검색결과
게시물 키워드""에 대한 9100개의 검색결과를 찾았습니다.
수소전기차 핵심소재인 연료전지, KIST 연구진이 개발한 고성능 분리막으로 국산화 앞당긴다
- 열 경화를 통해 고성능의 새로운 고분자막(파라-폴리벤즈이미다졸) 개발 - 기존 전해질막보다 44% 높은 성능과 63% 낮은 전압손실 보여 한국과학기술연구원(KIST, 원장 이병권) 수소·연료전지연구단 헨켄스마이어 디억 박사팀은 “고온형 고분자 전해질 연료전지(HT-PEMFC)”*의 핵심소재인 전해질막의 성능을 크게 높였다고 밝혔다. *고온형 고분자 전해질막 연료전지(High Temperature - Polymer Electrolyte Membrane Fuel Cell, HT-PEMFC) : 연료전지 장치 중, 이온전도성 고분자막을 이온전달 전해질로 사용하는 연료전지 연료전지는 100℃ 이하의 온도에서 작동되는 저온형과 160~180℃의 온도에서 작동되는 고온형으로 나뉜다. 이중 고온형 연료전지는 작동 시 발생되는 열을 그냥 버리지 않고, 메탄올과 같은 연료를 수소로 변환시키는 공정에 사용하여 수소를 생산하고, 이 수소를 다시 연료전지 에너지원으로 재사용할 수 있다. 가격이 저렴하면서도 운반, 보관, 취급이 쉬운 메탄올은 수소변환 시 이산화탄소를 배출하지 않는다. 이러한 메탄올 개질기와 결합된 고온 연료전지는 발전기에 사용하면 기존의 디젤 발전기보다 이산화탄소 발생을 65%가량 줄일 수 있는 큰 장점이 있다. 고온형 연료전지가 널리 상용화되기 위해서는 높은 전력밀도와 긴 내구성이 필요하다. 보통 고온형 연료전지에는 이온전도도를 높이기 위해 인산이 첨가된 폴리벤즈이미다졸(PBI, PolyBenzImidazole)**계 전해질막이 사용된다. 그러나 기존의 폴리벤즈이미다졸계 분리막은 연료전지가 작동되는 고온에서 인산에 용해되는 심각한 문제가 있었다. **PBI(폴리벤즈이미다졸, PolyBenzImidazole) : 열적, 화학적인 안정성이 매우 뛰어나 방화복이나 우주복 등에 쓰이는 고분자 재료 KIST 연구진은 고분자막의 안정성과 전도성을 획기적으로 개선하기 위해, 설폰산기***를 폴리벤즈이미다졸에 부착시킨 후 열을 가해, 고온에서 부서지지 않는 단단한 고분자막을 만들었다. KIST 연구팀이 개발한 새로운 분리막은 160˚C의 인산에서도 용해되지 않았으며, 기존의 다른 분리막보다 44% 더 높은 전도성과 전력밀도를 보였다. 또한 시간에 따른 전압감소도 63% 더 낮아 우수한 내구성을 보여주었다. ***설폰산기 : 황산 분자에서 하이드록시기가 떨어져 나간 구조의 원자단 KIST 헨켄스마이어 디억 박사는 “고온용 고분자 전해질막은 수소전기차용 연료전지의 핵심소재이나 기술적인 장벽이 높아 현재는 소수의 국가에서만 생산 가능한 실정이다.”라고 말하며, “이번 연구결과를 통해 전해질막의 국산화에 크게 기여할 수 있을 것”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 수행된 KIST 주요사업과 덴마크 혁신 기금/한국 녹색 기술 센터가 지원한 KD 연료전지 프로젝트로 수행되었으며, 「Journal of Membrane Science」 (IF: 7.02, JCR 분야 상위 1.72%) 최신호에 게재되었다. * (논문명) Thermally crosslinked sulfonated polybenzimidazole membranes and their performance in high temperature polymer electrolyte fuel cells - (제 1저자) 한국과학기술연구원 N. Nambi Krishnan 박사후연구원 - (교신저자) 한국과학기술연구원 Dirk Henkensmeier 책임연구원 <그림설명> [그림 1] 160 ℃에서 85 중량 % 인산 용액에 가열된 고분자막. 