찾았습니다.
암세포 증식 막는 새로운 세포분열 조절자 발견
- KIST 연구진, 탈유비퀴틴화 효소(USP35)의 세포분열과정의 조절기능 규명 - 향후, 암세포의 세포분열 억제 및 항암제 개발 표적으로 활용 기대 정상적인 생명체에서의 세포분열은 생명체의 성장과 노화, 유지 및 번식을 위한 필수적인 현상이다. 하지만 비정상적인 세포분열은 암과 같은 다양한 질환의 원인이 될 수 있다. 그렇기 때문에 세포분열과정에 참여하는 수많은 요소들의 조절 및 기전에 관한 연구는 질환 발병의 원인 파악 및 치료제 개발에 중요한 역할을 한다. 최근 국내 연구진이 세포분열과정에 필수적인 단백질인 ‘Aurora B’의 안정성과 활성을 직접적으로 조절하고, 정상적인 세포분열을 돕는 새로운 효소를 발견했다고 밝혔다. 한국과학기술연구원(KIST, 원장 이병권) 분자인식연구센터 송은주 박사팀은 해당 단백질의 분해를 막거나 활성을 조절하는 탈유비퀴틴화* 효소인 ‘USP35’를 발견하고, 이 효소(USP35)가 세포분열과정의 조절자로 역할을 한다는 사실을 밝혔다. 연구진은 발견한 효소(USP35)가 세포분열에 있어서 필수 단백질인 ‘Aurora B’의 안정성을 유지시키고, 활성에 기여하여 정상적인 세포분열에 도움을 준다는 새로운 분자적 기전을 제시하였다. *탈유비퀴틴화 : 유비퀴틴화(몸 속에서 필요 없어진 단백질에 붙어서 그 단백질을 제거하는 현상)의 가역적 반응으로, 특정 단백질에 결합한 유비퀴틴(76개 아미노산으로 구성된 작은 단백질)을 제거하여 특정 단백질의 분해를 막거나 혹은 활성화를 조절하는 현상 암을 포함한 다양한 질환의 원인을 분석하고 그 치료제를 개발하는 연구는 전 세계적으로 큰 주목을 받고 있다. 그 중에서도 세포분열과정에 참여하는 단백질들에 대한 연구는 비정상적인 세포분열로 인해 생겨난 딸세포**의 형성에 의해 발병하는 질환들을 이해하는데 매우 중요하다. 하지만 세포분열에 작용하는 단백질 수가 많고, 그 기능을 하나의 조절 기전만으로 설명하기는 어려운 실정이었다. **딸세포 : 한 개의 모세포에서 복제된 염색체가 동일하게 반씩 분리되어 두 개의 딸세포에 분배된다. 연구진은 세포분열에 필수 단백질인 ‘Aurora B’의 분해를 억제하여 안정성을 확보해주는 조절자로 탈유비퀴틴화 효소인 ‘USP35’를 발견하여 세포분열과정의 새로운 조절 기전을 제시하였다. 일반적으로 세포분열이 일어나는 동안 특정 단백질에 유비퀴틴(76개 아미노산으로 구성된 작은 단백질)이 결합하여 해당 단백질의 분해를 촉진하는 유비퀴틴화는 ‘Aurora B’의 기능에 크게 영향을 미친다. 하지만 반대로 ‘Aurora B’의 분해를 막거나 기능을 조절하는 탈유비퀴틴화에 대해서는 전혀 알려진 바가 없었다. 연구진은 세포분열 필수 단백질(Aurora B)이 분해되는 것을 막고 그 양을 지속적으로 유지시켜 줄 수 있는 인자로 ‘USP35’를 찾아내었고, 이 효소로 인해 ‘Aurora B’는 단백질을 활성화시켜 정상적인 세포분열이 일어나게 한다는 사실을 밝혀냈다. 또한 세포 내 ‘USP35’의 양이 적어지면 세포분열동안 염색체의 정렬, 분리, 세포질 분열 등에 이상이 발생하고 이로 인해 비정상적인 딸세포가 형성되어 각종 질환이 원인이 될 수 있음을 확인하였다. KIST 송은주 박사는 “새로운 세포분열 조절 기전의 발견으로 비정상적인 세포분열의 억제 및 Aurora B 단백질의 기능 향상에 도움을 줘 향후 항암제나 관련 질환의 치료제 개발에 기여할 것으로 전망한다”고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민)지원으로 한국연구재단 중견연구자 지원사업과 국가과학기술연구회 창의형융합연구사업(CAP)으로 수행되었으며, 연구결과는 ‘Nature Communications’(IF : 12.124, JCR 분야 상위 4.69%)에 최신호에 게재되었다. [그림설명] <그림 1> 세포분열과정동안 USP35에 의한 Aurora B 단백질의 조절 기전 Aurora B 단백질은 세포분열 (Mitosis) 과정 동안 염색체의 분리 및 세포질분열에 관여하여 정상적인 세포분열이 일어나도록 도와주는 필수 단백질이다. 세포분열이 시작되면 탈유비퀴틴화 효소인 USP35가 유비퀴틴화 효소 (APC/CDH1)에 의한 Aurora B의 분해를 막고 안정화시켜 Aurora B의 기능을 지속적으로 유지시켜준다. 이 후 세포분열 말기 (Telophase)에 유비퀴틴화 효소가 활성화되면서 Aurora B를 유비퀴틴화시켜 프로테아좀 (proteasome)에 의한 분해를 촉진시킨다. USP35 유전자 발현은 Aurora B와 마찬가지로 S/G2기 때 전사인자인 FoxM1에 의해 조절된다. <그림 2> USP35에 의한 세포분열과정 변화 양상 세포분열과정동안 탈유비퀴틴화 효소인 USP35의 양이 적어지면 중기에 염색체가 일렬로 중앙에 정렬하지 못하고 여러 갈래로 나눠지는 현상이 나타난다. 이 후 후기에도 염색체가 두 개로 분리되지 못하고 여러 개로 나뉘는 양상을 관찰할 수 있다. 이 때 다시 USP35를 과 발현시키면 이러한 비정상적인 현상이 사라지고 다시 정상적인 세포분열과정이 일어나는 것을 확인할 수 있다. 하지만 탈유비퀴틴화 효소의 활성이 없는 USP35의 과발현은 비정상적인 세포분열과정을 정상으로 회복시키지 못한다. 즉, USP35가 세포분열이 정상적으로 일어날 수 있게 도와주는 중요한 요소이며 그 기능을 위해 탈유비퀴틴화 효소 활성이 반드시 필요하다.
