검색결과
게시물 키워드""에 대한 9100개의 검색결과를 찾았습니다.
스커미온 기반의 초고효율 차세대 통신소자 핵심기술 개발
스커미온 기반의 초고효율 차세대 통신소자 핵심기술 개발 - KIST-DGIST 공동연구팀, 이론으로만 제시된 스커미온의 호흡운동 규명 - 향후 스커미온 기반의 초저전력-초고주파 차세대 통신소자 개발 기대 2009년 발견된 소용돌이 모양으로 배열된 스핀들의 구조체인 ‘스커미온 (Skyrmion)’*은 특유의 위상학적 안정성과 작은 크기, 효율적인 움직임 등으로 인해 초고밀도, 고속력 차세대 메모리 소자의 기본 단위로 학계에서 매우 큰 주목을 받고 있다. 최근 국내 연구진이 독특한 스핀 구조체인 스커미온을 사용하여 차세대 초저전력-초고주파 통신 소자에 적용 가능한 기술을 개발했다고 밝혔다. *스커미온(Skyrmion) : 소용돌이 모양으로 스핀들이 배열되어 형성되는 스핀 구조체 한국과학기술연구원(KIST, 원장 이병권) 스핀융합연구단 우성훈 박사팀은 대구경북과학기술원(DGIST, 총장 손상혁) DGIST-LBNL 신물질연구센터 홍정일 센터장(신물질과학전공 교수)팀과의 공동연구를 통해 스커미온 스핀 구조체를 사용하여 기존에 제시된 바 없는 전혀 새로운 형태의 차세대 광대역 통신 소자에 적용 가능한 물리적 현상을 규명했다고 밝혔다. 최근에는 이러한 스커미온이 보이는 독특한 동역학적 움직임인 ‘스커미온 호흡운동(Skyrmion Breathing)’**현상을 사용할 때, 메모리 소자를 넘어 스커미온 기반의 차세대 고주파 발진기 소자의 구현도 가능하다는 이론적인 예측이 있어 왔다. 하지만 스커미온의 매우 작은 크기와 빠른 운동 속도로 인하여, 스커미온 호흡운동을 실제 관측하는 연구는 현재까지 이뤄지지 못했었다. **스커미온 호흡운동 : 외부의 신호에 반응하여, 스커미온의 크기가 커졌다-작아졌다를 반복하며 새로운 고주파 신호를 발생시키는 독특한 자성 동역학적 움직임. 이번 연구 결과는 기존에 이론으로만 제시되었던 ‘스커미온의 호흡운동’을 세계 최초로 구현한 것으로, KIST-DGIST 공동연구팀은 우수한 시공간 분해능(Resolving Power)***을 가지는 X-선 촬영기법을 이용하여, 외부 신호에 반응하는 스커미온의 미세 호흡운동을 1 나노 초(ns, 10억분의 1초) 단위로 관측하는데 성공하였다. 뿐만 아니라, 본 연구 과정을 통하여 외부 전류를 이용한 스커미온의 효율적인 생성 기법 또한 개발하였다. 이러한 연구 결과는 그동안 학계에서 주목해온 메모리 소자로의 적용을 넘어 미래 전자기기 전 분야에 스커미온이 큰 역할을 할 수 있음을 제시하는 매우 중요한 결과라 할 수 있다. **분해능(分解能) : 현미경 등의 광학기기에서 관찰하는 대상의 세부를 상(像)으로 판별하는 능력. 분리능 또는 해상력이라고 한다. 본 연구를 주도한 KIST 우성훈 박사는 “기존에 이론으로만 제시되었던 스커미온 기반의 고효율 차세대 통신소자가 실제 가능하다는 연구 결과이며, 향후 미래 고성능 전자기기들의 효율적인 통신을 위한 차세대 통신소자 개발을 앞당기는데 기여할 것”이라고 말했다. 또한 DGIST 홍정일 센터장은 “본 연구결과가 제시하는 ‘스커미온’을 활용한 새로운 접근법은 전반적인 소자의 작동 메커니즘을 새롭게 제시할 수 있어 기존의 연구 흐름에 시사하는 바가 크다”고 밝혔다. 또한 본 연구 논문에는 KIST 연수생 송경미 박사과정(숙명여자대학교 물리학과) 학생이 공동 1저자로 참여하였다. 본 연구는 미래창조과학부 지원으로 KIST 기관고유사업, 창의형 융합연구사업 및 미래소재디스커버리사업으로 수행되었으며, 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 5월 24일(수) 온라인 판에 게재되었다. <그림설명> <그림 1> 외부 전류 자극에 의해 시간에 따라 변하는 스커미온 호흡운동에 대한 모식도
스커미온 기반의 초고효율 차세대 통신소자 핵심기술 개발