맨오른쪽이 이번 개발된 고분자막으로, 용해되지 않았다. [그림 2] (a) MS-p-PBI (b) 열경화 된 c-MS-p-PBI를 사용한 고온연료전지의 작동 시간에 따른 성능 곡선
수소전기차 핵심소재인 연료전지, KIST 연구진이 개발한 고성능 분리막으로 국산화 앞당긴다
- 열 경화를 통해 고성능의 새로운 고분자막(파라-폴리벤즈이미다졸) 개발 - 기존 전해질막보다 44% 높은 성능과 63% 낮은 전압손실 보여 한국과학기술연구원(KIST, 원장 이병권) 수소·연료전지연구단 헨켄스마이어 디억 박사팀은 “고온형 고분자 전해질 연료전지(HT-PEMFC)”*의 핵심소재인 전해질막의 성능을 크게 높였다고 밝혔다. *고온형 고분자 전해질막 연료전지(High Temperature - Polymer Electrolyte Membrane Fuel Cell, HT-PEMFC) : 연료전지 장치 중, 이온전도성 고분자막을 이온전달 전해질로 사용하는 연료전지 연료전지는 100℃ 이하의 온도에서 작동되는 저온형과 160~180℃의 온도에서 작동되는 고온형으로 나뉜다. 이중 고온형 연료전지는 작동 시 발생되는 열을 그냥 버리지 않고, 메탄올과 같은 연료를 수소로 변환시키는 공정에 사용하여 수소를 생산하고, 이 수소를 다시 연료전지 에너지원으로 재사용할 수 있다. 가격이 저렴하면서도 운반, 보관, 취급이 쉬운 메탄올은 수소변환 시 이산화탄소를 배출하지 않는다. 이러한 메탄올 개질기와 결합된 고온 연료전지는 발전기에 사용하면 기존의 디젤 발전기보다 이산화탄소 발생을 65%가량 줄일 수 있는 큰 장점이 있다. 고온형 연료전지가 널리 상용화되기 위해서는 높은 전력밀도와 긴 내구성이 필요하다. 보통 고온형 연료전지에는 이온전도도를 높이기 위해 인산이 첨가된 폴리벤즈이미다졸(PBI, PolyBenzImidazole)**계 전해질막이 사용된다. 그러나 기존의 폴리벤즈이미다졸계 분리막은 연료전지가 작동되는 고온에서 인산에 용해되는 심각한 문제가 있었다. **PBI(폴리벤즈이미다졸, PolyBenzImidazole) : 열적, 화학적인 안정성이 매우 뛰어나 방화복이나 우주복 등에 쓰이는 고분자 재료 KIST 연구진은 고분자막의 안정성과 전도성을 획기적으로 개선하기 위해, 설폰산기***를 폴리벤즈이미다졸에 부착시킨 후 열을 가해, 고온에서 부서지지 않는 단단한 고분자막을 만들었다. KIST 연구팀이 개발한 새로운 분리막은 160˚C의 인산에서도 용해되지 않았으며, 기존의 다른 분리막보다 44% 더 높은 전도성과 전력밀도를 보였다. 또한 시간에 따른 전압감소도 63% 더 낮아 우수한 내구성을 보여주었다. ***설폰산기 : 황산 분자에서 하이드록시기가 떨어져 나간 구조의 원자단 KIST 헨켄스마이어 디억 박사는 “고온용 고분자 전해질막은 수소전기차용 연료전지의 핵심소재이나 기술적인 장벽이 높아 현재는 소수의 국가에서만 생산 가능한 실정이다.”