암세포 증식 막는 새로운 세포분열 조절자 발견
- KIST 연구진, 탈유비퀴틴화 효소(USP35)의 세포분열과정의 조절기능 규명 - 향후, 암세포의 세포분열 억제 및 항암제 개발 표적으로 활용 기대 정상적인 생명체에서의 세포분열은 생명체의 성장과 노화, 유지 및 번식을 위한 필수적인 현상이다. 하지만 비정상적인 세포분열은 암과 같은 다양한 질환의 원인이 될 수 있다. 그렇기 때문에 세포분열과정에 참여하는 수많은 요소들의 조절 및 기전에 관한 연구는 질환 발병의 원인 파악 및 치료제 개발에 중요한 역할을 한다. 최근 국내 연구진이 세포분열과정에 필수적인 단백질인 ‘Aurora B’의 안정성과 활성을 직접적으로 조절하고, 정상적인 세포분열을 돕는 새로운 효소를 발견했다고 밝혔다. 한국과학기술연구원(KIST, 원장 이병권) 분자인식연구센터 송은주 박사팀은 해당 단백질의 분해를 막거나 활성을 조절하는 탈유비퀴틴화* 효소인 ‘USP35’를 발견하고, 이 효소(USP35)가 세포분열과정의 조절자로 역할을 한다는 사실을 밝혔다. 연구진은 발견한 효소(USP35)가 세포분열에 있어서 필수 단백질인 ‘Aurora B’의 안정성을 유지시키고, 활성에 기여하여 정상적인 세포분열에 도움을 준다는 새로운 분자적 기전을 제시하였다. *탈유비퀴틴화 : 유비퀴틴화(몸 속에서 필요 없어진 단백질에 붙어서 그 단백질을 제거하는 현상)의 가역적 반응으로, 특정 단백질에 결합한 유비퀴틴(76개 아미노산으로 구성된 작은 단백질)을 제거하여 특정 단백질의 분해를 막거나 혹은 활성화를 조절하는 현상 암을 포함한 다양한 질환의 원인을 분석하고 그 치료제를 개발하는 연구는 전 세계적으로 큰 주목을 받고 있다. 그 중에서도 세포분열과정에 참여하는 단백질들에 대한 연구는 비정상적인 세포분열로 인해 생겨난 딸세포**의 형성에 의해 발병하는 질환들을 이해하는데 매우 중요하다. 하지만 세포분열에 작용하는 단백질 수가 많고, 그 기능을 하나의 조절 기전만으로 설명하기는 어려운 실정이었다. **딸세포 : 한 개의 모세포에서 복제된 염색체가 동일하게 반씩 분리되어 두 개의 딸세포에 분배된다. 연구진은 세포분열에 필수 단백질인 ‘Aurora B’의 분해를 억제하여 안정성을 확보해주는 조절자로 탈유비퀴틴화 효소인 ‘USP35’를 발견하여 세포분열과정의 새로운 조절 기전을 제시하였다. 일반적으로 세포분열이 일어나는 동안 특정 단백질에 유비퀴틴(76개 아미노산으로 구성된 작은 단백질)이 결합하여 해당 단백질의 분해를 촉진하는 유비퀴틴화는 ‘Aurora B’의 기능에 크게 영향을 미친다. 하지만 반대로 ‘Aurora B’의 분해를 막거나 기능을 조절하는 탈유비퀴틴화에 대해서는 전혀 알려진 바가 없었다. 연구진은 세포분열 필수 단백질(Aurora B)이 분해되는 것을 막고 그 양을 지속적으로 유지시켜 줄 수 있는 인자로 ‘USP35’를 찾아내었고, 이 효소로 인해 ‘Aurora B’는 단백질을 활성화시켜 정상적인 세포분열이 일어나게 한다는 사실을 밝혀냈다. 또한 세포 내 ‘USP35’의 양이 적어지면 세포분열동안 염색체의 정렬, 분리, 세포질 분열 등에 이상이 발생하고 이로 인해 비정상적인 딸세포가 형성되어 각종 질환이 원인이 될 수 있음을 확인하였다. KIST 송은주 박사는 “새로운 세포분열 조절 기전의 발견으로 비정상적인 세포분열의 억제 및 Aurora B 단백질의 기능 향상에 도움을 줘 향후 항암제나 관련 질환의 치료제 개발에 기여할 것으로 전망한다”고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민)지원으로 한국연구재단 중견연구자 지원사업과 국가과학기술연구회 창의형융합연구사업(CAP)으로 수행되었으며, 연구결과는 ‘Nature Communications’(IF : 12.124, JCR 분야 상위 4.69%)에 최신호에 게재되었다. [그림설명] <그림 1> 세포분열과정동안 USP35에 의한 Aurora B 단백질의 조절 기전 Aurora B 단백질은 세포분열 (Mitosis) 과정 동안 염색체의 분리 및 세포질분열에 관여하여 정상적인 세포분열이 일어나도록 도와주는 필수 단백질이다. 세포분열이 시작되면 탈유비퀴틴화 효소인 USP35가 유비퀴틴화 효소 (APC/CDH1)에 의한 Aurora B의 분해를 막고 안정화시켜 Aurora B의 기능을 지속적으로 유지시켜준다. 이 후 세포분열 말기 (Telophase)에 유비퀴틴화 효소가 활성화되면서 Aurora B를 유비퀴틴화시켜 프로테아좀 (proteasome)에 의한 분해를 촉진시킨다. USP35 유전자 발현은 Aurora B와 마찬가지로 S/G2기 때 전사인자인 FoxM1에 의해 조절된다. <그림 2> USP35에 의한 세포분열과정 변화 양상 세포분열과정동안 탈유비퀴틴화 효소인 USP35의 양이 적어지면 중기에 염색체가 일렬로 중앙에 정렬하지 못하고 여러 갈래로 나눠지는 현상이 나타난다. 이 후 후기에도 염색체가 두 개로 분리되지 못하고 여러 개로 나뉘는 양상을 관찰할 수 있다. 이 때 다시 USP35를 과 발현시키면 이러한 비정상적인 현상이 사라지고 다시 정상적인 세포분열과정이 일어나는 것을 확인할 수 있다. 하지만 탈유비퀴틴화 효소의 활성이 없는 USP35의 과발현은 비정상적인 세포분열과정을 정상으로 회복시키지 못한다. 즉, USP35가 세포분열이 정상적으로 일어날 수 있게 도와주는 중요한 요소이며 그 기능을 위해 탈유비퀴틴화 효소 활성이 반드시 필요하다.
암세포 증식 막는 새로운 세포분열 조절자 발견
- KIST 연구진, 탈유비퀴틴화 효소(USP35)의 세포분열과정의 조절기능 규명 - 향후, 암세포의 세포분열 억제 및 항암제 개발 표적으로 활용 기대 정상적인 생명체에서의 세포분열은 생명체의 성장과 노화, 유지 및 번식을 위한 필수적인 현상이다. 하지만 비정상적인 세포분열은 암과 같은 다양한 질환의 원인이 될 수 있다. 그렇기 때문에 세포분열과정에 참여하는 수많은 요소들의 조절 및 기전에 관한 연구는 질환 발병의 원인 파악 및 치료제 개발에 중요한 역할을 한다. 최근 국내 연구진이 세포분열과정에 필수적인 단백질인 ‘Aurora B’의 안정성과 활성을 직접적으로 조절하고, 정상적인 세포분열을 돕는 새로운 효소를 발견했다고 밝혔다. 한국과학기술연구원(KIST, 원장 이병권) 분자인식연구센터 송은주 박사팀은 해당 단백질의 분해를 막거나 활성을 조절하는 탈유비퀴틴화* 효소인 ‘USP35’를 발견하고, 이 효소(USP35)가 세포분열과정의 조절자로 역할을 한다는 사실을 밝혔다. 연구진은 발견한 효소(USP35)가 세포분열에 있어서 필수 단백질인 ‘Aurora B’의 안정성을 유지시키고, 활성에 기여하여 정상적인 세포분열에 도움을 준다는 새로운 분자적 기전을 제시하였다. *탈유비퀴틴화 : 유비퀴틴화(몸 속에서 필요 없어진 단백질에 붙어서 그 단백질을 제거하는 현상)의 가역적 반응으로, 특정 단백질에 결합한 유비퀴틴(76개 아미노산으로 구성된 작은 단백질)을 제거하여 특정 단백질의 분해를 막거나 혹은 활성화를 조절하는 현상 암을 포함한 다양한 질환의 원인을 분석하고 그 치료제를 개발하는 연구는 전 세계적으로 큰 주목을 받고 있다. 그 중에서도 세포분열과정에 참여하는 단백질들에 대한 연구는 비정상적인 세포분열로 인해 생겨난 딸세포**의 형성에 의해 발병하는 질환들을 이해하는데 매우 중요하다. 하지만 세포분열에 작용하는 단백질 수가 많고, 그 기능을 하나의 조절 기전만으로 설명하기는 어려운 실정이었다. **딸세포 : 한 개의 모세포에서 복제된 염색체가 동일하게 반씩 분리되어 두 개의 딸세포에 분배된다. 연구진은 세포분열에 필수 단백질인 ‘Aurora B’의 분해를 억제하여 안정성을 확보해주는 조절자로 탈유비퀴틴화 효소인 ‘USP35’를 발견하여 세포분열과정의 새로운 조절 기전을 제시하였다. 일반적으로 세포분열이 일어나는 동안 특정 단백질에 유비퀴틴(76개 아미노산으로 구성된 작은 단백질)이 결합하여 해당 단백질의 분해를 촉진하는 유비퀴틴화는 ‘Aurora B’의 기능에 크게 영향을 미친다. 하지만 반대로 ‘Aurora B’의 분해를 막거나 기능을 조절하는 탈유비퀴틴화에 대해서는 전혀 알려진 바가 없었다. 