검색결과
게시물 키워드""에 대한 9100개의 검색결과를 찾았습니다.
스핀 트랜지스터, 이제 상온에서 작동한다
스핀 트랜지스터, 이제 상온에서 작동한다 - 저온에서만 작동하는 스핀 트랜지스터의 한계를 극복한 핵심기술 개발 - 반도체 나노선 이용하여 상온에서 높은 스핀 주입률 달성 최근 국내 연구진이 차세대 반도체 소재로 주목 받고 있는 ‘반도체 나노선’*을 이용하여 상온에서 고효율로 스핀을 주입하고 검출 성능을 획기적으로 높일 수 있는 기술을 개발했다. 연구진은 기존에 저온에서만 작동하던 한계를 극복한 상온에서 구동하는 스핀 트랜지스터 개발 가능성을 한층 높였다고 밝혔다. *나노선 : 수십 나노미터 수준의 매우 얇은 폭을 가진 선형 구조체. 전기전자와 화학, 바이오 공학 등 첨단과학 분야에 다양하게 활용됨. 한국과학기술연구원(KIST, 원장 이병권) 차세대반도체연구소 장준연 소장, 스핀융합연구단 박태언 박사 연구팀은 질화갈륨(GaN) 반도체 나노선을 이용해 상온에서 10%이상의 높은 스핀 주입률과 주입된 스핀전자가 1 마이크로미터(㎛, 100만분의 1m)이상을 이동해도 스핀정보의 큰 손실 없이 반도체 채널을 이동할 수 있다는 것을 실험적으로 증명하였다. 또한 연구진은 반도체 나노선에 의해 형성된 서로 다른 결정면의 방향을 이용하여 스핀 주입신호를 제어할 수 있는 획기적 방법을 개발하였다. 연구진은 이 요소기술들을 결합하면 ?200 ℃ 이하의 저온에 머물러 있던 스핀 트랜지스터의 동작온도를 상온까지 끌어 올릴 수 있어 실용화 가능성이 한층 높아질 것으로 전망했다. 이러한 연구 결과는 그동안 학계에서 주목해온 스핀 트랜지스터의 상용화를 앞당길 매우 중요한 결과로 평가받고 있다. 기존 실리콘(Si) 반도체가 전자의 전하(-)만을 이용할 수 있었던 데 비해, 스핀 트랜지스터는 전하와 동시에 스핀을 새롭게 이용해 전자소자를 구동하는 신개념 저전력 고성능 기술로, 기존 트랜지스터에 비해 처리속도는 높은 반면 발열량이 낮다. 이 스핀 트랜지스터가 상용화될 경우 기존 반도체의 한계를 극복한 비휘발성의 초고속, 초저전력의 전자소자 개발이 가능해지므로 선진국을 중심으로 많은 연구가 진행되고 있다. 2009년 KIST 연구진에 의해 세계 최초로 스핀 트랜지스터 기술을 선보인 이래, 스핀 트랜지스터의 동작온도를 올리기 위한 많은 연구가 수행되었으나 여전히 저온에서만 작동하는 단점으로 상용화에 큰 걸림돌이 되고 있었다. 상온에서 동작하는 스핀트랜지스터를 개발하기 위해서는 10%이상의 높은 스핀 주입률과 주입된 스핀이 500 나노미터(nm) 이상의 스핀완화거리를 가져야하는데, 이번 연구진의 연구결과는 상온에서 구동이 가능한 스핀 트랜지스터의 한계를 극복하게 되었다는 의미가 있다. KIST 장준연 박사는 “반도체 스핀 트랜지스터를 개발하는데 가장 중요한 요소인 동작온도를 획기적으로 개선할 수 있는 새로운 방법을 제시한 것”이라고 전하며, “본 연구결과를 통해 입증하였듯이 저차원 나노소재를 활용한 새로운 기술은 스핀 트랜지스터의 동작온도 뿐만 아니라 소자성능 및 집적도를 극적으로 높일 것으로 예상되며, 향후 스핀트로닉스 기술 발전에 큰 기여를 할 수 있을 것”이라 밝혔다. 본 연구는 미래창조과학부 나노소재개발사업, KIST 기관고유사업, 국가과학기술연구회 창의융합연구사업으로 수행되었으며, 국제 학술지 ‘네이처 커뮤니케이션 (Nature Communications)’ 6월 2일자(금)에 온라인 게재되었다. <그림설명> <그림 1> 질화갈륨 반도체 나노선에 제작된 스핀주입소자 (a): 본 연구에 사용한 질화갈륨 나노선 기반 스핀 밸브소자와 측정방법을 나타낸 개략도 (b): 질화갈륨 나노선과 강자성체 전극간의 계면을 나타내는 개략적 단면도
스핀 트랜지스터, 이제 상온에서 작동한다