스커미온 기반의 초고효율 차세대 통신소자 핵심기술 개발 - KIST-DGIST 공동연구팀, 이론으로만 제시된 스커미온의 호흡운동 규명 - 향후 스커미온 기반의 초저전력-초고주파 차세대 통신소자 개발 기대 2009년 발견된 소용돌이 모양으로 배열된 스핀들의 구조체인 ‘스커미온 (Skyrmion)’*은 특유의 위상학적 안정성과 작은 크기, 효율적인 움직임 등으로 인해 초고밀도, 고속력 차세대 메모리 소자의 기본 단위로 학계에서 매우 큰 주목을 받고 있다. 최근 국내 연구진이 독특한 스핀 구조체인 스커미온을 사용하여 차세대 초저전력-초고주파 통신 소자에 적용 가능한 기술을 개발했다고 밝혔다. *스커미온(Skyrmion) : 소용돌이 모양으로 스핀들이 배열되어 형성되는 스핀 구조체 한국과학기술연구원(KIST, 원장 이병권) 스핀융합연구단 우성훈 박사팀은 대구경북과학기술원(DGIST, 총장 손상혁) DGIST-LBNL 신물질연구센터 홍정일 센터장(신물질과학전공 교수)팀과의 공동연구를 통해 스커미온 스핀 구조체를 사용하여 기존에 제시된 바 없는 전혀 새로운 형태의 차세대 광대역 통신 소자에 적용 가능한 물리적 현상을 규명했다고 밝혔다. 최근에는 이러한 스커미온이 보이는 독특한 동역학적 움직임인 ‘스커미온 호흡운동(Skyrmion Breathing)’**현상을 사용할 때, 메모리 소자를 넘어 스커미온 기반의 차세대 고주파 발진기 소자의 구현도 가능하다는 이론적인 예측이 있어 왔다. 하지만 스커미온의 매우 작은 크기와 빠른 운동 속도로 인하여, 스커미온 호흡운동을 실제 관측하는 연구는 현재까지 이뤄지지 못했었다. **스커미온 호흡운동 : 외부의 신호에 반응하여, 스커미온의 크기가 커졌다-작아졌다를 반복하며 새로운 고주파 신호를 발생시키는 독특한 자성 동역학적 움직임. 이번 연구 결과는 기존에 이론으로만 제시되었던 ‘스커미온의 호흡운동’을 세계 최초로 구현한 것으로, KIST-DGIST 공동연구팀은 우수한 시공간 분해능(Resolving Power)***을 가지는 X-선 촬영기법을 이용하여, 외부 신호에 반응하는 스커미온의 미세 호흡운동을 1 나노 초(ns, 10억분의 1초) 단위로 관측하는데 성공하였다. 뿐만 아니라, 본 연구 과정을 통하여 외부 전류를 이용한 스커미온의 효율적인 생성 기법 또한 개발하였다. 이러한 연구 결과는 그동안 학계에서 주목해온 메모리 소자로의 적용을 넘어 미래 전자기기 전 분야에 스커미온이 큰 역할을 할 수 있음을 제시하는 매우 중요한 결과라 할 수 있다. **분해능(分解能) : 현미경 등의 광학기기에서 관찰하는 대상의 세부를 상(像)으로 판별하는 능력. 분리능 또는 해상력이라고 한다. 본 연구를 주도한 KIST 우성훈 박사는 “기존에 이론으로만 제시되었던 스커미온 기반의 고효율 차세대 통신소자가 실제 가능하다는 연구 결과이며, 향후 미래 고성능 전자기기들의 효율적인 통신을 위한 차세대 통신소자 개발을 앞당기는데 기여할 것”이라고 말했다. 또한 DGIST 홍정일 센터장은 “본 연구결과가 제시하는 ‘스커미온’을 활용한 새로운 접근법은 전반적인 소자의 작동 메커니즘을 새롭게 제시할 수 있어 기존의 연구 흐름에 시사하는 바가 크다”고 밝혔다. 또한 본 연구 논문에는 KIST 연수생 송경미 박사과정(숙명여자대학교 물리학과) 학생이 공동 1저자로 참여하였다. 본 연구는 미래창조과학부 지원으로 KIST 기관고유사업, 창의형 융합연구사업 및 미래소재디스커버리사업으로 수행되었으며, 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 5월 24일(수) 온라인 판에 게재되었다. <그림설명> <그림 1> 외부 전류 자극에 의해 시간에 따라 변하는 스커미온 호흡운동에 대한 모식도
스커미온 기반의 초고효율 차세대 통신소자 핵심기술 개발
스커미온 기반의 초고효율 차세대 통신소자 핵심기술 개발 - KIST-DGIST 공동연구팀, 이론으로만 제시된 스커미온의 호흡운동 규명 - 향후 스커미온 기반의 초저전력-초고주파 차세대 통신소자 개발 기대 2009년 발견된 소용돌이 모양으로 배열된 스핀들의 구조체인 ‘스커미온 (Skyrmion)’*은 특유의 위상학적 안정성과 작은 크기, 효율적인 움직임 등으로 인해 초고밀도, 고속력 차세대 메모리 소자의 기본 단위로 학계에서 매우 큰 주목을 받고 있다. 최근 국내 연구진이 독특한 스핀 구조체인 스커미온을 사용하여 차세대 초저전력-초고주파 통신 소자에 적용 가능한 기술을 개발했다고 밝혔다. *스커미온(Skyrmion) : 소용돌이 모양으로 스핀들이 배열되어 형성되는 스핀 구조체 한국과학기술연구원(KIST, 원장 이병권) 스핀융합연구단 우성훈 박사팀은 대구경북과학기술원(DGIST, 총장 손상혁) DGIST-LBNL 신물질연구센터 홍정일 센터장(신물질과학전공 교수)팀과의 공동연구를 통해 스커미온 스핀 구조체를 사용하여 기존에 제시된 바 없는 전혀 새로운 형태의 차세대 광대역 통신 소자에 적용 가능한 물리적 현상을 규명했다고 밝혔다. 