연구진은 세포분열 필수 단백질(Aurora B)이 분해되는 것을 막고 그 양을 지속적으로 유지시켜 줄 수 있는 인자로 ‘USP35’를 찾아내었고, 이 효소로 인해 ‘Aurora B’는 단백질을 활성화시켜 정상적인 세포분열이 일어나게 한다는 사실을 밝혀냈다. 또한 세포 내 ‘USP35’의 양이 적어지면 세포분열동안 염색체의 정렬, 분리, 세포질 분열 등에 이상이 발생하고 이로 인해 비정상적인 딸세포가 형성되어 각종 질환이 원인이 될 수 있음을 확인하였다. KIST 송은주 박사는 “새로운 세포분열 조절 기전의 발견으로 비정상적인 세포분열의 억제 및 Aurora B 단백질의 기능 향상에 도움을 줘 향후 항암제나 관련 질환의 치료제 개발에 기여할 것으로 전망한다”고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민)지원으로 한국연구재단 중견연구자 지원사업과 국가과학기술연구회 창의형융합연구사업(CAP)으로 수행되었으며, 연구결과는 ‘Nature Communications’(IF : 12.124, JCR 분야 상위 4.69%)에 최신호에 게재되었다. [그림설명] <그림 1> 세포분열과정동안 USP35에 의한 Aurora B 단백질의 조절 기전 Aurora B 단백질은 세포분열 (Mitosis) 과정 동안 염색체의 분리 및 세포질분열에 관여하여 정상적인 세포분열이 일어나도록 도와주는 필수 단백질이다. 세포분열이 시작되면 탈유비퀴틴화 효소인 USP35가 유비퀴틴화 효소 (APC/CDH1)에 의한 Aurora B의 분해를 막고 안정화시켜 Aurora B의 기능을 지속적으로 유지시켜준다. 이 후 세포분열 말기 (Telophase)에 유비퀴틴화 효소가 활성화되면서 Aurora B를 유비퀴틴화시켜 프로테아좀 (proteasome)에 의한 분해를 촉진시킨다. USP35 유전자 발현은 Aurora B와 마찬가지로 S/G2기 때 전사인자인 FoxM1에 의해 조절된다. <그림 2> USP35에 의한 세포분열과정 변화 양상 세포분열과정동안 탈유비퀴틴화 효소인 USP35의 양이 적어지면 중기에 염색체가 일렬로 중앙에 정렬하지 못하고 여러 갈래로 나눠지는 현상이 나타난다. 이 후 후기에도 염색체가 두 개로 분리되지 못하고 여러 개로 나뉘는 양상을 관찰할 수 있다. 이 때 다시 USP35를 과 발현시키면 이러한 비정상적인 현상이 사라지고 다시 정상적인 세포분열과정이 일어나는 것을 확인할 수 있다. 하지만 탈유비퀴틴화 효소의 활성이 없는 USP35의 과발현은 비정상적인 세포분열과정을 정상으로 회복시키지 못한다. 즉, USP35가 세포분열이 정상적으로 일어날 수 있게 도와주는 중요한 요소이며 그 기능을 위해 탈유비퀴틴화 효소 활성이 반드시 필요하다.
암세포 증식 막는 새로운 세포분열 조절자 발견
- KIST 연구진, 탈유비퀴틴화 효소(USP35)의 세포분열과정의 조절기능 규명 - 향후, 암세포의 세포분열 억제 및 항암제 개발 표적으로 활용 기대 정상적인 생명체에서의 세포분열은 생명체의 성장과 노화, 유지 및 번식을 위한 필수적인 현상이다. 하지만 비정상적인 세포분열은 암과 같은 다양한 질환의 원인이 될 수 있다. 그렇기 때문에 세포분열과정에 참여하는 수많은 요소들의 조절 및 기전에 관한 연구는 질환 발병의 원인 파악 및 치료제 개발에 중요한 역할을 한다. 최근 국내 연구진이 세포분열과정에 필수적인 단백질인 ‘Aurora B’의 안정성과 활성을 직접적으로 조절하고, 정상적인 세포분열을 돕는 새로운 효소를 발견했다고 밝혔다. 한국과학기술연구원(KIST, 원장 이병권) 분자인식연구센터 송은주 박사팀은 해당 단백질의 분해를 막거나 활성을 조절하는 탈유비퀴틴화* 효소인 ‘USP35’를 발견하고, 이 효소(USP35)가 세포분열과정의 조절자로 역할을 한다는 사실을 밝혔다. 연구진은 발견한 효소(USP35)가 세포분열에 있어서 필수 단백질인 ‘Aurora B’의 안정성을 유지시키고, 활성에 기여하여 정상적인 세포분열에 도움을 준다는 새로운 분자적 기전을 제시하였다. *탈유비퀴틴화 : 유비퀴틴화(몸 속에서 필요 없어진 단백질에 붙어서 그 단백질을 제거하는 현상)의 가역적 반응으로, 특정 단백질에 결합한 유비퀴틴(76개 아미노산으로 구성된 작은 단백질)을 제거하여 특정 단백질의 분해를 막거나 혹은 활성화를 조절하는 현상 암을 포함한 다양한 질환의 원인을 분석하고 그 치료제를 개발하는 연구는 전 세계적으로 큰 주목을 받고 있다. 그 중에서도 세포분열과정에 참여하는 단백질들에 대한 연구는 비정상적인 세포분열로 인해 생겨난 딸세포**의 형성에 의해 발병하는 질환들을 이해하는데 매우 중요하다. 하지만 세포분열에 작용하는 단백질 수가 많고, 그 기능을 하나의 조절 기전만으로 설명하기는 어려운 실정이었다. **딸세포 : 한 개의 모세포에서 복제된 염색체가 동일하게 반씩 분리되어 두 개의 딸세포에 분배된다. 연구진은 세포분열에 필수 단백질인 ‘Aurora B’의 분해를 억제하여 안정성을 확보해주는 조절자로 탈유비퀴틴화 효소인 ‘USP35’를 발견하여 세포분열과정의 새로운 조절 기전을 제시하였다. 일반적으로 세포분열이 일어나는 동안 특정 단백질에 유비퀴틴(76개 아미노산으로 구성된 작은 단백질)이 결합하여 해당 단백질의 분해를 촉진하는 유비퀴틴화는 ‘Aurora B’의 기능에 크게 영향을 미친다. 하지만 반대로 ‘Aurora B’의 분해를 막거나 기능을 조절하는 탈유비퀴틴화에 대해서는 전혀 알려진 바가 없었다. 연구진은 세포분열 필수 단백질(Aurora B)이 분해되는 것을 막고 그 양을 지속적으로 유지시켜 줄 수 있는 인자로 ‘USP35’를 찾아내었고, 이 효소로 인해 ‘Aurora B’는 단백질을 활성화시켜 정상적인 세포분열이 일어나게 한다는 사실을 밝혀냈다. 또한 세포 내 ‘USP35’의 양이 적어지면 세포분열동안 염색체의 정렬, 분리, 세포질 분열 등에 이상이 발생하고 이로 인해 비정상적인 딸세포가 형성되어 각종 질환이 원인이 될 수 있음을 확인하였다. KIST 송은주 박사는 “새로운 세포분열 조절 기전의 발견으로 비정상적인 세포분열의 억제 및 Aurora B 단백질의 기능 향상에 도움을 줘 향후 항암제나 관련 질환의 치료제 개발에 기여할 것으로 전망한다”고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민)지원으로 한국연구재단 중견연구자 지원사업과 국가과학기술연구회 창의형융합연구사업(CAP)으로 수행되었으며, 연구결과는 ‘Nature Communications’(IF : 12.124, JCR 분야 상위 4.69%)에 최신호에 게재되었다. [그림설명] <그림 1> 세포분열과정동안 USP35에 의한 Aurora B 단백질의 조절 기전 Aurora B 단백질은 세포분열 (Mitosis) 과정 동안 염색체의 분리 및 세포질분열에 관여하여 정상적인 세포분열이 일어나도록 도와주는 필수 단백질이다. 세포분열이 시작되면 탈유비퀴틴화 효소인 USP35가 유비퀴틴화 효소 (APC/CDH1)에 의한 Aurora B의 분해를 막고 안정화시켜 Aurora B의 기능을 지속적으로 유지시켜준다. 이 후 세포분열 말기 (Telophase)에 유비퀴틴화 효소가 활성화되면서 Aurora B를 유비퀴틴화시켜 프로테아좀 (proteasome)에 의한 분해를 촉진시킨다. USP35 유전자 발현은 Aurora B와 마찬가지로 S/G2기 때 전사인자인 FoxM1에 의해 조절된다. <그림 2> USP35에 의한 세포분열과정 변화 양상 세포분열과정동안 탈유비퀴틴화 효소인 USP35의 양이 적어지면 중기에 염색체가 일렬로 중앙에 정렬하지 못하고 여러 갈래로 나눠지는 현상이 나타난다. 이 후 후기에도 염색체가 두 개로 분리되지 못하고 여러 개로 나뉘는 양상을 관찰할 수 있다. 이 때 다시 USP35를 과 발현시키면 이러한 비정상적인 현상이 사라지고 다시 정상적인 세포분열과정이 일어나는 것을 확인할 수 있다. 하지만 탈유비퀴틴화 효소의 활성이 없는 USP35의 과발현은 비정상적인 세포분열과정을 정상으로 회복시키지 못한다. 즉, USP35가 세포분열이 정상적으로 일어날 수 있게 도와주는 중요한 요소이며 그 기능을 위해 탈유비퀴틴화 효소 활성이 반드시 필요하다.