라고 말하며, “이번 연구결과를 통해 전해질막의 국산화에 크게 기여할 수 있을 것”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 수행된 KIST 주요사업과 덴마크 혁신 기금/한국 녹색 기술 센터가 지원한 KD 연료전지 프로젝트로 수행되었으며, 「Journal of Membrane Science」 (IF: 7.02, JCR 분야 상위 1.72%) 최신호에 게재되었다. * (논문명) Thermally crosslinked sulfonated polybenzimidazole membranes and their performance in high temperature polymer electrolyte fuel cells - (제 1저자) 한국과학기술연구원 N. Nambi Krishnan 박사후연구원 - (교신저자) 한국과학기술연구원 Dirk Henkensmeier 책임연구원 <그림설명> [그림 1] 160 ℃에서 85 중량 % 인산 용액에 가열된 고분자막. 맨오른쪽이 이번 개발된 고분자막으로, 용해되지 않았다. [그림 2] (a) MS-p-PBI (b) 열경화 된 c-MS-p-PBI를 사용한 고온연료전지의 작동 시간에 따른 성능 곡선
수소전기차 핵심소재인 연료전지, KIST 연구진이 개발한 고성능 분리막으로 국산화 앞당긴다
- 열 경화를 통해 고성능의 새로운 고분자막(파라-폴리벤즈이미다졸) 개발 - 기존 전해질막보다 44% 높은 성능과 63% 낮은 전압손실 보여 한국과학기술연구원(KIST, 원장 이병권) 수소·연료전지연구단 헨켄스마이어 디억 박사팀은 “고온형 고분자 전해질 연료전지(HT-PEMFC)”*의 핵심소재인 전해질막의 성능을 크게 높였다고 밝혔다. *고온형 고분자 전해질막 연료전지(High Temperature - Polymer Electrolyte Membrane Fuel Cell, HT-PEMFC) : 연료전지 장치 중, 이온전도성 고분자막을 이온전달 전해질로 사용하는 연료전지 연료전지는 100℃ 이하의 온도에서 작동되는 저온형과 160~180℃의 온도에서 작동되는 고온형으로 나뉜다. 이중 고온형 연료전지는 작동 시 발생되는 열을 그냥 버리지 않고, 메탄올과 같은 연료를 수소로 변환시키는 공정에 사용하여 수소를 생산하고, 이 수소를 다시 연료전지 에너지원으로 재사용할 수 있다. 가격이 저렴하면서도 운반, 보관, 취급이 쉬운 메탄올은 수소변환 시 이산화탄소를 배출하지 않는다. 이러한 메탄올 개질기와 결합된 고온 연료전지는 발전기에 사용하면 기존의 디젤 발전기보다 이산화탄소 발생을 65%가량 줄일 수 있는 큰 장점이 있다. 고온형 연료전지가 널리 상용화되기 위해서는 높은 전력밀도와 긴 내구성이 필요하다. 보통 고온형 연료전지에는 이온전도도를 높이기 위해 인산이 첨가된 폴리벤즈이미다졸(PBI, PolyBenzImidazole)**계 전해질막이 사용된다. 그러나 기존의 폴리벤즈이미다졸계 분리막은 연료전지가 작동되는 고온에서 인산에 용해되는 심각한 문제가 있었다. **PBI(폴리벤즈이미다졸, PolyBenzImidazole) : 열적, 화학적인 안정성이 매우 뛰어나 방화복이나 우주복 등에 쓰이는 고분자 재료 KIST 연구진은 고분자막의 안정성과 전도성을 획기적으로 개선하기 위해, 설폰산기***를 폴리벤즈이미다졸에 부착시킨 후 열을 가해, 고온에서 부서지지 않는 단단한 고분자막을 만들었다. KIST 연구팀이 개발한 새로운 분리막은 160˚C의 인산에서도 용해되지 않았으며, 기존의 다른 분리막보다 44% 더 높은 전도성과 전력밀도를 보였다. 