스핀 트랜지스터, 이제 상온에서 작동한다 - 저온에서만 작동하는 스핀 트랜지스터의 한계를 극복한 핵심기술 개발 - 반도체 나노선 이용하여 상온에서 높은 스핀 주입률 달성 최근 국내 연구진이 차세대 반도체 소재로 주목 받고 있는 ‘반도체 나노선’*을 이용하여 상온에서 고효율로 스핀을 주입하고 검출 성능을 획기적으로 높일 수 있는 기술을 개발했다. 연구진은 기존에 저온에서만 작동하던 한계를 극복한 상온에서 구동하는 스핀 트랜지스터 개발 가능성을 한층 높였다고 밝혔다. *나노선 : 수십 나노미터 수준의 매우 얇은 폭을 가진 선형 구조체. 전기전자와 화학, 바이오 공학 등 첨단과학 분야에 다양하게 활용됨. 한국과학기술연구원(KIST, 원장 이병권) 차세대반도체연구소 장준연 소장, 스핀융합연구단 박태언 박사 연구팀은 질화갈륨(GaN) 반도체 나노선을 이용해 상온에서 10%이상의 높은 스핀 주입률과 주입된 스핀전자가 1 마이크로미터(㎛, 100만분의 1m)이상을 이동해도 스핀정보의 큰 손실 없이 반도체 채널을 이동할 수 있다는 것을 실험적으로 증명하였다. 또한 연구진은 반도체 나노선에 의해 형성된 서로 다른 결정면의 방향을 이용하여 스핀 주입신호를 제어할 수 있는 획기적 방법을 개발하였다. 연구진은 이 요소기술들을 결합하면 ?200 ℃ 이하의 저온에 머물러 있던 스핀 트랜지스터의 동작온도를 상온까지 끌어 올릴 수 있어 실용화 가능성이 한층 높아질 것으로 전망했다. 이러한 연구 결과는 그동안 학계에서 주목해온 스핀 트랜지스터의 상용화를 앞당길 매우 중요한 결과로 평가받고 있다. 기존 실리콘(Si) 반도체가 전자의 전하(-)만을 이용할 수 있었던 데 비해, 스핀 트랜지스터는 전하와 동시에 스핀을 새롭게 이용해 전자소자를 구동하는 신개념 저전력 고성능 기술로, 기존 트랜지스터에 비해 처리속도는 높은 반면 발열량이 낮다. 이 스핀 트랜지스터가 상용화될 경우 기존 반도체의 한계를 극복한 비휘발성의 초고속, 초저전력의 전자소자 개발이 가능해지므로 선진국을 중심으로 많은 연구가 진행되고 있다. 2009년 KIST 연구진에 의해 세계 최초로 스핀 트랜지스터 기술을 선보인 이래, 스핀 트랜지스터의 동작온도를 올리기 위한 많은 연구가 수행되었으나 여전히 저온에서만 작동하는 단점으로 상용화에 큰 걸림돌이 되고 있었다. 상온에서 동작하는 스핀트랜지스터를 개발하기 위해서는 10%이상의 높은 스핀 주입률과 주입된 스핀이 500 나노미터(nm) 이상의 스핀완화거리를 가져야하는데, 이번 연구진의 연구결과는 상온에서 구동이 가능한 스핀 트랜지스터의 한계를 극복하게 되었다는 의미가 있다. KIST 장준연 박사는 “반도체 스핀 트랜지스터를 개발하는데 가장 중요한 요소인 동작온도를 획기적으로 개선할 수 있는 새로운 방법을 제시한 것”이라고 전하며, “본 연구결과를 통해 입증하였듯이 저차원 나노소재를 활용한 새로운 기술은 스핀 트랜지스터의 동작온도 뿐만 아니라 소자성능 및 집적도를 극적으로 높일 것으로 예상되며, 향후 스핀트로닉스 기술 발전에 큰 기여를 할 수 있을 것”이라 밝혔다. 본 연구는 미래창조과학부 나노소재개발사업, KIST 기관고유사업, 국가과학기술연구회 창의융합연구사업으로 수행되었으며, 국제 학술지 ‘네이처 커뮤니케이션 (Nature Communications)’ 6월 2일자(금)에 온라인 게재되었다. <그림설명> <그림 1> 질화갈륨 반도체 나노선에 제작된 스핀주입소자 (a): 본 연구에 사용한 질화갈륨 나노선 기반 스핀 밸브소자와 측정방법을 나타낸 개략도 (b): 질화갈륨 나노선과 강자성체 전극간의 계면을 나타내는 개략적 단면도
스핀 트랜지스터, 이제 상온에서 작동한다