암세포 증식 막는 새로운 세포분열 조절자 발견
- KIST 연구진, 탈유비퀴틴화 효소(USP35)의 세포분열과정의 조절기능 규명 - 향후, 암세포의 세포분열 억제 및 항암제 개발 표적으로 활용 기대 정상적인 생명체에서의 세포분열은 생명체의 성장과 노화, 유지 및 번식을 위한 필수적인 현상이다. 하지만 비정상적인 세포분열은 암과 같은 다양한 질환의 원인이 될 수 있다. 그렇기 때문에 세포분열과정에 참여하는 수많은 요소들의 조절 및 기전에 관한 연구는 질환 발병의 원인 파악 및 치료제 개발에 중요한 역할을 한다. 최근 국내 연구진이 세포분열과정에 필수적인 단백질인 ‘Aurora B’의 안정성과 활성을 직접적으로 조절하고, 정상적인 세포분열을 돕는 새로운 효소를 발견했다고 밝혔다. 한국과학기술연구원(KIST, 원장 이병권) 분자인식연구센터 송은주 박사팀은 해당 단백질의 분해를 막거나 활성을 조절하는 탈유비퀴틴화* 효소인 ‘USP35’를 발견하고, 이 효소(USP35)가 세포분열과정의 조절자로 역할을 한다는 사실을 밝혔다. 연구진은 발견한 효소(USP35)가 세포분열에 있어서 필수 단백질인 ‘Aurora B’의 안정성을 유지시키고, 활성에 기여하여 정상적인 세포분열에 도움을 준다는 새로운 분자적 기전을 제시하였다. *탈유비퀴틴화 : 유비퀴틴화(몸 속에서 필요 없어진 단백질에 붙어서 그 단백질을 제거하는 현상)의 가역적 반응으로, 특정 단백질에 결합한 유비퀴틴(76개 아미노산으로 구성된 작은 단백질)을 제거하여 특정 단백질의 분해를 막거나 혹은 활성화를 조절하는 현상 암을 포함한 다양한 질환의 원인을 분석하고 그 치료제를 개발하는 연구는 전 세계적으로 큰 주목을 받고 있다. 그 중에서도 세포분열과정에 참여하는 단백질들에 대한 연구는 비정상적인 세포분열로 인해 생겨난 딸세포**의 형성에 의해 발병하는 질환들을 이해하는데 매우 중요하다. 하지만 세포분열에 작용하는 단백질 수가 많고, 그 기능을 하나의 조절 기전만으로 설명하기는 어려운 실정이었다. **딸세포 : 한 개의 모세포에서 복제된 염색체가 동일하게 반씩 분리되어 두 개의 딸세포에 분배된다. 연구진은 세포분열에 필수 단백질인 ‘Aurora B’의 분해를 억제하여 안정성을 확보해주는 조절자로 탈유비퀴틴화 효소인 ‘USP35’를 발견하여 세포분열과정의 새로운 조절 기전을 제시하였다. 일반적으로 세포분열이 일어나는 동안 특정 단백질에 유비퀴틴(76개 아미노산으로 구성된 작은 단백질)이 결합하여 해당 단백질의 분해를 촉진하는 유비퀴틴화는 ‘Aurora B’의 기능에 크게 영향을 미친다. 하지만 반대로 ‘Aurora B’의 분해를 막거나 기능을 조절하는 탈유비퀴틴화에 대해서는 전혀 알려진 바가 없었다. 연구진은 세포분열 필수 단백질(Aurora B)이 분해되는 것을 막고 그 양을 지속적으로 유지시켜 줄 수 있는 인자로 ‘USP35’를 찾아내었고, 이 효소로 인해 ‘Aurora B’는 단백질을 활성화시켜 정상적인 세포분열이 일어나게 한다는 사실을 밝혀냈다. 또한 세포 내 ‘USP35’의 양이 적어지면 세포분열동안 염색체의 정렬, 분리, 세포질 분열 등에 이상이 발생하고 이로 인해 비정상적인 딸세포가 형성되어 각종 질환이 원인이 될 수 있음을 확인하였다. KIST 송은주 박사는 “새로운 세포분열 조절 기전의 발견으로 비정상적인 세포분열의 억제 및 Aurora B 단백질의 기능 향상에 도움을 줘 향후 항암제나 관련 질환의 치료제 개발에 기여할 것으로 전망한다”고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민)지원으로 한국연구재단 중견연구자 지원사업과 국가과학기술연구회 창의형융합연구사업(CAP)으로 수행되었으며, 연구결과는 ‘Nature Communications’(IF : 12.124, JCR 분야 상위 4.69%)에 최신호에 게재되었다. [그림설명] <그림 1> 세포분열과정동안 USP35에 의한 Aurora B 단백질의 조절 기전 Aurora B 단백질은 세포분열 (Mitosis) 과정 동안 염색체의 분리 및 세포질분열에 관여하여 정상적인 세포분열이 일어나도록 도와주는 필수 단백질이다. 세포분열이 시작되면 탈유비퀴틴화 효소인 USP35가 유비퀴틴화 효소 (APC/CDH1)에 의한 Aurora B의 분해를 막고 안정화시켜 Aurora B의 기능을 지속적으로 유지시켜준다. 이 후 세포분열 말기 (Telophase)에 유비퀴틴화 효소가 활성화되면서 Aurora B를 유비퀴틴화시켜 프로테아좀 (proteasome)에 의한 분해를 촉진시킨다. USP35 유전자 발현은 Aurora B와 마찬가지로 S/G2기 때 전사인자인 FoxM1에 의해 조절된다. <그림 2> USP35에 의한 세포분열과정 변화 양상 세포분열과정동안 탈유비퀴틴화 효소인 USP35의 양이 적어지면 중기에 염색체가 일렬로 중앙에 정렬하지 못하고 여러 갈래로 나눠지는 현상이 나타난다. 이 후 후기에도 염색체가 두 개로 분리되지 못하고 여러 개로 나뉘는 양상을 관찰할 수 있다. 이 때 다시 USP35를 과 발현시키면 이러한 비정상적인 현상이 사라지고 다시 정상적인 세포분열과정이 일어나는 것을 확인할 수 있다. 하지만 탈유비퀴틴화 효소의 활성이 없는 USP35의 과발현은 비정상적인 세포분열과정을 정상으로 회복시키지 못한다. 즉, USP35가 세포분열이 정상적으로 일어날 수 있게 도와주는 중요한 요소이며 그 기능을 위해 탈유비퀴틴화 효소 활성이 반드시 필요하다.