또한 시간에 따른 전압감소도 63% 더 낮아 우수한 내구성을 보여주었다. ***설폰산기 : 황산 분자에서 하이드록시기가 떨어져 나간 구조의 원자단 KIST 헨켄스마이어 디억 박사는 “고온용 고분자 전해질막은 수소전기차용 연료전지의 핵심소재이나 기술적인 장벽이 높아 현재는 소수의 국가에서만 생산 가능한 실정이다.”라고 말하며, “이번 연구결과를 통해 전해질막의 국산화에 크게 기여할 수 있을 것”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 수행된 KIST 주요사업과 덴마크 혁신 기금/한국 녹색 기술 센터가 지원한 KD 연료전지 프로젝트로 수행되었으며, 「Journal of Membrane Science」 (IF: 7.02, JCR 분야 상위 1.72%) 최신호에 게재되었다. * (논문명) Thermally crosslinked sulfonated polybenzimidazole membranes and their performance in high temperature polymer electrolyte fuel cells - (제 1저자) 한국과학기술연구원 N. Nambi Krishnan 박사후연구원 - (교신저자) 한국과학기술연구원 Dirk Henkensmeier 책임연구원 <그림설명> [그림 1] 160 ℃에서 85 중량 % 인산 용액에 가열된 고분자막. 맨오른쪽이 이번 개발된 고분자막으로, 용해되지 않았다. [그림 2] (a) MS-p-PBI (b) 열경화 된 c-MS-p-PBI를 사용한 고온연료전지의 작동 시간에 따른 성능 곡선
수소전기차 핵심소재인 연료전지, KIST 연구진이 개발한 고성능 분리막으로 국산화 앞당긴다
- 열 경화를 통해 고성능의 새로운 고분자막(파라-폴리벤즈이미다졸) 개발 - 기존 전해질막보다 44% 높은 성능과 63% 낮은 전압손실 보여 한국과학기술연구원(KIST, 원장 이병권) 수소·연료전지연구단 헨켄스마이어 디억 박사팀은 “고온형 고분자 전해질 연료전지(HT-PEMFC)”*의 핵심소재인 전해질막의 성능을 크게 높였다고 밝혔다. *고온형 고분자 전해질막 연료전지(High Temperature - Polymer Electrolyte Membrane Fuel Cell, HT-PEMFC) : 연료전지 장치 중, 이온전도성 고분자막을 이온전달 전해질로 사용하는 연료전지 연료전지는 100℃ 이하의 온도에서 작동되는 저온형과 160~180℃의 온도에서 작동되는 고온형으로 나뉜다. 이중 고온형 연료전지는 작동 시 발생되는 열을 그냥 버리지 않고, 메탄올과 같은 연료를 수소로 변환시키는 공정에 사용하여 수소를 생산하고, 이 수소를 다시 연료전지 에너지원으로 재사용할 수 있다. 가격이 저렴하면서도 운반, 보관, 취급이 쉬운 메탄올은 수소변환 시 이산화탄소를 배출하지 않는다. 이러한 메탄올 개질기와 결합된 고온 연료전지는 발전기에 사용하면 기존의 디젤 발전기보다 이산화탄소 발생을 65%가량 줄일 수 있는 큰 장점이 있다. 고온형 연료전지가 널리 상용화되기 위해서는 높은 전력밀도와 긴 내구성이 필요하다. 보통 고온형 연료전지에는 이온전도도를 높이기 위해 인산이 첨가된 폴리벤즈이미다졸(PBI, PolyBenzImidazole)**계 전해질막이 사용된다. 