최근에는 이러한 스커미온이 보이는 독특한 동역학적 움직임인 ‘스커미온 호흡운동(Skyrmion Breathing)’**현상을 사용할 때, 메모리 소자를 넘어 스커미온 기반의 차세대 고주파 발진기 소자의 구현도 가능하다는 이론적인 예측이 있어 왔다. 하지만 스커미온의 매우 작은 크기와 빠른 운동 속도로 인하여, 스커미온 호흡운동을 실제 관측하는 연구는 현재까지 이뤄지지 못했었다. **스커미온 호흡운동 : 외부의 신호에 반응하여, 스커미온의 크기가 커졌다-작아졌다를 반복하며 새로운 고주파 신호를 발생시키는 독특한 자성 동역학적 움직임. 이번 연구 결과는 기존에 이론으로만 제시되었던 ‘스커미온의 호흡운동’을 세계 최초로 구현한 것으로, KIST-DGIST 공동연구팀은 우수한 시공간 분해능(Resolving Power)***을 가지는 X-선 촬영기법을 이용하여, 외부 신호에 반응하는 스커미온의 미세 호흡운동을 1 나노 초(ns, 10억분의 1초) 단위로 관측하는데 성공하였다. 뿐만 아니라, 본 연구 과정을 통하여 외부 전류를 이용한 스커미온의 효율적인 생성 기법 또한 개발하였다. 이러한 연구 결과는 그동안 학계에서 주목해온 메모리 소자로의 적용을 넘어 미래 전자기기 전 분야에 스커미온이 큰 역할을 할 수 있음을 제시하는 매우 중요한 결과라 할 수 있다. **분해능(分解能) : 현미경 등의 광학기기에서 관찰하는 대상의 세부를 상(像)으로 판별하는 능력. 분리능 또는 해상력이라고 한다. 본 연구를 주도한 KIST 우성훈 박사는 “기존에 이론으로만 제시되었던 스커미온 기반의 고효율 차세대 통신소자가 실제 가능하다는 연구 결과이며, 향후 미래 고성능 전자기기들의 효율적인 통신을 위한 차세대 통신소자 개발을 앞당기는데 기여할 것”이라고 말했다. 또한 DGIST 홍정일 센터장은 “본 연구결과가 제시하는 ‘스커미온’을 활용한 새로운 접근법은 전반적인 소자의 작동 메커니즘을 새롭게 제시할 수 있어 기존의 연구 흐름에 시사하는 바가 크다”고 밝혔다. 또한 본 연구 논문에는 KIST 연수생 송경미 박사과정(숙명여자대학교 물리학과) 학생이 공동 1저자로 참여하였다. 본 연구는 미래창조과학부 지원으로 KIST 기관고유사업, 창의형 융합연구사업 및 미래소재디스커버리사업으로 수행되었으며, 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 5월 24일(수) 온라인 판에 게재되었다. <그림설명> <그림 1> 외부 전류 자극에 의해 시간에 따라 변하는 스커미온 호흡운동에 대한 모식도
스커미온 기반의 초고효율 차세대 통신소자 핵심기술 개발
스커미온 기반의 초고효율 차세대 통신소자 핵심기술 개발 - KIST-DGIST 공동연구팀, 이론으로만 제시된 스커미온의 호흡운동 규명 - 향후 스커미온 기반의 초저전력-초고주파 차세대 통신소자 개발 기대 2009년 발견된 소용돌이 모양으로 배열된 스핀들의 구조체인 ‘스커미온 (Skyrmion)’*은 특유의 위상학적 안정성과 작은 크기, 효율적인 움직임 등으로 인해 초고밀도, 고속력 차세대 메모리 소자의 기본 단위로 학계에서 매우 큰 주목을 받고 있다. 최근 국내 연구진이 독특한 스핀 구조체인 스커미온을 사용하여 차세대 초저전력-초고주파 통신 소자에 적용 가능한 기술을 개발했다고 밝혔다. *스커미온(Skyrmion) : 소용돌이 모양으로 스핀들이 배열되어 형성되는 스핀 구조체 한국과학기술연구원(KIST, 원장 이병권) 스핀융합연구단 우성훈 박사팀은 대구경북과학기술원(DGIST, 총장 손상혁) DGIST-LBNL 신물질연구센터 홍정일 센터장(신물질과학전공 교수)팀과의 공동연구를 통해 스커미온 스핀 구조체를 사용하여 기존에 제시된 바 없는 전혀 새로운 형태의 차세대 광대역 통신 소자에 적용 가능한 물리적 현상을 규명했다고 밝혔다. 최근에는 이러한 스커미온이 보이는 독특한 동역학적 움직임인 ‘스커미온 호흡운동(Skyrmion Breathing)’**현상을 사용할 때, 메모리 소자를 넘어 스커미온 기반의 차세대 고주파 발진기 소자의 구현도 가능하다는 이론적인 예측이 있어 왔다. 