스핀 트랜지스터, 이제 상온에서 작동한다 - 저온에서만 작동하는 스핀 트랜지스터의 한계를 극복한 핵심기술 개발 - 반도체 나노선 이용하여 상온에서 높은 스핀 주입률 달성 최근 국내 연구진이 차세대 반도체 소재로 주목 받고 있는 ‘반도체 나노선’*을 이용하여 상온에서 고효율로 스핀을 주입하고 검출 성능을 획기적으로 높일 수 있는 기술을 개발했다. 연구진은 기존에 저온에서만 작동하던 한계를 극복한 상온에서 구동하는 스핀 트랜지스터 개발 가능성을 한층 높였다고 밝혔다. *나노선 : 수십 나노미터 수준의 매우 얇은 폭을 가진 선형 구조체. 전기전자와 화학, 바이오 공학 등 첨단과학 분야에 다양하게 활용됨. 한국과학기술연구원(KIST, 원장 이병권) 차세대반도체연구소 장준연 소장, 스핀융합연구단 박태언 박사 연구팀은 질화갈륨(GaN) 반도체 나노선을 이용해 상온에서 10%이상의 높은 스핀 주입률과 주입된 스핀전자가 1 마이크로미터(㎛, 100만분의 1m)이상을 이동해도 스핀정보의 큰 손실 없이 반도체 채널을 이동할 수 있다는 것을 실험적으로 증명하였다. 또한 연구진은 반도체 나노선에 의해 형성된 서로 다른 결정면의 방향을 이용하여 스핀 주입신호를 제어할 수 있는 획기적 방법을 개발하였다. 연구진은 이 요소기술들을 결합하면 ?200 ℃ 이하의 저온에 머물러 있던 스핀 트랜지스터의 동작온도를 상온까지 끌어 올릴 수 있어 실용화 가능성이 한층 높아질 것으로 전망했다. 이러한 연구 결과는 그동안 학계에서 주목해온 스핀 트랜지스터의 상용화를 앞당길 매우 중요한 결과로 평가받고 있다. 기존 실리콘(Si) 반도체가 전자의 전하(-)만을 이용할 수 있었던 데 비해, 스핀 트랜지스터는 전하와 동시에 스핀을 새롭게 이용해 전자소자를 구동하는 신개념 저전력 고성능 기술로, 기존 트랜지스터에 비해 처리속도는 높은 반면 발열량이 낮다. 이 스핀 트랜지스터가 상용화될 경우 기존 반도체의 한계를 극복한 비휘발성의 초고속, 초저전력의 전자소자 개발이 가능해지므로 선진국을 중심으로 많은 연구가 진행되고 있다. 2009년 KIST 연구진에 의해 세계 최초로 스핀 트랜지스터 기술을 선보인 이래, 스핀 트랜지스터의 동작온도를 올리기 위한 많은 연구가 수행되었으나 여전히 저온에서만 작동하는 단점으로 상용화에 큰 걸림돌이 되고 있었다. 상온에서 동작하는 스핀트랜지스터를 개발하기 위해서는 10%이상의 높은 스핀 주입률과 주입된 스핀이 500 나노미터(nm) 이상의 스핀완화거리를 가져야하는데, 이번 연구진의 연구결과는 상온에서 구동이 가능한 스핀 트랜지스터의 한계를 극복하게 되었다는 의미가 있다. KIST 장준연 박사는 “반도체 스핀 트랜지스터를 개발하는데 가장 중요한 요소인 동작온도를 획기적으로 개선할 수 있는 새로운 방법을 제시한 것”이라고 전하며, “본 연구결과를 통해 입증하였듯이 저차원 나노소재를 활용한 새로운 기술은 스핀 트랜지스터의 동작온도 뿐만 아니라 소자성능 및 집적도를 극적으로 높일 것으로 예상되며, 향후 스핀트로닉스 기술 발전에 큰 기여를 할 수 있을 것”이라 밝혔다. 본 연구는 미래창조과학부 나노소재개발사업, KIST 기관고유사업, 국가과학기술연구회 창의융합연구사업으로 수행되었으며, 국제 학술지 ‘네이처 커뮤니케이션 (Nature Communications)’ 6월 2일자(금)에 온라인 게재되었다. <그림설명> <그림 1> 질화갈륨 반도체 나노선에 제작된 스핀주입소자 (a): 본 연구에 사용한 질화갈륨 나노선 기반 스핀 밸브소자와 측정방법을 나타낸 개략도 (b): 질화갈륨 나노선과 강자성체 전극간의 계면을 나타내는 개략적 단면도
스핀 트랜지스터, 이제 상온에서 작동한다