암세포 증식 막는 새로운 세포분열 조절자 발견
- KIST 연구진, 탈유비퀴틴화 효소(USP35)의 세포분열과정의 조절기능 규명 - 향후, 암세포의 세포분열 억제 및 항암제 개발 표적으로 활용 기대 정상적인 생명체에서의 세포분열은 생명체의 성장과 노화, 유지 및 번식을 위한 필수적인 현상이다. 하지만 비정상적인 세포분열은 암과 같은 다양한 질환의 원인이 될 수 있다. 그렇기 때문에 세포분열과정에 참여하는 수많은 요소들의 조절 및 기전에 관한 연구는 질환 발병의 원인 파악 및 치료제 개발에 중요한 역할을 한다. 최근 국내 연구진이 세포분열과정에 필수적인 단백질인 ‘Aurora B’의 안정성과 활성을 직접적으로 조절하고, 정상적인 세포분열을 돕는 새로운 효소를 발견했다고 밝혔다. 한국과학기술연구원(KIST, 원장 이병권) 분자인식연구센터 송은주 박사팀은 해당 단백질의 분해를 막거나 활성을 조절하는 탈유비퀴틴화* 효소인 ‘USP35’를 발견하고, 이 효소(USP35)가 세포분열과정의 조절자로 역할을 한다는 사실을 밝혔다. 연구진은 발견한 효소(USP35)가 세포분열에 있어서 필수 단백질인 ‘Aurora B’의 안정성을 유지시키고, 활성에 기여하여 정상적인 세포분열에 도움을 준다는 새로운 분자적 기전을 제시하였다. *탈유비퀴틴화 : 유비퀴틴화(몸 속에서 필요 없어진 단백질에 붙어서 그 단백질을 제거하는 현상)의 가역적 반응으로, 특정 단백질에 결합한 유비퀴틴(76개 아미노산으로 구성된 작은 단백질)을 제거하여 특정 단백질의 분해를 막거나 혹은 활성화를 조절하는 현상 암을 포함한 다양한 질환의 원인을 분석하고 그 치료제를 개발하는 연구는 전 세계적으로 큰 주목을 받고 있다. 그 중에서도 세포분열과정에 참여하는 단백질들에 대한 연구는 비정상적인 세포분열로 인해 생겨난 딸세포**의 형성에 의해 발병하는 질환들을 이해하는데 매우 중요하다. 하지만 세포분열에 작용하는 단백질 수가 많고, 그 기능을 하나의 조절 기전만으로 설명하기는 어려운 실정이었다. **딸세포 : 한 개의 모세포에서 복제된 염색체가 동일하게 반씩 분리되어 두 개의 딸세포에 분배된다. 연구진은 세포분열에 필수 단백질인 ‘Aurora B’의 분해를 억제하여 안정성을 확보해주는 조절자로 탈유비퀴틴화 효소인 ‘USP35’를 발견하여 세포분열과정의 새로운 조절 기전을 제시하였다. 일반적으로 세포분열이 일어나는 동안 특정 단백질에 유비퀴틴(76개 아미노산으로 구성된 작은 단백질)이 결합하여 해당 단백질의 분해를 촉진하는 유비퀴틴화는 ‘Aurora B’의 기능에 크게 영향을 미친다. 하지만 반대로 ‘Aurora B’의 분해를 막거나 기능을 조절하는 탈유비퀴틴화에 대해서는 전혀 알려진 바가 없었다. 연구진은 세포분열 필수 단백질(Aurora B)이 분해되는 것을 막고 그 양을 지속적으로 유지시켜 줄 수 있는 인자로 ‘USP35’를 찾아내었고, 이 효소로 인해 ‘Aurora B’는 단백질을 활성화시켜 정상적인 세포분열이 일어나게 한다는 사실을 밝혀냈다. 또한 세포 내 ‘USP35’의 양이 적어지면 세포분열동안 염색체의 정렬, 분리, 세포질 분열 등에 이상이 발생하고 이로 인해 비정상적인 딸세포가 형성되어 각종 질환이 원인이 될 수 있음을 확인하였다. KIST 송은주 박사는 “새로운 세포분열 조절 기전의 발견으로 비정상적인 세포분열의 억제 및 Aurora B 단백질의 기능 향상에 도움을 줘 향후 항암제나 관련 질환의 치료제 개발에 기여할 것으로 전망한다”고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민)지원으로 한국연구재단 중견연구자 지원사업과 국가과학기술연구회 창의형융합연구사업(CAP)으로 수행되었으며, 연구결과는 ‘Nature Communications’(IF : 12.124, JCR 분야 상위 4.69%)에 최신호에 게재되었다. [그림설명] <그림 1> 세포분열과정동안 USP35에 의한 Aurora B 단백질의 조절 기전 Aurora B 단백질은 세포분열 (Mitosis) 과정 동안 염색체의 분리 및 세포질분열에 관여하여 정상적인 세포분열이 일어나도록 도와주는 필수 단백질이다. 세포분열이 시작되면 탈유비퀴틴화 효소인 USP35가 유비퀴틴화 효소 (APC/CDH1)에 의한 Aurora B의 분해를 막고 안정화시켜 Aurora B의 기능을 지속적으로 유지시켜준다. 이 후 세포분열 말기 (Telophase)에 유비퀴틴화 효소가 활성화되면서 Aurora B를 유비퀴틴화시켜 프로테아좀 (proteasome)에 의한 분해를 촉진시킨다. USP35 유전자 발현은 Aurora B와 마찬가지로 S/G2기 때 전사인자인 FoxM1에 의해 조절된다. <그림 2> USP35에 의한 세포분열과정 변화 양상 세포분열과정동안 탈유비퀴틴화 효소인 USP35의 양이 적어지면 중기에 염색체가 일렬로 중앙에 정렬하지 못하고 여러 갈래로 나눠지는 현상이 나타난다. 이 후 후기에도 염색체가 두 개로 분리되지 못하고 여러 개로 나뉘는 양상을 관찰할 수 있다. 이 때 다시 USP35를 과 발현시키면 이러한 비정상적인 현상이 사라지고 다시 정상적인 세포분열과정이 일어나는 것을 확인할 수 있다. 하지만 탈유비퀴틴화 효소의 활성이 없는 USP35의 과발현은 비정상적인 세포분열과정을 정상으로 회복시키지 못한다. 즉, USP35가 세포분열이 정상적으로 일어날 수 있게 도와주는 중요한 요소이며 그 기능을 위해 탈유비퀴틴화 효소 활성이 반드시 필요하다.
암세포 증식 막는 새로운 세포분열 조절자 발견
- KIST 연구진, 탈유비퀴틴화 효소(USP35)의 세포분열과정의 조절기능 규명 - 향후, 암세포의 세포분열 억제 및 항암제 개발 표적으로 활용 기대 정상적인 생명체에서의 세포분열은 생명체의 성장과 노화, 유지 및 번식을 위한 필수적인 현상이다. 하지만 비정상적인 세포분열은 암과 같은 다양한 질환의 원인이 될 수 있다. 그렇기 때문에 세포분열과정에 참여하는 수많은 요소들의 조절 및 기전에 관한 연구는 질환 발병의 원인 파악 및 치료제 개발에 중요한 역할을 한다. 최근 국내 연구진이 세포분열과정에 필수적인 단백질인 ‘Aurora B’의 안정성과 활성을 직접적으로 조절하고, 정상적인 세포분열을 돕는 새로운 효소를 발견했다고 밝혔다. 한국과학기술연구원(KIST, 원장 이병권) 분자인식연구센터 송은주 박사팀은 해당 단백질의 분해를 막거나 활성을 조절하는 탈유비퀴틴화* 효소인 ‘USP35’를 발견하고, 이 효소(USP35)가 세포분열과정의 조절자로 역할을 한다는 사실을 밝혔다. 연구진은 발견한 효소(USP35)가 세포분열에 있어서 필수 단백질인 ‘Aurora B’의 안정성을 유지시키고, 활성에 기여하여 정상적인 세포분열에 도움을 준다는 새로운 분자적 기전을 제시하였다. *탈유비퀴틴화 : 유비퀴틴화(몸 속에서 필요 없어진 단백질에 붙어서 그 단백질을 제거하는 현상)의 가역적 반응으로, 특정 단백질에 결합한 유비퀴틴(76개 아미노산으로 구성된 작은 단백질)을 제거하여 특정 단백질의 분해를 막거나 혹은 활성화를 조절하는 현상 암을 포함한 다양한 질환의 원인을 분석하고 그 치료제를 개발하는 연구는 전 세계적으로 큰 주목을 받고 있다. 