하지만 스커미온의 매우 작은 크기와 빠른 운동 속도로 인하여, 스커미온 호흡운동을 실제 관측하는 연구는 현재까지 이뤄지지 못했었다. **스커미온 호흡운동 : 외부의 신호에 반응하여, 스커미온의 크기가 커졌다-작아졌다를 반복하며 새로운 고주파 신호를 발생시키는 독특한 자성 동역학적 움직임. 이번 연구 결과는 기존에 이론으로만 제시되었던 ‘스커미온의 호흡운동’을 세계 최초로 구현한 것으로, KIST-DGIST 공동연구팀은 우수한 시공간 분해능(Resolving Power)***을 가지는 X-선 촬영기법을 이용하여, 외부 신호에 반응하는 스커미온의 미세 호흡운동을 1 나노 초(ns, 10억분의 1초) 단위로 관측하는데 성공하였다. 뿐만 아니라, 본 연구 과정을 통하여 외부 전류를 이용한 스커미온의 효율적인 생성 기법 또한 개발하였다. 이러한 연구 결과는 그동안 학계에서 주목해온 메모리 소자로의 적용을 넘어 미래 전자기기 전 분야에 스커미온이 큰 역할을 할 수 있음을 제시하는 매우 중요한 결과라 할 수 있다. **분해능(分解能) : 현미경 등의 광학기기에서 관찰하는 대상의 세부를 상(像)으로 판별하는 능력. 분리능 또는 해상력이라고 한다. 본 연구를 주도한 KIST 우성훈 박사는 “기존에 이론으로만 제시되었던 스커미온 기반의 고효율 차세대 통신소자가 실제 가능하다는 연구 결과이며, 향후 미래 고성능 전자기기들의 효율적인 통신을 위한 차세대 통신소자 개발을 앞당기는데 기여할 것”이라고 말했다. 또한 DGIST 홍정일 센터장은 “본 연구결과가 제시하는 ‘스커미온’을 활용한 새로운 접근법은 전반적인 소자의 작동 메커니즘을 새롭게 제시할 수 있어 기존의 연구 흐름에 시사하는 바가 크다”고 밝혔다. 또한 본 연구 논문에는 KIST 연수생 송경미 박사과정(숙명여자대학교 물리학과) 학생이 공동 1저자로 참여하였다. 본 연구는 미래창조과학부 지원으로 KIST 기관고유사업, 창의형 융합연구사업 및 미래소재디스커버리사업으로 수행되었으며, 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 5월 24일(수) 온라인 판에 게재되었다. <그림설명> <그림 1> 외부 전류 자극에 의해 시간에 따라 변하는 스커미온 호흡운동에 대한 모식도
스커미온 기반의 초고효율 차세대 통신소자 핵심기술 개발
스커미온 기반의 초고효율 차세대 통신소자 핵심기술 개발 - KIST-DGIST 공동연구팀, 이론으로만 제시된 스커미온의 호흡운동 규명 - 향후 스커미온 기반의 초저전력-초고주파 차세대 통신소자 개발 기대 2009년 발견된 소용돌이 모양으로 배열된 스핀들의 구조체인 ‘스커미온 (Skyrmion)’*은 특유의 위상학적 안정성과 작은 크기, 효율적인 움직임 등으로 인해 초고밀도, 고속력 차세대 메모리 소자의 기본 단위로 학계에서 매우 큰 주목을 받고 있다. 최근 국내 연구진이 독특한 스핀 구조체인 스커미온을 사용하여 차세대 초저전력-초고주파 통신 소자에 적용 가능한 기술을 개발했다고 밝혔다. *스커미온(Skyrmion) : 소용돌이 모양으로 스핀들이 배열되어 형성되는 스핀 구조체 한국과학기술연구원(KIST, 원장 이병권) 스핀융합연구단 우성훈 박사팀은 대구경북과학기술원(DGIST, 총장 손상혁) DGIST-LBNL 신물질연구센터 홍정일 센터장(신물질과학전공 교수)팀과의 공동연구를 통해 스커미온 스핀 구조체를 사용하여 기존에 제시된 바 없는 전혀 새로운 형태의 차세대 광대역 통신 소자에 적용 가능한 물리적 현상을 규명했다고 밝혔다. 최근에는 이러한 스커미온이 보이는 독특한 동역학적 움직임인 ‘스커미온 호흡운동(Skyrmion Breathing)’**현상을 사용할 때, 메모리 소자를 넘어 스커미온 기반의 차세대 고주파 발진기 소자의 구현도 가능하다는 이론적인 예측이 있어 왔다. 하지만 스커미온의 매우 작은 크기와 빠른 운동 속도로 인하여, 스커미온 호흡운동을 실제 관측하는 연구는 현재까지 이뤄지지 못했었다. **스커미온 호흡운동 : 외부의 신호에 반응하여, 스커미온의 크기가 커졌다-작아졌다를 반복하며 새로운 고주파 신호를 발생시키는 독특한 자성 동역학적 움직임. 이번 연구 결과는 기존에 이론으로만 제시되었던 ‘스커미온의 호흡운동’을 세계 최초로 구현한 것으로, KIST-DGIST 공동연구팀은 우수한 시공간 분해능(Resolving Power)***을 가지는 X-선 촬영기법을 이용하여, 외부 신호에 반응하는 스커미온의 미세 호흡운동을 1 나노 초(ns, 10억분의 1초) 단위로 관측하는데 성공하였다. 