스핀 트랜지스터, 이제 상온에서 작동한다 - 저온에서만 작동하는 스핀 트랜지스터의 한계를 극복한 핵심기술 개발 - 반도체 나노선 이용하여 상온에서 높은 스핀 주입률 달성 최근 국내 연구진이 차세대 반도체 소재로 주목 받고 있는 ‘반도체 나노선’*을 이용하여 상온에서 고효율로 스핀을 주입하고 검출 성능을 획기적으로 높일 수 있는 기술을 개발했다. 연구진은 기존에 저온에서만 작동하던 한계를 극복한 상온에서 구동하는 스핀 트랜지스터 개발 가능성을 한층 높였다고 밝혔다. *나노선 : 수십 나노미터 수준의 매우 얇은 폭을 가진 선형 구조체. 전기전자와 화학, 바이오 공학 등 첨단과학 분야에 다양하게 활용됨. 한국과학기술연구원(KIST, 원장 이병권) 차세대반도체연구소 장준연 소장, 스핀융합연구단 박태언 박사 연구팀은 질화갈륨(GaN) 반도체 나노선을 이용해 상온에서 10%이상의 높은 스핀 주입률과 주입된 스핀전자가 1 마이크로미터(㎛, 100만분의 1m)이상을 이동해도 스핀정보의 큰 손실 없이 반도체 채널을 이동할 수 있다는 것을 실험적으로 증명하였다. 또한 연구진은 반도체 나노선에 의해 형성된 서로 다른 결정면의 방향을 이용하여 스핀 주입신호를 제어할 수 있는 획기적 방법을 개발하였다. 연구진은 이 요소기술들을 결합하면 ?200 ℃ 이하의 저온에 머물러 있던 스핀 트랜지스터의 동작온도를 상온까지 끌어 올릴 수 있어 실용화 가능성이 한층 높아질 것으로 전망했다. 이러한 연구 결과는 그동안 학계에서 주목해온 스핀 트랜지스터의 상용화를 앞당길 매우 중요한 결과로 평가받고 있다. 기존 실리콘(Si) 반도체가 전자의 전하(-)만을 이용할 수 있었던 데 비해, 스핀 트랜지스터는 전하와 동시에 스핀을 새롭게 이용해 전자소자를 구동하는 신개념 저전력 고성능 기술로, 기존 트랜지스터에 비해 처리속도는 높은 반면 발열량이 낮다. 이 스핀 트랜지스터가 상용화될 경우 기존 반도체의 한계를 극복한 비휘발성의 초고속, 초저전력의 전자소자 개발이 가능해지므로 선진국을 중심으로 많은 연구가 진행되고 있다. 2009년 KIST 연구진에 의해 세계 최초로 스핀 트랜지스터 기술을 선보인 이래, 스핀 트랜지스터의 동작온도를 올리기 위한 많은 연구가 수행되었으나 여전히 저온에서만 작동하는 단점으로 상용화에 큰 걸림돌이 되고 있었다. 상온에서 동작하는 스핀트랜지스터를 개발하기 위해서는 10%이상의 높은 스핀 주입률과 주입된 스핀이 500 나노미터(nm) 이상의 스핀완화거리를 가져야하는데, 이번 연구진의 연구결과는 상온에서 구동이 가능한 스핀 트랜지스터의 한계를 극복하게 되었다는 의미가 있다. KIST 장준연 박사는 “반도체 스핀 트랜지스터를 개발하는데 가장 중요한 요소인 동작온도를 획기적으로 개선할 수 있는 새로운 방법을 제시한 것”이라고 전하며, “본 연구결과를 통해 입증하였듯이 저차원 나노소재를 활용한 새로운 기술은 스핀 트랜지스터의 동작온도 뿐만 아니라 소자성능 및 집적도를 극적으로 높일 것으로 예상되며, 향후 스핀트로닉스 기술 발전에 큰 기여를 할 수 있을 것”이라 밝혔다. 본 연구는 미래창조과학부 나노소재개발사업, KIST 기관고유사업, 국가과학기술연구회 창의융합연구사업으로 수행되었으며, 국제 학술지 ‘네이처 커뮤니케이션 (Nature Communications)’ 6월 2일자(금)에 온라인 게재되었다. <그림설명> <그림 1> 질화갈륨 반도체 나노선에 제작된 스핀주입소자 (a): 본 연구에 사용한 질화갈륨 나노선 기반 스핀 밸브소자와 측정방법을 나타낸 개략도 (b): 질화갈륨 나노선과 강자성체 전극간의 계면을 나타내는 개략적 단면도
스핀 트랜지스터, 이제 상온에서 작동한다
스핀 트랜지스터, 이제 상온에서 작동한다 - 저온에서만 작동하는 스핀 트랜지스터의 한계를 극복한 핵심기술 개발 - 반도체 나노선 이용하여 상온에서 높은 스핀 주입률 달성 최근 국내 연구진이 차세대 반도체 소재로 주목 받고 있는 ‘반도체 나노선’*을 이용하여 상온에서 고효율로 스핀을 주입하고 검출 성능을 획기적으로 높일 수 있는 기술을 개발했다. 연구진은 기존에 저온에서만 작동하던 한계를 극복한 상온에서 구동하는 스핀 트랜지스터 개발 가능성을 한층 높였다고 밝혔다. *나노선 : 수십 나노미터 수준의 매우 얇은 폭을 가진 선형 구조체. 