그 중에서도 세포분열과정에 참여하는 단백질들에 대한 연구는 비정상적인 세포분열로 인해 생겨난 딸세포**의 형성에 의해 발병하는 질환들을 이해하는데 매우 중요하다. 하지만 세포분열에 작용하는 단백질 수가 많고, 그 기능을 하나의 조절 기전만으로 설명하기는 어려운 실정이었다. **딸세포 : 한 개의 모세포에서 복제된 염색체가 동일하게 반씩 분리되어 두 개의 딸세포에 분배된다. 연구진은 세포분열에 필수 단백질인 ‘Aurora B’의 분해를 억제하여 안정성을 확보해주는 조절자로 탈유비퀴틴화 효소인 ‘USP35’를 발견하여 세포분열과정의 새로운 조절 기전을 제시하였다. 일반적으로 세포분열이 일어나는 동안 특정 단백질에 유비퀴틴(76개 아미노산으로 구성된 작은 단백질)이 결합하여 해당 단백질의 분해를 촉진하는 유비퀴틴화는 ‘Aurora B’의 기능에 크게 영향을 미친다. 하지만 반대로 ‘Aurora B’의 분해를 막거나 기능을 조절하는 탈유비퀴틴화에 대해서는 전혀 알려진 바가 없었다. 연구진은 세포분열 필수 단백질(Aurora B)이 분해되는 것을 막고 그 양을 지속적으로 유지시켜 줄 수 있는 인자로 ‘USP35’를 찾아내었고, 이 효소로 인해 ‘Aurora B’는 단백질을 활성화시켜 정상적인 세포분열이 일어나게 한다는 사실을 밝혀냈다. 또한 세포 내 ‘USP35’의 양이 적어지면 세포분열동안 염색체의 정렬, 분리, 세포질 분열 등에 이상이 발생하고 이로 인해 비정상적인 딸세포가 형성되어 각종 질환이 원인이 될 수 있음을 확인하였다. KIST 송은주 박사는 “새로운 세포분열 조절 기전의 발견으로 비정상적인 세포분열의 억제 및 Aurora B 단백질의 기능 향상에 도움을 줘 향후 항암제나 관련 질환의 치료제 개발에 기여할 것으로 전망한다”고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민)지원으로 한국연구재단 중견연구자 지원사업과 국가과학기술연구회 창의형융합연구사업(CAP)으로 수행되었으며, 연구결과는 ‘Nature Communications’(IF : 12.124, JCR 분야 상위 4.69%)에 최신호에 게재되었다. [그림설명] <그림 1> 세포분열과정동안 USP35에 의한 Aurora B 단백질의 조절 기전 Aurora B 단백질은 세포분열 (Mitosis) 과정 동안 염색체의 분리 및 세포질분열에 관여하여 정상적인 세포분열이 일어나도록 도와주는 필수 단백질이다. 세포분열이 시작되면 탈유비퀴틴화 효소인 USP35가 유비퀴틴화 효소 (APC/CDH1)에 의한 Aurora B의 분해를 막고 안정화시켜 Aurora B의 기능을 지속적으로 유지시켜준다. 이 후 세포분열 말기 (Telophase)에 유비퀴틴화 효소가 활성화되면서 Aurora B를 유비퀴틴화시켜 프로테아좀 (proteasome)에 의한 분해를 촉진시킨다. USP35 유전자 발현은 Aurora B와 마찬가지로 S/G2기 때 전사인자인 FoxM1에 의해 조절된다. <그림 2> USP35에 의한 세포분열과정 변화 양상 세포분열과정동안 탈유비퀴틴화 효소인 USP35의 양이 적어지면 중기에 염색체가 일렬로 중앙에 정렬하지 못하고 여러 갈래로 나눠지는 현상이 나타난다. 이 후 후기에도 염색체가 두 개로 분리되지 못하고 여러 개로 나뉘는 양상을 관찰할 수 있다. 이 때 다시 USP35를 과 발현시키면 이러한 비정상적인 현상이 사라지고 다시 정상적인 세포분열과정이 일어나는 것을 확인할 수 있다. 하지만 탈유비퀴틴화 효소의 활성이 없는 USP35의 과발현은 비정상적인 세포분열과정을 정상으로 회복시키지 못한다. 즉, USP35가 세포분열이 정상적으로 일어날 수 있게 도와주는 중요한 요소이며 그 기능을 위해 탈유비퀴틴화 효소 활성이 반드시 필요하다.
암세포에만 작용하는 신개념 항암물질 개발, 방사선 치료 최소화 길 터
암세포에만 작용하는 신개념 항암물질 개발, 방사선 치료 최소화 길 터 - 기존 방사선 양의 1/6로 치료, 단백질과 항암제를 결합한 물질 제조해 부작용 최소화 - 과학자와 의학자의 협력을 통한 임상중개 공동연구의 결과 □ 암세포는 마치 살아있는 생물처럼 주변환경에 적응해 다양하고 복잡하게 진화한다. 이런 이유로 암세포는 약물 및 방사선 치료에 내성이 생겨 더욱 독성이 높은 치료가 요구되는 등 악순환이 이어진다. 국내 연구진이 기존의 독성이 큰 항암제와 단백질을 합성하여 암세포에만 작용하는 새로운 치료제를 개발했다. 개발된 치료제는 소량의 방사선 치료만으로 암조직에서만 활성화되고 지속적으로 약물효과를 발휘해 부작용이 컸던 암 치료의 새로운 패러다임을 제시했다. o 한국과학기술연구원(KIST, 원장 이병권)은 KIST 의공학 연구소 권익찬 소장과 울산의대 서울아산병원 김상윤 교수 공동 연구팀이 MD-PhD 협력 프로그램인 KIST-서울아산병원 중개연구로 “기존 방사선 치료의 1/6수준으로 암세포사멸을 유도하고 연구팀이 제작한 신개념 항암물질을 주사하여 부작용을 최소화한 항암치료법을 개발했다”고 밝혔다. □ 암세포는 스스로 진화하여 복잡하고 다양해 하나의 약물이나 치료방법으로는 완벽히 치료하기 어렵다. 연구진은 암세포 내에 특정 표현형을 유도하고, 약물이 유도된 특정 표현형을 선택적으로 표적화한다면 암의 복잡/다양성을 극복할 수 있음을 알아내고 특정 표현형에 의해 선택적으로 활성화되는 항암제를 사용하는 암치료 기술을 개발하였다. o 연구팀은 효과는 크지만 독성이 큰 기존 치료제의 한계를 극복하기 위해 치료제 구조를 변형한 펩타이드 기반의 새로운 약물을 개발했다. 개발된 약물은 펩타이드 기반의 약물로 단백질과 암세포를 공격하는 약물로 구성되어 외부의 자극이 없을 때는 활성화되지 않아 인체에 무해하다. 개발된 약물은 세포가 특정 표현형으로 유도되어 사멸되면서 분비되는 효소(caspase-3)와 만나면 암세포를 공격하는 약물이 분리된다. 이렇게 분리된 약물은 암세포를 집중적으로 괴사시켜 항암치료 효과가 나타나게 된다. o 이처럼 약물을 활성화하기 위해 필수적인 효소분비를 위해 연구팀은 부작용이 적은 약한 강도의 방사선을 이용했다. 그 결과 기존 암 치료의 6분의 1의 소량의 방사선만으로 세포가 사멸되어 효소분비를 유도할 수 있었고, 이 효소를 통해 약물이 활성화되는 것을 확인했다. o 개발된 물질의 더욱 큰 장점은 이렇게 활성화된 약물이 암세포를 사멸시키고 이 과정에서 효소가 다시 분비되어 추가 방사선 치료 없이도 약물의 효과가 지속적으로 나타난다는 것이다. □ 본 연구는 의사와 과학자의(MD-PhD)협력연구인 중개연구(Translational Research)의 성과라는 점에서 더욱 의미를 찾을 수 있다. KIST 의공학연구소는 지난 2011년 11월 공동 교신저자인 서울아산병원 이비인후과, 두경부암 전문 김상윤 교수를 중개연구프로그램 연구책임자로 초빙해 공동연구를 진행하고 있다. 또한 의사 출신 국내 임상 중견과학자로 2014년 6월에 경북의대에서 KIST 의공학연구소로 옮긴 김인산 박사가 논문 공동저자로 참여했다. KIST 의공학연구소에서 추진하고 있는 중개협력연구는 연구소의 원천기술을 임상에 적용하여 실용화하고 이를 바탕으로 다시 의공학 첨단기술을 개발하는 선도적인 협력모델로 자리잡고 있다. □ 권익찬 박사와 김상윤 교수는 “개발한 기술은 항암제의 효과가 암세포에서 집중적으로 나타나기 때문에 기존의 항암제가 가지고 있던 부작용을 현저히 낮춘 항암치료가 가능할 것으로 기대된다”고 밝혔다. o 본 연구는 미래창조과학부의 바이오?