뿐만 아니라, 본 연구 과정을 통하여 외부 전류를 이용한 스커미온의 효율적인 생성 기법 또한 개발하였다. 이러한 연구 결과는 그동안 학계에서 주목해온 메모리 소자로의 적용을 넘어 미래 전자기기 전 분야에 스커미온이 큰 역할을 할 수 있음을 제시하는 매우 중요한 결과라 할 수 있다. **분해능(分解能) : 현미경 등의 광학기기에서 관찰하는 대상의 세부를 상(像)으로 판별하는 능력. 분리능 또는 해상력이라고 한다. 본 연구를 주도한 KIST 우성훈 박사는 “기존에 이론으로만 제시되었던 스커미온 기반의 고효율 차세대 통신소자가 실제 가능하다는 연구 결과이며, 향후 미래 고성능 전자기기들의 효율적인 통신을 위한 차세대 통신소자 개발을 앞당기는데 기여할 것”이라고 말했다. 또한 DGIST 홍정일 센터장은 “본 연구결과가 제시하는 ‘스커미온’을 활용한 새로운 접근법은 전반적인 소자의 작동 메커니즘을 새롭게 제시할 수 있어 기존의 연구 흐름에 시사하는 바가 크다”고 밝혔다. 또한 본 연구 논문에는 KIST 연수생 송경미 박사과정(숙명여자대학교 물리학과) 학생이 공동 1저자로 참여하였다. 본 연구는 미래창조과학부 지원으로 KIST 기관고유사업, 창의형 융합연구사업 및 미래소재디스커버리사업으로 수행되었으며, 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 5월 24일(수) 온라인 판에 게재되었다. <그림설명> <그림 1> 외부 전류 자극에 의해 시간에 따라 변하는 스커미온 호흡운동에 대한 모식도
스타일트랜스퍼 기술 관련 협업 문의
안녕하세요. KIST 커뮤니케이션팀입니다. KIST는 아동권리보장원과 2021년 실종아동찾기 활성화 업무협약을 체결하여 지원하고 있습니다. 신한은행에서 진행하시는 캠페인의 성격과 방식에서 어떤 차이가 있을지 확인이 필요할 것 같습니다. 커뮤니케이션팀 02-958-6929 혹은 yeeun.lee@kist.re.kr 로 연락주시면 감사하겠습니다.
스포웰짐
안녕하세요 스포웰짐 휘트니스 윤승진 점장 입니다. 다름이아니라, KIST 임직원 및 학생분들께서 저희 센터를 많이 이용하고 계셔서, 조금 더 혜택을 드리고자 KIST 와 스포웰짐 간에 업무협약을 제안하고 싶어 연락드렸습니다. 어떤 방식으로 연락을 드려야하는지 답 주시면, 연락드리도록 하겠습니다.
스프링클러 동배관 누수 문제를 해결하다
스프링클러 동배관 누수 문제를 해결하다 - 스프링클러 동배관 누수의 원인 규명하여 차단기술 개발 - 저비용으로 입주자 불편 해소와 안전확보 가능할 것으로 전망 한국토지주택공사(LH공사)와 에스에이치공사(SH공사)가 2009년에서 2013년 사이에 공급한 아파트들의 스프링클러 동배관에서 소화용수 누수가 다수 발생하여 주민들의 심각한 민원이 되고 있으며, 관련한 내용들이 주요 방송국의 메인 뉴스에 보도된 바 있다. 이에 따라 스프링클러 동배관 누수는 입주자들의 불편 해소와 안전 확보를 위해 시급히 해결해야 할 사회적 문제로 대두되고 있다. ● LH공사 공급 아파트 관련: KBS TV 9뉴스(2013.7.12.), JTBC 뉴스(2014.11.24.) ● SH공사 공급 아파트 관련: JTBC 뉴스(2015.6.24) ● 스프링클러 누수 원인 관련: KBS1 똑똑한 소비자리포트 111회(2015.7.17.) 한국과학기술연구원(KIST, 원장 이병권) 전자재료연구단 서상희 박사와 한국과학기술원(KAIST, 총장 강성모) 신소재공학과 권혁상 교수는 지난 수 년간 우리나라에서 발생한 스프링클러 동배관의 누수 발생의 원인과 누수방지기술을 연구하였고, 연구 결과는 관련 국제적 저명 저널인 Engineering Failure Analysis 최근 호 (Analysis of pitting corrosion failure of copper tubes in an apartment fire sprinkler system: 아파트 스프링클러 동배관의 공식 손상 분석, 2016년 vol. 64, pp 111-125)에 실린 바 있다. 