전기전자와 화학, 바이오 공학 등 첨단과학 분야에 다양하게 활용됨. 한국과학기술연구원(KIST, 원장 이병권) 차세대반도체연구소 장준연 소장, 스핀융합연구단 박태언 박사 연구팀은 질화갈륨(GaN) 반도체 나노선을 이용해 상온에서 10%이상의 높은 스핀 주입률과 주입된 스핀전자가 1 마이크로미터(㎛, 100만분의 1m)이상을 이동해도 스핀정보의 큰 손실 없이 반도체 채널을 이동할 수 있다는 것을 실험적으로 증명하였다. 또한 연구진은 반도체 나노선에 의해 형성된 서로 다른 결정면의 방향을 이용하여 스핀 주입신호를 제어할 수 있는 획기적 방법을 개발하였다. 연구진은 이 요소기술들을 결합하면 ?200 ℃ 이하의 저온에 머물러 있던 스핀 트랜지스터의 동작온도를 상온까지 끌어 올릴 수 있어 실용화 가능성이 한층 높아질 것으로 전망했다. 이러한 연구 결과는 그동안 학계에서 주목해온 스핀 트랜지스터의 상용화를 앞당길 매우 중요한 결과로 평가받고 있다. 기존 실리콘(Si) 반도체가 전자의 전하(-)만을 이용할 수 있었던 데 비해, 스핀 트랜지스터는 전하와 동시에 스핀을 새롭게 이용해 전자소자를 구동하는 신개념 저전력 고성능 기술로, 기존 트랜지스터에 비해 처리속도는 높은 반면 발열량이 낮다. 이 스핀 트랜지스터가 상용화될 경우 기존 반도체의 한계를 극복한 비휘발성의 초고속, 초저전력의 전자소자 개발이 가능해지므로 선진국을 중심으로 많은 연구가 진행되고 있다. 2009년 KIST 연구진에 의해 세계 최초로 스핀 트랜지스터 기술을 선보인 이래, 스핀 트랜지스터의 동작온도를 올리기 위한 많은 연구가 수행되었으나 여전히 저온에서만 작동하는 단점으로 상용화에 큰 걸림돌이 되고 있었다. 상온에서 동작하는 스핀트랜지스터를 개발하기 위해서는 10%이상의 높은 스핀 주입률과 주입된 스핀이 500 나노미터(nm) 이상의 스핀완화거리를 가져야하는데, 이번 연구진의 연구결과는 상온에서 구동이 가능한 스핀 트랜지스터의 한계를 극복하게 되었다는 의미가 있다. KIST 장준연 박사는 “반도체 스핀 트랜지스터를 개발하는데 가장 중요한 요소인 동작온도를 획기적으로 개선할 수 있는 새로운 방법을 제시한 것”이라고 전하며, “본 연구결과를 통해 입증하였듯이 저차원 나노소재를 활용한 새로운 기술은 스핀 트랜지스터의 동작온도 뿐만 아니라 소자성능 및 집적도를 극적으로 높일 것으로 예상되며, 향후 스핀트로닉스 기술 발전에 큰 기여를 할 수 있을 것”이라 밝혔다. 본 연구는 미래창조과학부 나노소재개발사업, KIST 기관고유사업, 국가과학기술연구회 창의융합연구사업으로 수행되었으며, 국제 학술지 ‘네이처 커뮤니케이션 (Nature Communications)’ 6월 2일자(금)에 온라인 게재되었다. <그림설명> <그림 1> 질화갈륨 반도체 나노선에 제작된 스핀주입소자 (a): 본 연구에 사용한 질화갈륨 나노선 기반 스핀 밸브소자와 측정방법을 나타낸 개략도 (b): 질화갈륨 나노선과 강자성체 전극간의 계면을 나타내는 개략적 단면도
스핀 트랜지스터, 이제 상온에서 작동한다
스핀 트랜지스터, 이제 상온에서 작동한다 - 저온에서만 작동하는 스핀 트랜지스터의 한계를 극복한 핵심기술 개발 - 반도체 나노선 이용하여 상온에서 높은 스핀 주입률 달성 최근 국내 연구진이 차세대 반도체 소재로 주목 받고 있는 ‘반도체 나노선’*을 이용하여 상온에서 고효율로 스핀을 주입하고 검출 성능을 획기적으로 높일 수 있는 기술을 개발했다. 연구진은 기존에 저온에서만 작동하던 한계를 극복한 상온에서 구동하는 스핀 트랜지스터 개발 가능성을 한층 높였다고 밝혔다. *나노선 : 수십 나노미터 수준의 매우 얇은 폭을 가진 선형 구조체. 전기전자와 화학, 바이오 공학 등 첨단과학 분야에 다양하게 활용됨. 