의료기술개발사업 및 KIST 의공학연구소 플래그쉽 연구 사업의 지원으로 수행되었으며, 연구결과는 의학 분야의 국제 저명 학술지인 미국 국립암연구소저널 (Journal of National Cancer Institute)에 12월 12(금)일자 온라인판에 게재되었다. * (논문명) Induced Phenotype Targeted Therapy: Radiation-Induced Apoptosis Targeted Chemotherapy - (공동 제1저자) (울산의대, 한국과학기술연구원) 이범석박사, (한양대학교) 조용우 교수 - (공동 교신저자) 울산의대 서울 아산병원 김상윤 교수, 한국과학기술연구원 권익찬 박사 <그림설명> <그림 1> 특정 표현형 유도 후 선택적으로 활성화되는 항암제를 사용하는 암 치료 시스템의 개념도. 암세포를 특정 표현형으로 발현시키기 위해 방사선을 암 조직에 조사하여 세포사멸을 유도하였다. 세포사멸의 결과로 caspase-3 효소가 암조직에 발현되고, 이는 DEVD 서열의 펩타이드를 분해하여, DEVD 펩타이드 기반의 약물전달체를 활성화하게 된다. 활성화되어 분리된 독소루비신은 세포의 핵내로 이동하여 항암 효과를 나타내게 된다. <그림2> 방사선 조사 유무에 따른 펩타이드 기반의 약물과 기존 항암제의 세포내 거동을 보여주는 형광현미경 이미지. 약물전달체가 처리된 세포에 방사선을 조사하여 유도된 세포사멸 결과 발현된 caspase-3는 펩타이드 기반의 약물을 활성화시키고, 분리된 약물은 세포핵내로 침투하여 약효를 나타낼 수 있다. <그림3> 특정 표현형 유도 후 선택적으로 활성화되는 항암제를 사용하는 암 치료 시스템의 항암 효과를 보여주는 그래프. 방사선을 조사한 후 펩타이드 기반의 약물을 전달한 경우(pink) 종양의 억제효과가 가장 우수하게 나타남. 기존 약물을 주사한 생쥐의 경우 독성으로 5일만에 죽었다. <그림4> 특정 표현형 유도 후 선택적으로 활성화되는 항암제를 사용하는 암 치료 시스템의 항암 효과를 보여주는 형광영상 이미지. 방사선을 조사한 후 펩타이드 기반의 약물을 전달한 경우 종양부위에서 강한 형광 영상이 나타나고 있으며, 그렇지 않은 동물의 종양부위에서는 형광영상이 나타나지 않고 있다. [첨부] 연구결과 개요, 용어 설명, 그림 설명, 연구진 이력사항
암세포에만 작용하는 신개념 항암물질 개발, 방사선 치료 최소화 길 터
암세포에만 작용하는 신개념 항암물질 개발, 방사선 치료 최소화 길 터 - 기존 방사선 양의 1/6로 치료, 단백질과 항암제를 결합한 물질 제조해 부작용 최소화 - 과학자와 의학자의 협력을 통한 임상중개 공동연구의 결과 □ 암세포는 마치 살아있는 생물처럼 주변환경에 적응해 다양하고 복잡하게 진화한다. 이런 이유로 암세포는 약물 및 방사선 치료에 내성이 생겨 더욱 독성이 높은 치료가 요구되는 등 악순환이 이어진다. 국내 연구진이 기존의 독성이 큰 항암제와 단백질을 합성하여 암세포에만 작용하는 새로운 치료제를 개발했다. 개발된 치료제는 소량의 방사선 치료만으로 암조직에서만 활성화되고 지속적으로 약물효과를 발휘해 부작용이 컸던 암 치료의 새로운 패러다임을 제시했다. o 한국과학기술연구원(KIST, 원장 이병권)은 KIST 의공학 연구소 권익찬 소장과 울산의대 서울아산병원 김상윤 교수 공동 연구팀이 MD-PhD 협력 프로그램인 KIST-서울아산병원 중개연구로 “기존 방사선 치료의 1/6수준으로 암세포사멸을 유도하고 연구팀이 제작한 신개념 항암물질을 주사하여 부작용을 최소화한 항암치료법을 개발했다”고 밝혔다. □ 암세포는 스스로 진화하여 복잡하고 다양해 하나의 약물이나 치료방법으로는 완벽히 치료하기 어렵다. 연구진은 암세포 내에 특정 표현형을 유도하고, 약물이 유도된 특정 표현형을 선택적으로 표적화한다면 암의 복잡/다양성을 극복할 수 있음을 알아내고 특정 표현형에 의해 선택적으로 활성화되는 항암제를 사용하는 암치료 기술을 개발하였다. o 연구팀은 효과는 크지만 독성이 큰 기존 치료제의 한계를 극복하기 위해 치료제 구조를 변형한 펩타이드 기반의 새로운 약물을 개발했다. 개발된 약물은 펩타이드 기반의 약물로 단백질과 암세포를 공격하는 약물로 구성되어 외부의 자극이 없을 때는 활성화되지 않아 인체에 무해하다. 개발된 약물은 세포가 특정 표현형으로 유도되어 사멸되면서 분비되는 효소(caspase-3)와 만나면 암세포를 공격하는 약물이 분리된다. 이렇게 분리된 약물은 암세포를 집중적으로 괴사시켜 항암치료 효과가 나타나게 된다. o 이처럼 약물을 활성화하기 위해 필수적인 효소분비를 위해 연구팀은 부작용이 적은 약한 강도의 방사선을 이용했다. 그 결과 기존 암 치료의 6분의 1의 소량의 방사선만으로 세포가 사멸되어 효소분비를 유도할 수 있었고, 이 효소를 통해 약물이 활성화되는 것을 확인했다. o 개발된 물질의 더욱 큰 장점은 이렇게 활성화된 약물이 암세포를 사멸시키고 이 과정에서 효소가 다시 분비되어 추가 방사선 치료 없이도 약물의 효과가 지속적으로 나타난다는 것이다. □ 본 연구는 의사와 과학자의(MD-PhD)협력연구인 중개연구(Translational Research)의 성과라는 점에서 더욱 의미를 찾을 수 있다. KIST 의공학연구소는 지난 2011년 11월 공동 교신저자인 서울아산병원 이비인후과, 두경부암 전문 김상윤 교수를 중개연구프로그램 연구책임자로 초빙해 공동연구를 진행하고 있다. 또한 의사 출신 국내 임상 중견과학자로 2014년 6월에 경북의대에서 KIST 의공학연구소로 옮긴 김인산 박사가 논문 공동저자로 참여했다. KIST 의공학연구소에서 추진하고 있는 중개협력연구는 연구소의 원천기술을 임상에 적용하여 실용화하고 이를 바탕으로 다시 의공학 첨단기술을 개발하는 선도적인 협력모델로 자리잡고 있다. □ 권익찬 박사와 김상윤 교수는 “개발한 기술은 항암제의 효과가 암세포에서 집중적으로 나타나기 때문에 기존의 항암제가 가지고 있던 부작용을 현저히 낮춘 항암치료가 가능할 것으로 기대된다”고 밝혔다. o 본 연구는 미래창조과학부의 바이오?의료기술개발사업 및 KIST 의공학연구소 플래그쉽 연구 사업의 지원으로 수행되었으며, 연구결과는 의학 분야의 국제 저명 학술지인 미국 국립암연구소저널 (Journal of National Cancer Institute)에 12월 12(금)일자 온라인판에 게재되었다. * (논문명) Induced Phenotype Targeted Therapy: Radiation-Induced Apoptosis Targeted Chemotherapy - (공동 제1저자) (울산의대, 한국과학기술연구원) 이범석박사, (한양대학교) 조용우 교수 - (공동 교신저자) 울산의대 서울 아산병원 김상윤 교수, 한국과학기술연구원 권익찬 박사 <그림설명> <그림 1> 특정 표현형 유도 후 선택적으로 활성화되는 항암제를 사용하는 암 치료 시스템의 개념도. 암세포를 특정 표현형으로 발현시키기 위해 방사선을 암 조직에 조사하여 세포사멸을 유도하였다. 세포사멸의 결과로 caspase-3 효소가 암조직에 발현되고, 이는 DEVD 서열의 펩타이드를 분해하여, DEVD 펩타이드 기반의 약물전달체를 활성화하게 된다. 