그러나 기존의 폴리벤즈이미다졸계 분리막은 연료전지가 작동되는 고온에서 인산에 용해되는 심각한 문제가 있었다. **PBI(폴리벤즈이미다졸, PolyBenzImidazole) : 열적, 화학적인 안정성이 매우 뛰어나 방화복이나 우주복 등에 쓰이는 고분자 재료 KIST 연구진은 고분자막의 안정성과 전도성을 획기적으로 개선하기 위해, 설폰산기***를 폴리벤즈이미다졸에 부착시킨 후 열을 가해, 고온에서 부서지지 않는 단단한 고분자막을 만들었다. KIST 연구팀이 개발한 새로운 분리막은 160˚C의 인산에서도 용해되지 않았으며, 기존의 다른 분리막보다 44% 더 높은 전도성과 전력밀도를 보였다. 또한 시간에 따른 전압감소도 63% 더 낮아 우수한 내구성을 보여주었다. ***설폰산기 : 황산 분자에서 하이드록시기가 떨어져 나간 구조의 원자단 KIST 헨켄스마이어 디억 박사는 “고온용 고분자 전해질막은 수소전기차용 연료전지의 핵심소재이나 기술적인 장벽이 높아 현재는 소수의 국가에서만 생산 가능한 실정이다.”라고 말하며, “이번 연구결과를 통해 전해질막의 국산화에 크게 기여할 수 있을 것”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 수행된 KIST 주요사업과 덴마크 혁신 기금/한국 녹색 기술 센터가 지원한 KD 연료전지 프로젝트로 수행되었으며, 「Journal of Membrane Science」 (IF: 7.02, JCR 분야 상위 1.72%) 최신호에 게재되었다. * (논문명) Thermally crosslinked sulfonated polybenzimidazole membranes and their performance in high temperature polymer electrolyte fuel cells - (제 1저자) 한국과학기술연구원 N. Nambi Krishnan 박사후연구원 - (교신저자) 한국과학기술연구원 Dirk Henkensmeier 책임연구원 <그림설명> [그림 1] 160 ℃에서 85 중량 % 인산 용액에 가열된 고분자막. 맨오른쪽이 이번 개발된 고분자막으로, 용해되지 않았다. [그림 2] (a) MS-p-PBI (b) 열경화 된 c-MS-p-PBI를 사용한 고온연료전지의 작동 시간에 따른 성능 곡선
수소전기차의 심장, 연료전지 부식 문제 극복한다
- 도장 찍듯이 간단한 초미세 인쇄 기술 이용, 3차원 나노구조 전극 개발 - 촉매 내구성 증대 및 백금 사용량 저감을 통한 수소연료전지 경제성 확보 수소를 연료로 이용해 전기에너지를 생성하는 친환경 발전장치인 수소연료전지는 수소전기차에서는 엔진과 같은 역할을 한다. 그러나 연료전지의 핵심 구성요소인 백금 촉매를 지지하기 위해 사용되는 탄소 입자가 쉽게 부식되어 연료전지의 수명이 길지 않다는 문제가 있다. 부식된 연료전지는 새로이 교체가 필요한데, 수백~수천만 원을 호가하는 연료전지 교체 비용은 차주로서는 부담스러울 수 밖에 없다. 국내 연구진이 이러한 문제를 해결해 수소연료전지의 수명을 획기적으로 늘릴 수 있는 기술을 개발했다. 한국과학기술연구원(KIST, 원장 윤석진)은 수소·연료전지연구센터 김진영 박사와 물질구조제어연구센터 김종민 박사가 한국과학기술원(KAIST, 총장 이광형) 정연식 교수와의 공동연구를 통해 도장 찍듯이 간단한 20nm급 초미세 인쇄 기술을 활용하여 연료전지 부식 문제의 원인인 탄소를 사용하지 않는 새로운 형태의 백금 나노구조 전극을 개발했다고 밝혔다. 