연구 결과에 따르면 해당 아파트들의 스프링클러 장치를 작동시킬 때 동배관 내에 고압의 소화용수를 채우게 되는데, 이 때 동배관에 남아 있는 공기를 완전히 제거하지 않고 소화용수를 채우면 압축된 공기는 동배관 내에서 산소농도차 전지 현상을 일으켜 공식(pitting corrosion)이라는 국부적인 부식을 가속화하게 되며, 결국 배관에 작은 구멍이 생겨 누수가 발생하는 것으로 확인되었다. 스프링클러 배관의 누수를 방지하기 위해서는 부식이 발생하지 않는 고강도 PVC로 배관을 교체하던가 또는 스프링클러 배관의 부식이 더 이상 진행되지 않는 방안을 찾아야만 한다. 본 연구진은 입주민들에 불편을 주고 막대한 비용이 들어가는 배관 교체 대신에 스프링클러 동배관의 누수 문제를 간단히 해결할 수 있는 기술을 개발하여 2015년도에 특허로 출원하였으며 2016년 4월 27일에 등록이 완료 되었다. (발명의 명칭: 금속 배관의 부식을 방지할 수 있는 습식 스프링클러 장치,” 특허등록번호: 10-2015-0020210) 등록된 특허기술은 질소가스 충진과 진공배기충수장치에 의해서 동배관 내의 공기를 완전히 제거한 후에 소화용수를 채워 넣는 기술로서 이미 부식이 진행되고 있는 동배관의 부식을 늦출 수 있으며, 특히 새로 스프링클러를 설치할 때 부식방지에 유효한 기술이다. 이미 상당 수준으로 부식이 진행되고 있는 동배관의 누수를 방지하기 위해서는 동배관내의 공기를 제거하는 것에 더해서 배관에 채우는 소화용수의 용존산소농도를 0.1 ppm 이하로 낮출 필요가 있다. 소화용수의 용존산소농도를 줄이는 것은 산소제거 약품을 투입하여 소화용수의 용존 산소농도를 줄여 실제로 스프링클러 시스템에 적용하는 기술을 2015년 9월에 특허 출원을 한 바 있다. 이 기술을 이미 부식이 발생한 10개의 동배관에 적용한 결과, 3개월 간 누수가 전혀 발생하지 않는 것을 확인하였다. 현재 스프링클러 누수문제로 큰 고통을 받고 있는 입주민들과 안전문제, 그리고 피해 배상 및 보수문제로 곤란을 겪고 있는 아파트 공급사의 문제를 해결할 것으로 전망하고 있다. <그림자료> 그림 1. 동 배관에 소화용수를 넣는 과정에서 발생하는 가압 공기층 그림 2. 가압 공기층에 의해 발생한 스프링클러 동 배관 내에 국부적 부식(pitting corrosion)의 모습 그림 3. 스프링클러 동배관 내에 존재하는 가압 공기층에 의한 국부적 부식(pitting corrosion) 형성 메카니즘 그림 4. 누수를 발생시킨 스프링클러 동배관의 국부부식 부위의 전자현미경 사진 (누수가 발생한 통로를 볼 수 있음) 그림 5. 질소 충진과 진공배기에 의해 배관내의 공기를 완전히 제거한 모습 (상부의 방울들은 수증기 방울이며, 시현을 위해 동배관 대신에 아크릴 관을 사용하였음.) 그림 6. 물탱크에 담긴 소화용수를 동배관에 넣기 직전에 산소제거 약품을 투입하여 의해 용존산소농도를 0.1 ppm 으로 낮춘 모습 그림 7. 이미 부식이 여러 개 발생한 스프링클러 동배관을 대상으로 부식 방지 실험을 하는 모습 (배관 내의 공기를 없애고 소화용수 중의 용존산소농도를 0.1 ppm 이하를 낮춤으로 해서 누수가 전혀 발생하지 않고 있음) 그림 8. 스프링클러 동배관 내의 공기를 제거한 후, 용존산소농도를 낮춘 소화용수를 배관에 넣는 모습
스프링클러 동배관 누수 문제를 해결하다
스프링클러 동배관 누수 문제를 해결하다 - 스프링클러 동배관 누수의 원인 규명하여 차단기술 개발 - 저비용으로 입주자 불편 해소와 안전확보 가능할 것으로 전망 한국토지주택공사(LH공사)와 에스에이치공사(SH공사)가 2009년에서 2013년 사이에 공급한 아파트들의 스프링클러 동배관에서 소화용수 누수가 다수 발생하여 주민들의 심각한 민원이 되고 있으며, 관련한 내용들이 주요 방송국의 메인 뉴스에 보도된 바 있다. 이에 따라 스프링클러 동배관 누수는 입주자들의 불편 해소와 안전 확보를 위해 시급히 해결해야 할 사회적 문제로 대두되고 있다. ● LH공사 공급 아파트 관련: KBS TV 9뉴스(2013.7.12.), JTBC 뉴스(2014.11.24.) ● SH공사 공급 아파트 관련: JTBC 뉴스(2015.6.24) ● 스프링클러 누수 원인 관련: KBS1 똑똑한 소비자리포트 111회(2015.7.17.) 