한국과학기술연구원(KIST, 원장 이병권) 차세대반도체연구소 장준연 소장, 스핀융합연구단 박태언 박사 연구팀은 질화갈륨(GaN) 반도체 나노선을 이용해 상온에서 10%이상의 높은 스핀 주입률과 주입된 스핀전자가 1 마이크로미터(㎛, 100만분의 1m)이상을 이동해도 스핀정보의 큰 손실 없이 반도체 채널을 이동할 수 있다는 것을 실험적으로 증명하였다. 또한 연구진은 반도체 나노선에 의해 형성된 서로 다른 결정면의 방향을 이용하여 스핀 주입신호를 제어할 수 있는 획기적 방법을 개발하였다. 연구진은 이 요소기술들을 결합하면 ?200 ℃ 이하의 저온에 머물러 있던 스핀 트랜지스터의 동작온도를 상온까지 끌어 올릴 수 있어 실용화 가능성이 한층 높아질 것으로 전망했다. 이러한 연구 결과는 그동안 학계에서 주목해온 스핀 트랜지스터의 상용화를 앞당길 매우 중요한 결과로 평가받고 있다. 기존 실리콘(Si) 반도체가 전자의 전하(-)만을 이용할 수 있었던 데 비해, 스핀 트랜지스터는 전하와 동시에 스핀을 새롭게 이용해 전자소자를 구동하는 신개념 저전력 고성능 기술로, 기존 트랜지스터에 비해 처리속도는 높은 반면 발열량이 낮다. 이 스핀 트랜지스터가 상용화될 경우 기존 반도체의 한계를 극복한 비휘발성의 초고속, 초저전력의 전자소자 개발이 가능해지므로 선진국을 중심으로 많은 연구가 진행되고 있다. 2009년 KIST 연구진에 의해 세계 최초로 스핀 트랜지스터 기술을 선보인 이래, 스핀 트랜지스터의 동작온도를 올리기 위한 많은 연구가 수행되었으나 여전히 저온에서만 작동하는 단점으로 상용화에 큰 걸림돌이 되고 있었다. 상온에서 동작하는 스핀트랜지스터를 개발하기 위해서는 10%이상의 높은 스핀 주입률과 주입된 스핀이 500 나노미터(nm) 이상의 스핀완화거리를 가져야하는데, 이번 연구진의 연구결과는 상온에서 구동이 가능한 스핀 트랜지스터의 한계를 극복하게 되었다는 의미가 있다. KIST 장준연 박사는 “반도체 스핀 트랜지스터를 개발하는데 가장 중요한 요소인 동작온도를 획기적으로 개선할 수 있는 새로운 방법을 제시한 것”이라고 전하며, “본 연구결과를 통해 입증하였듯이 저차원 나노소재를 활용한 새로운 기술은 스핀 트랜지스터의 동작온도 뿐만 아니라 소자성능 및 집적도를 극적으로 높일 것으로 예상되며, 향후 스핀트로닉스 기술 발전에 큰 기여를 할 수 있을 것”이라 밝혔다. 본 연구는 미래창조과학부 나노소재개발사업, KIST 기관고유사업, 국가과학기술연구회 창의융합연구사업으로 수행되었으며, 국제 학술지 ‘네이처 커뮤니케이션 (Nature Communications)’ 6월 2일자(금)에 온라인 게재되었다. <그림설명> <그림 1> 질화갈륨 반도체 나노선에 제작된 스핀주입소자 (a): 본 연구에 사용한 질화갈륨 나노선 기반 스핀 밸브소자와 측정방법을 나타낸 개략도 (b): 질화갈륨 나노선과 강자성체 전극간의 계면을 나타내는 개략적 단면도
스핀 트랜지스터, 이제 상온에서 작동한다
스핀 트랜지스터, 이제 상온에서 작동한다 - 저온에서만 작동하는 스핀 트랜지스터의 한계를 극복한 핵심기술 개발 - 반도체 나노선 이용하여 상온에서 높은 스핀 주입률 달성 최근 국내 연구진이 차세대 반도체 소재로 주목 받고 있는 ‘반도체 나노선’*을 이용하여 상온에서 고효율로 스핀을 주입하고 검출 성능을 획기적으로 높일 수 있는 기술을 개발했다. 연구진은 기존에 저온에서만 작동하던 한계를 극복한 상온에서 구동하는 스핀 트랜지스터 개발 가능성을 한층 높였다고 밝혔다. *나노선 : 수십 나노미터 수준의 매우 얇은 폭을 가진 선형 구조체. 전기전자와 화학, 바이오 공학 등 첨단과학 분야에 다양하게 활용됨. 한국과학기술연구원(KIST, 원장 이병권) 차세대반도체연구소 장준연 소장, 스핀융합연구단 박태언 박사 연구팀은 질화갈륨(GaN) 반도체 나노선을 이용해 상온에서 10%이상의 높은 스핀 주입률과 주입된 스핀전자가 1 마이크로미터(㎛, 100만분의 1m)이상을 이동해도 스핀정보의 큰 손실 없이 반도체 채널을 이동할 수 있다는 것을 실험적으로 증명하였다. 