활성화되어 분리된 독소루비신은 세포의 핵내로 이동하여 항암 효과를 나타내게 된다. <그림2> 방사선 조사 유무에 따른 펩타이드 기반의 약물과 기존 항암제의 세포내 거동을 보여주는 형광현미경 이미지. 약물전달체가 처리된 세포에 방사선을 조사하여 유도된 세포사멸 결과 발현된 caspase-3는 펩타이드 기반의 약물을 활성화시키고, 분리된 약물은 세포핵내로 침투하여 약효를 나타낼 수 있다. <그림3> 특정 표현형 유도 후 선택적으로 활성화되는 항암제를 사용하는 암 치료 시스템의 항암 효과를 보여주는 그래프. 방사선을 조사한 후 펩타이드 기반의 약물을 전달한 경우(pink) 종양의 억제효과가 가장 우수하게 나타남. 기존 약물을 주사한 생쥐의 경우 독성으로 5일만에 죽었다. <그림4> 특정 표현형 유도 후 선택적으로 활성화되는 항암제를 사용하는 암 치료 시스템의 항암 효과를 보여주는 형광영상 이미지. 방사선을 조사한 후 펩타이드 기반의 약물을 전달한 경우 종양부위에서 강한 형광 영상이 나타나고 있으며, 그렇지 않은 동물의 종양부위에서는 형광영상이 나타나지 않고 있다. [첨부] 연구결과 개요, 용어 설명, 그림 설명, 연구진 이력사항
암세포에만 작용하는 신개념 항암물질 개발, 방사선 치료 최소화 길 터
암세포에만 작용하는 신개념 항암물질 개발, 방사선 치료 최소화 길 터 - 기존 방사선 양의 1/6로 치료, 단백질과 항암제를 결합한 물질 제조해 부작용 최소화 - 과학자와 의학자의 협력을 통한 임상중개 공동연구의 결과 □ 암세포는 마치 살아있는 생물처럼 주변환경에 적응해 다양하고 복잡하게 진화한다. 이런 이유로 암세포는 약물 및 방사선 치료에 내성이 생겨 더욱 독성이 높은 치료가 요구되는 등 악순환이 이어진다. 국내 연구진이 기존의 독성이 큰 항암제와 단백질을 합성하여 암세포에만 작용하는 새로운 치료제를 개발했다. 개발된 치료제는 소량의 방사선 치료만으로 암조직에서만 활성화되고 지속적으로 약물효과를 발휘해 부작용이 컸던 암 치료의 새로운 패러다임을 제시했다. o 한국과학기술연구원(KIST, 원장 이병권)은 KIST 의공학 연구소 권익찬 소장과 울산의대 서울아산병원 김상윤 교수 공동 연구팀이 MD-PhD 협력 프로그램인 KIST-서울아산병원 중개연구로 “기존 방사선 치료의 1/6수준으로 암세포사멸을 유도하고 연구팀이 제작한 신개념 항암물질을 주사하여 부작용을 최소화한 항암치료법을 개발했다”고 밝혔다. □ 암세포는 스스로 진화하여 복잡하고 다양해 하나의 약물이나 치료방법으로는 완벽히 치료하기 어렵다. 연구진은 암세포 내에 특정 표현형을 유도하고, 약물이 유도된 특정 표현형을 선택적으로 표적화한다면 암의 복잡/다양성을 극복할 수 있음을 알아내고 특정 표현형에 의해 선택적으로 활성화되는 항암제를 사용하는 암치료 기술을 개발하였다. o 연구팀은 효과는 크지만 독성이 큰 기존 치료제의 한계를 극복하기 위해 치료제 구조를 변형한 펩타이드 기반의 새로운 약물을 개발했다. 개발된 약물은 펩타이드 기반의 약물로 단백질과 암세포를 공격하는 약물로 구성되어 외부의 자극이 없을 때는 활성화되지 않아 인체에 무해하다. 개발된 약물은 세포가 특정 표현형으로 유도되어 사멸되면서 분비되는 효소(caspase-3)와 만나면 암세포를 공격하는 약물이 분리된다. 이렇게 분리된 약물은 암세포를 집중적으로 괴사시켜 항암치료 효과가 나타나게 된다. o 이처럼 약물을 활성화하기 위해 필수적인 효소분비를 위해 연구팀은 부작용이 적은 약한 강도의 방사선을 이용했다. 그 결과 기존 암 치료의 6분의 1의 소량의 방사선만으로 세포가 사멸되어 효소분비를 유도할 수 있었고, 이 효소를 통해 약물이 활성화되는 것을 확인했다. o 개발된 물질의 더욱 큰 장점은 이렇게 활성화된 약물이 암세포를 사멸시키고 이 과정에서 효소가 다시 분비되어 추가 방사선 치료 없이도 약물의 효과가 지속적으로 나타난다는 것이다. □ 본 연구는 의사와 과학자의(MD-PhD)협력연구인 중개연구(Translational Research)의 성과라는 점에서 더욱 의미를 찾을 수 있다. KIST 의공학연구소는 지난 2011년 11월 공동 교신저자인 서울아산병원 이비인후과, 두경부암 전문 김상윤 교수를 중개연구프로그램 연구책임자로 초빙해 공동연구를 진행하고 있다. 또한 의사 출신 국내 임상 중견과학자로 2014년 6월에 경북의대에서 KIST 의공학연구소로 옮긴 김인산 박사가 논문 공동저자로 참여했다. KIST 의공학연구소에서 추진하고 있는 중개협력연구는 연구소의 원천기술을 임상에 적용하여 실용화하고 이를 바탕으로 다시 의공학 첨단기술을 개발하는 선도적인 협력모델로 자리잡고 있다. □ 권익찬 박사와 김상윤 교수는 “개발한 기술은 항암제의 효과가 암세포에서 집중적으로 나타나기 때문에 기존의 항암제가 가지고 있던 부작용을 현저히 낮춘 항암치료가 가능할 것으로 기대된다”고 밝혔다. o 본 연구는 미래창조과학부의 바이오?의료기술개발사업 및 KIST 의공학연구소 플래그쉽 연구 사업의 지원으로 수행되었으며, 연구결과는 의학 분야의 국제 저명 학술지인 미국 국립암연구소저널 (Journal of National Cancer Institute)에 12월 12(금)일자 온라인판에 게재되었다. * (논문명) Induced Phenotype Targeted Therapy: Radiation-Induced Apoptosis Targeted Chemotherapy - (공동 제1저자) (울산의대, 한국과학기술연구원) 이범석박사, (한양대학교) 조용우 교수 - (공동 교신저자) 울산의대 서울 아산병원 김상윤 교수, 한국과학기술연구원 권익찬 박사 <그림설명> <그림 1> 특정 표현형 유도 후 선택적으로 활성화되는 항암제를 사용하는 암 치료 시스템의 개념도. 암세포를 특정 표현형으로 발현시키기 위해 방사선을 암 조직에 조사하여 세포사멸을 유도하였다. 세포사멸의 결과로 caspase-3 효소가 암조직에 발현되고, 이는 DEVD 서열의 펩타이드를 분해하여, DEVD 펩타이드 기반의 약물전달체를 활성화하게 된다. 활성화되어 분리된 독소루비신은 세포의 핵내로 이동하여 항암 효과를 나타내게 된다. <그림2> 방사선 조사 유무에 따른 펩타이드 기반의 약물과 기존 항암제의 세포내 거동을 보여주는 형광현미경 이미지. 약물전달체가 처리된 세포에 방사선을 조사하여 유도된 세포사멸 결과 발현된 caspase-3는 펩타이드 기반의 약물을 활성화시키고, 분리된 약물은 세포핵내로 침투하여 약효를 나타낼 수 있다. <그림3> 특정 표현형 유도 후 선택적으로 활성화되는 항암제를 사용하는 암 치료 시스템의 항암 효과를 보여주는 그래프. 방사선을 조사한 후 펩타이드 기반의 약물을 전달한 경우(pink) 종양의 억제효과가 가장 우수하게 나타남. 기존 약물을 주사한 생쥐의 경우 독성으로 5일만에 죽었다. <그림4> 특정 표현형 유도 후 선택적으로 활성화되는 항암제를 사용하는 암 치료 시스템의 항암 효과를 보여주는 형광영상 이미지. 방사선을 조사한 후 펩타이드 기반의 약물을 전달한 경우 종양부위에서 강한 형광 영상이 나타나고 있으며, 그렇지 않은 동물의 종양부위에서는 형광영상이 나타나지 않고 있다. [첨부] 연구결과 개요, 용어 설명, 그림 설명, 연구진 이력사항