한국과학기술연구원(KIST, 원장 이병권) 전자재료연구단 서상희 박사와 한국과학기술원(KAIST, 총장 강성모) 신소재공학과 권혁상 교수는 지난 수 년간 우리나라에서 발생한 스프링클러 동배관의 누수 발생의 원인과 누수방지기술을 연구하였고, 연구 결과는 관련 국제적 저명 저널인 Engineering Failure Analysis 최근 호 (Analysis of pitting corrosion failure of copper tubes in an apartment fire sprinkler system: 아파트 스프링클러 동배관의 공식 손상 분석, 2016년 vol. 64, pp 111-125)에 실린 바 있다. 연구 결과에 따르면 해당 아파트들의 스프링클러 장치를 작동시킬 때 동배관 내에 고압의 소화용수를 채우게 되는데, 이 때 동배관에 남아 있는 공기를 완전히 제거하지 않고 소화용수를 채우면 압축된 공기는 동배관 내에서 산소농도차 전지 현상을 일으켜 공식(pitting corrosion)이라는 국부적인 부식을 가속화하게 되며, 결국 배관에 작은 구멍이 생겨 누수가 발생하는 것으로 확인되었다. 스프링클러 배관의 누수를 방지하기 위해서는 부식이 발생하지 않는 고강도 PVC로 배관을 교체하던가 또는 스프링클러 배관의 부식이 더 이상 진행되지 않는 방안을 찾아야만 한다. 본 연구진은 입주민들에 불편을 주고 막대한 비용이 들어가는 배관 교체 대신에 스프링클러 동배관의 누수 문제를 간단히 해결할 수 있는 기술을 개발하여 2015년도에 특허로 출원하였으며 2016년 4월 27일에 등록이 완료 되었다. (발명의 명칭: 금속 배관의 부식을 방지할 수 있는 습식 스프링클러 장치,” 특허등록번호: 10-2015-0020210) 등록된 특허기술은 질소가스 충진과 진공배기충수장치에 의해서 동배관 내의 공기를 완전히 제거한 후에 소화용수를 채워 넣는 기술로서 이미 부식이 진행되고 있는 동배관의 부식을 늦출 수 있으며, 특히 새로 스프링클러를 설치할 때 부식방지에 유효한 기술이다. 이미 상당 수준으로 부식이 진행되고 있는 동배관의 누수를 방지하기 위해서는 동배관내의 공기를 제거하는 것에 더해서 배관에 채우는 소화용수의 용존산소농도를 0.1 ppm 이하로 낮출 필요가 있다. 소화용수의 용존산소농도를 줄이는 것은 산소제거 약품을 투입하여 소화용수의 용존 산소농도를 줄여 실제로 스프링클러 시스템에 적용하는 기술을 2015년 9월에 특허 출원을 한 바 있다. 이 기술을 이미 부식이 발생한 10개의 동배관에 적용한 결과, 3개월 간 누수가 전혀 발생하지 않는 것을 확인하였다. 현재 스프링클러 누수문제로 큰 고통을 받고 있는 입주민들과 안전문제, 그리고 피해 배상 및 보수문제로 곤란을 겪고 있는 아파트 공급사의 문제를 해결할 것으로 전망하고 있다. <그림자료> 그림 1. 동 배관에 소화용수를 넣는 과정에서 발생하는 가압 공기층 그림 2. 가압 공기층에 의해 발생한 스프링클러 동 배관 내에 국부적 부식(pitting corrosion)의 모습 그림 3. 스프링클러 동배관 내에 존재하는 가압 공기층에 의한 국부적 부식(pitting corrosion) 형성 메카니즘 그림 4. 누수를 발생시킨 스프링클러 동배관의 국부부식 부위의 전자현미경 사진 (누수가 발생한 통로를 볼 수 있음) 그림 5. 질소 충진과 진공배기에 의해 배관내의 공기를 완전히 제거한 모습 (상부의 방울들은 수증기 방울이며, 시현을 위해 동배관 대신에 아크릴 관을 사용하였음.) 그림 6. 물탱크에 담긴 소화용수를 동배관에 넣기 직전에 산소제거 약품을 투입하여 의해 용존산소농도를 0.1 ppm 으로 낮춘 모습 그림 7. 이미 부식이 여러 개 발생한 스프링클러 동배관을 대상으로 부식 방지 실험을 하는 모습 (배관 내의 공기를 없애고 소화용수 중의 용존산소농도를 0.1 ppm 이하를 낮춤으로 해서 누수가 전혀 발생하지 않고 있음) 그림 8. 스프링클러 동배관 내의 공기를 제거한 후, 용존산소농도를 낮춘 소화용수를 배관에 넣는 모습
스프링클러 동배관 누수 문제를 해결하다