수소연료전지의 촉매로 사용되는 백금은 나노미터 크기일 때 서로 달라붙는 성질이 있어 안정적이지 못해 백금만으로는 촉매 소재로 활용될 수 없다. 이 때문에 현재 상용화된 촉매는 2~5 nm 크기의 백금 나노입자를 탄소 입자 위에 붙여 안정화 시켜 놓은 것이다. 하지만 탄소 입자는 연료전지의 반복 구동 과정에서 부식으로 인해 소실되어 백금을 지탱하지 못하며, 결과적으로 연료전지의 성능이 지속적으로 감소하는 문제를 일으킨다. 또한 전극 두께가 수 마이크로미터로 두껍고 구조가 복잡해 연료전지의 효율 또한 좋지 못했다. 연구진은 수소연료전지 수명에 치명적인 탄소 입자를 사용하지 않고도 안정적인 백금 촉매를 만들기 위해 도장을 찍듯이 간단한 인쇄공정을 여러 번 반복하여 20 nm급의 안정적인 형태의 백금 구조물을 적층하는 초미세 공정을 개발하였다. 이 공정을 통해 개발한 전극은 철골 건축물과 닮아 구조물 사이에 넓은 통로가 있어 연료전지 내부에서의 산소, 수소, 물의 이동이 원활해졌고, 기존의 1/10 이하로 두께가 얇아질 수 있다. 이로 인해 탄소 입자 없이 백금만으로 전극을 제작할 수 있게 됐으며, 해당 전극을 사용할 경우 기존 상용 촉매전극보다 내구성이 3배 이상 향상 됐을 뿐만 아니라 연료전지 출력 또한 27%가량 향상되는 결과를 얻었다. KIST 김진영 박사는 “초미세 인쇄 기술을 통해 개발한 촉매는 전극의 내구성 및 성능을 획기적으로 향상시켜 수소연료전지의 경제성을 확보할 수 있다.”라고 말했다. 공동연구를 수행한 KAIST 정연식 교수는 “연료전지뿐만 아니라 촉매, 센서, 배터리 등 다양한 전기화학 응용 분야에서의 활용을 기대한다.”고 밝혔다. 한편, 본 연구에는 연료전지 계산전문가인 인하대학교 주현철 교수도 참여해 연료전지 전극 내 유체의 거동에 대한 시뮬레이션 분석 역할을 담당했다. 본 연구는 과학기술정보통신부(장관 임혜숙)의 지원을 받아 KIST 주요 사업, 기후변화대응사업, 글로벌프론티어사업을 통해 수행되었으며, 이번 연구 결과는 국제 과학 저널인 ‘Science Advances’ (IF: 14.136, JCR 분야 상위 6.164%) 최신 호에 게재되었다. * (논문명) Conformation-Modulated Three Dimensional Electrocatalysts for High Performance Fuel Cell Electrodes - (제 1저자) 한국과학기술연구원 김종민 선임연구원 - (교신저자) 한국과학기술연구원 김진영 책임연구원 - (교신저자) 한국과학기술원 정연식 교수 그림 설명 [그림 1] 철골구조와 비슷한 형태의 멀티스케일 백금 나노 아키텍처 전극 모식도 [그림 2] 멀티스케일 백금 나노아키텍처 기반 박막형 막전극접합체(MEA) 모식도 [그림 3] PET 유연기판위에 롤투롤 대면적 나노인쇄공정 구현 및 전사된 백금 나노선 SEM 이미지 [그림 4] 20 nm 급 고해상도 나노인쇄공정과정 및 마스터몰드에 따른 백금 나노아키텍처 SEM 이미지 [그림 5] 기존 상용 Pt/C 전극 및 다양한 나노아키텍처 백금 전극 성능 비교 및 탄소담지체 열화테스트 이후 최대전력밀도 유지율
수소전기차의 심장, 연료전지 부식 문제 극복한다