또한 연구진은 반도체 나노선에 의해 형성된 서로 다른 결정면의 방향을 이용하여 스핀 주입신호를 제어할 수 있는 획기적 방법을 개발하였다. 연구진은 이 요소기술들을 결합하면 ?200 ℃ 이하의 저온에 머물러 있던 스핀 트랜지스터의 동작온도를 상온까지 끌어 올릴 수 있어 실용화 가능성이 한층 높아질 것으로 전망했다. 이러한 연구 결과는 그동안 학계에서 주목해온 스핀 트랜지스터의 상용화를 앞당길 매우 중요한 결과로 평가받고 있다. 기존 실리콘(Si) 반도체가 전자의 전하(-)만을 이용할 수 있었던 데 비해, 스핀 트랜지스터는 전하와 동시에 스핀을 새롭게 이용해 전자소자를 구동하는 신개념 저전력 고성능 기술로, 기존 트랜지스터에 비해 처리속도는 높은 반면 발열량이 낮다. 이 스핀 트랜지스터가 상용화될 경우 기존 반도체의 한계를 극복한 비휘발성의 초고속, 초저전력의 전자소자 개발이 가능해지므로 선진국을 중심으로 많은 연구가 진행되고 있다. 2009년 KIST 연구진에 의해 세계 최초로 스핀 트랜지스터 기술을 선보인 이래, 스핀 트랜지스터의 동작온도를 올리기 위한 많은 연구가 수행되었으나 여전히 저온에서만 작동하는 단점으로 상용화에 큰 걸림돌이 되고 있었다. 상온에서 동작하는 스핀트랜지스터를 개발하기 위해서는 10%이상의 높은 스핀 주입률과 주입된 스핀이 500 나노미터(nm) 이상의 스핀완화거리를 가져야하는데, 이번 연구진의 연구결과는 상온에서 구동이 가능한 스핀 트랜지스터의 한계를 극복하게 되었다는 의미가 있다. KIST 장준연 박사는 “반도체 스핀 트랜지스터를 개발하는데 가장 중요한 요소인 동작온도를 획기적으로 개선할 수 있는 새로운 방법을 제시한 것”이라고 전하며, “본 연구결과를 통해 입증하였듯이 저차원 나노소재를 활용한 새로운 기술은 스핀 트랜지스터의 동작온도 뿐만 아니라 소자성능 및 집적도를 극적으로 높일 것으로 예상되며, 향후 스핀트로닉스 기술 발전에 큰 기여를 할 수 있을 것”이라 밝혔다. 본 연구는 미래창조과학부 나노소재개발사업, KIST 기관고유사업, 국가과학기술연구회 창의융합연구사업으로 수행되었으며, 국제 학술지 ‘네이처 커뮤니케이션 (Nature Communications)’ 6월 2일자(금)에 온라인 게재되었다. <그림설명> <그림 1> 질화갈륨 반도체 나노선에 제작된 스핀주입소자 (a): 본 연구에 사용한 질화갈륨 나노선 기반 스핀 밸브소자와 측정방법을 나타낸 개략도 (b): 질화갈륨 나노선과 강자성체 전극간의 계면을 나타내는 개략적 단면도
슬기로운 리더 생활 - KIST 윤석진 원장
K무비의 영향력이 좀처럼 식지 않고 있다. 지난해 ‘기생충’에 이어 올해는 ‘미나리’다. 놀라운 흡입력으로 세계의 관객들에게 할머니를 떠올리게 한 윤여정은 한국 배우 최초로 아카데미 여우조연상 후보에 올랐다. 조연이라지만 그를 빼놓고는 영화의 완성도와 감동을 상상하기 힘들다. 영화로 시작했으니 필자에게 영감을 준 다른 작품도 이야기해보자. ‘히든 피겨스’는 소련의 인공위성 발사 성공이 미국을 충격에 빠트렸을 당시의 실화를 담고 있다. 이른바 ‘스푸트니크 쇼크’다. 인공위성에서 선두를 뺏긴 미국은 곧 나사(NASA)를 설립하고 더 원대한 프로젝트에 착수했다. 인간을 우주로 보내는 것이다. 이 계획의 수장 앨 해리슨은 흑인 천재 수학자를 발탁했지만 나사의 백인 직원들은 그를 동료로 인정하지 않았다. 유색인 전용 화장실을 만들고 수학 문제의 답을 구해도 스파이로 몰았다. 뒤늦게 사실을 안 해리슨은 분노하며 유색인 전용 화장실의 푯말을 해머로 부숴버린다. 미국이 여전히 팽배해 있던 인종차별의 구시대를 벗어나 인류 최초의 달 착륙이라는 신대륙의 열쇠를 거머쥐는 순간이었다. 필자는 지난 2010년부터 경영자의 업무를 시작했다. 그간 대부분의 시간을 보낸 실험실을 떠나는 것은 큰 도전이었다. 