스프링클러 동배관 누수 문제를 해결하다 - 스프링클러 동배관 누수의 원인 규명하여 차단기술 개발 - 저비용으로 입주자 불편 해소와 안전확보 가능할 것으로 전망 한국토지주택공사(LH공사)와 에스에이치공사(SH공사)가 2009년에서 2013년 사이에 공급한 아파트들의 스프링클러 동배관에서 소화용수 누수가 다수 발생하여 주민들의 심각한 민원이 되고 있으며, 관련한 내용들이 주요 방송국의 메인 뉴스에 보도된 바 있다. 이에 따라 스프링클러 동배관 누수는 입주자들의 불편 해소와 안전 확보를 위해 시급히 해결해야 할 사회적 문제로 대두되고 있다. ● LH공사 공급 아파트 관련: KBS TV 9뉴스(2013.7.12.), JTBC 뉴스(2014.11.24.) ● SH공사 공급 아파트 관련: JTBC 뉴스(2015.6.24) ● 스프링클러 누수 원인 관련: KBS1 똑똑한 소비자리포트 111회(2015.7.17.) 한국과학기술연구원(KIST, 원장 이병권) 전자재료연구단 서상희 박사와 한국과학기술원(KAIST, 총장 강성모) 신소재공학과 권혁상 교수는 지난 수 년간 우리나라에서 발생한 스프링클러 동배관의 누수 발생의 원인과 누수방지기술을 연구하였고, 연구 결과는 관련 국제적 저명 저널인 Engineering Failure Analysis 최근 호 (Analysis of pitting corrosion failure of copper tubes in an apartment fire sprinkler system: 아파트 스프링클러 동배관의 공식 손상 분석, 2016년 vol. 64, pp 111-125)에 실린 바 있다. 연구 결과에 따르면 해당 아파트들의 스프링클러 장치를 작동시킬 때 동배관 내에 고압의 소화용수를 채우게 되는데, 이 때 동배관에 남아 있는 공기를 완전히 제거하지 않고 소화용수를 채우면 압축된 공기는 동배관 내에서 산소농도차 전지 현상을 일으켜 공식(pitting corrosion)이라는 국부적인 부식을 가속화하게 되며, 결국 배관에 작은 구멍이 생겨 누수가 발생하는 것으로 확인되었다. 스프링클러 배관의 누수를 방지하기 위해서는 부식이 발생하지 않는 고강도 PVC로 배관을 교체하던가 또는 스프링클러 배관의 부식이 더 이상 진행되지 않는 방안을 찾아야만 한다. 본 연구진은 입주민들에 불편을 주고 막대한 비용이 들어가는 배관 교체 대신에 스프링클러 동배관의 누수 문제를 간단히 해결할 수 있는 기술을 개발하여 2015년도에 특허로 출원하였으며 2016년 4월 27일에 등록이 완료 되었다. (발명의 명칭: 금속 배관의 부식을 방지할 수 있는 습식 스프링클러 장치,” 특허등록번호: 10-2015-0020210) 등록된 특허기술은 질소가스 충진과 진공배기충수장치에 의해서 동배관 내의 공기를 완전히 제거한 후에 소화용수를 채워 넣는 기술로서 이미 부식이 진행되고 있는 동배관의 부식을 늦출 수 있으며, 특히 새로 스프링클러를 설치할 때 부식방지에 유효한 기술이다. 이미 상당 수준으로 부식이 진행되고 있는 동배관의 누수를 방지하기 위해서는 동배관내의 공기를 제거하는 것에 더해서 배관에 채우는 소화용수의 용존산소농도를 0.1 ppm 이하로 낮출 필요가 있다. 소화용수의 용존산소농도를 줄이는 것은 산소제거 약품을 투입하여 소화용수의 용존 산소농도를 줄여 실제로 스프링클러 시스템에 적용하는 기술을 2015년 9월에 특허 출원을 한 바 있다. 이 기술을 이미 부식이 발생한 10개의 동배관에 적용한 결과, 3개월 간 누수가 전혀 발생하지 않는 것을 확인하였다. 현재 스프링클러 누수문제로 큰 고통을 받고 있는 입주민들과 안전문제, 그리고 피해 배상 및 보수문제로 곤란을 겪고 있는 아파트 공급사의 문제를 해결할 것으로 전망하고 있다. <그림자료> 그림 1. 동 배관에 소화용수를 넣는 과정에서 발생하는 가압 공기층 그림 2. 가압 공기층에 의해 발생한 스프링클러 동 배관 내에 국부적 부식(pitting corrosion)의 모습 그림 3. 스프링클러 동배관 내에 존재하는 가압 공기층에 의한 국부적 부식(pitting corrosion) 형성 메카니즘 그림 4. 누수를 발생시킨 스프링클러 동배관의 국부부식 부위의 전자현미경 사진 (누수가 발생한 통로를 볼 수 있음) 그림 5. 질소 충진과 진공배기에 의해 배관내의 공기를 완전히 제거한 모습 (상부의 방울들은 수증기 방울이며, 시현을 위해 동배관 대신에 아크릴 관을 사용하였음.) 그림 6. 물탱크에 담긴 소화용수를 동배관에 넣기 직전에 산소제거 약품을 투입하여 의해 용존산소농도를 0.1 ppm 으로 낮춘 모습 그림 7. 이미 부식이 여러 개 발생한 스프링클러 동배관을 대상으로 부식 방지 실험을 하는 모습 (배관 내의 공기를 없애고 소화용수 중의 용존산소농도를 0.1 ppm 이하를 낮춤으로 해서 누수가 전혀 발생하지 않고 있음) 그림 8. 스프링클러 동배관 내의 공기를 제거한 후, 용존산소농도를 낮춘 소화용수를 배관에 넣는 모습