내가 좋아하고 잘하는 것에만 집중해도 성과를 낼 수 있던 연구와 경영은 사뭇 달랐다. 넘치는 요소보다 결핍이 성장을 좌우한다는 리비히의 최소율 법칙에 따라 부족한 곳은 없는지 조직 안팎을 끊임없이 살펴야 했다. 연구가 빛나려면 관리와 지원까지 모든 영역에서 맡은 역할을 다해줄 구성원들이 필요했다. 그런 내게 “함께하지 않으면 정상에 못 올라가” “누구의 도약이든 우리 모두의 도약”이라는 영화의 외침은 큰 울림이었다. 인재를 구하고 이 구슬들을 제대로 꿰려면 리더가 어떠해야 하는지 고민이 꼬리를 물었다. 오랜 성찰 속에 필자가 찾아낸 훌륭한 팀의 조건은 이렇다. 먼저 진정한 팀원이 될 때까지 배려해야 한다. 팀워크는 물리적 결합이 아니라 화학적 결합이다. 공동의 목표와 스토리에 공감하고 내 역량을 모두 쏟아붓겠다는 의지가 필요하다. 이런 동기부여의 요소 중 가장 중요한 게 ‘기회의 공정’에 대한 믿음이다. KIST는 신입연구원에게 2년간 포스닥 활용을 지원한다. 이 기간에는 평가도 유예한다. 연구 기반을 갖추지 못한 상태라면 결과의 불평등을 피할 수 없기 때문이다. 이런 출발선의 조정은 새내기들이 팀에 자연스럽게 녹아들 수 있는 시간도 제공한다. 팀스피릿(team spirit)은 정서적 일체감만으로 유지할 수 없다. 안정적 연구 환경과 재원 등의 현실 문제 해결도 매우 중요하다. 건강한 긴장감은 조직 발전의 필요 조건이며 공정한 평가는 충분 조건이다. 성과로 줄을 세우는 정량 평가가 아니라 성장 과정까지 주의 깊게 살피는 정성 평가가 필요하다. KIST가 마일리지식 평가 대신 다년 평가를 지향하는 것도 이 때문이다. 복잡한 평가 단계를 과감하게 축소하는 것도 마찬가지다. 물론 이를 둘러싸고 하향 평준화나 무임승차에 대한 우려 또한 없지 않다. 하지만 겉으로 표현하지 않아도 연구자라면 누구나 품고 있을 자긍심과 국가적 소명 의식을 믿기에 걱정하지 않는다. 출처 : 서울경제 (https://www.sedaily.com/NewsVIew/22JX4Z0VCN)
승격자교육(4.20)
승격자 교육, 강릉 폭설피해 농가를 가다 2011년 승격자 교육이 3일간(4월 20일~22일)의 일정으로 본원과 강릉분원에서 진행되었다. 첫째 날 일정에서 문길주 원장은 ‘KIST는 Comfort Zone에서 벗어나서 Great Zone으로 가야 좋은 연구소를 넘어 위대한 연구소로 갈 수 있다’며 승격자들의 역할을 주문했다. 이어진 특강에서 신희섭 뇌과학연구소 소장은 후배연구원들에게 ‘연구하는 것이 즐거움의 원천’이라며 연구에 대한 몰입을 강조했다. 승격자들은 4월 22일 강릉에서 후배연구원들과 학생들을 육성하기 위한 ‘코칭 리더십’실습교육을 수행했다. 교육 마지막날 승격자들과 강릉분원 직원들이 함께 지난 3월 폭설로 피해를 입은 농가에 대한 지원활동을 벌였다. 비가 쏟아지는 와중에도 사회공헌 활동에 참여한 모든 직원들이 흙탕물을 아랑곳하지 않고, 힘든 내색도 없이 열심히 일하는 모습을 지켜본 피해농민은 ‘연구만 하시는 분들이 이렇게 열심히 하실 줄 몰랐다. 너무 고맙다’며 감사의 뜻을 전했다. ‘짧은 3일간의 교육이었지만 함께 승격한 동기들과 소중한 인연을 만들었다.’며 활짝 웃는 승격자의 모습에서 진솔한 소통의 모습을 볼 수 있었다.
시중에서 구할 수 있는, 치아와 가장 유사한 물질은 무엇인가요?
시판음료가 치아에 끼치는 영향을 알아보기 위해 음료 안에 치아를 넣어 어떤 변화가 일어나는지 실험해보려 합니다. 실제 치아는 아무래도 구하기가 어려운 탓에 치아와 가장 유사한 물질로 대체하려 하는데, 시중에서 쉽게 구할 수 있는 물질은 무엇이 있을까요? 닭뼈나 돼지뼈 혹은 달걀껍데기도 실험이 가능할까요? 세개의 물질 중 무엇이 가장 유사하며, 어느 것으로 실험을 실행해야 실제 치아와 한 것과 같은 비슷한 결과가 나올 수 있나요?