- 도장 찍듯이 간단한 초미세 인쇄 기술 이용, 3차원 나노구조 전극 개발 - 촉매 내구성 증대 및 백금 사용량 저감을 통한 수소연료전지 경제성 확보 수소를 연료로 이용해 전기에너지를 생성하는 친환경 발전장치인 수소연료전지는 수소전기차에서는 엔진과 같은 역할을 한다. 그러나 연료전지의 핵심 구성요소인 백금 촉매를 지지하기 위해 사용되는 탄소 입자가 쉽게 부식되어 연료전지의 수명이 길지 않다는 문제가 있다. 부식된 연료전지는 새로이 교체가 필요한데, 수백~수천만 원을 호가하는 연료전지 교체 비용은 차주로서는 부담스러울 수 밖에 없다. 국내 연구진이 이러한 문제를 해결해 수소연료전지의 수명을 획기적으로 늘릴 수 있는 기술을 개발했다. 한국과학기술연구원(KIST, 원장 윤석진)은 수소·연료전지연구센터 김진영 박사와 물질구조제어연구센터 김종민 박사가 한국과학기술원(KAIST, 총장 이광형) 정연식 교수와의 공동연구를 통해 도장 찍듯이 간단한 20nm급 초미세 인쇄 기술을 활용하여 연료전지 부식 문제의 원인인 탄소를 사용하지 않는 새로운 형태의 백금 나노구조 전극을 개발했다고 밝혔다. 수소연료전지의 촉매로 사용되는 백금은 나노미터 크기일 때 서로 달라붙는 성질이 있어 안정적이지 못해 백금만으로는 촉매 소재로 활용될 수 없다. 이 때문에 현재 상용화된 촉매는 2~5 nm 크기의 백금 나노입자를 탄소 입자 위에 붙여 안정화 시켜 놓은 것이다. 하지만 탄소 입자는 연료전지의 반복 구동 과정에서 부식으로 인해 소실되어 백금을 지탱하지 못하며, 결과적으로 연료전지의 성능이 지속적으로 감소하는 문제를 일으킨다. 또한 전극 두께가 수 마이크로미터로 두껍고 구조가 복잡해 연료전지의 효율 또한 좋지 못했다. 연구진은 수소연료전지 수명에 치명적인 탄소 입자를 사용하지 않고도 안정적인 백금 촉매를 만들기 위해 도장을 찍듯이 간단한 인쇄공정을 여러 번 반복하여 20 nm급의 안정적인 형태의 백금 구조물을 적층하는 초미세 공정을 개발하였다. 이 공정을 통해 개발한 전극은 철골 건축물과 닮아 구조물 사이에 넓은 통로가 있어 연료전지 내부에서의 산소, 수소, 물의 이동이 원활해졌고, 기존의 1/10 이하로 두께가 얇아질 수 있다. 이로 인해 탄소 입자 없이 백금만으로 전극을 제작할 수 있게 됐으며, 해당 전극을 사용할 경우 기존 상용 촉매전극보다 내구성이 3배 이상 향상 됐을 뿐만 아니라 연료전지 출력 또한 27%가량 향상되는 결과를 얻었다. KIST 김진영 박사는 “초미세 인쇄 기술을 통해 개발한 촉매는 전극의 내구성 및 성능을 획기적으로 향상시켜 수소연료전지의 경제성을 확보할 수 있다.”라고 말했다. 공동연구를 수행한 KAIST 정연식 교수는 “연료전지뿐만 아니라 촉매, 센서, 배터리 등 다양한 전기화학 응용 분야에서의 활용을 기대한다.”고 밝혔다. 한편, 본 연구에는 연료전지 계산전문가인 인하대학교 주현철 교수도 참여해 연료전지 전극 내 유체의 거동에 대한 시뮬레이션 분석 역할을 담당했다. 본 연구는 과학기술정보통신부(장관 임혜숙)의 지원을 받아 KIST 주요 사업, 기후변화대응사업, 글로벌프론티어사업을 통해 수행되었으며, 이번 연구 결과는 국제 과학 저널인 ‘Science Advances’ (IF: 14.136, JCR 분야 상위 6.164%) 최신 호에 게재되었다. * (논문명) Conformation-Modulated Three Dimensional Electrocatalysts for High Performance Fuel Cell Electrodes - (제 1저자) 한국과학기술연구원 김종민 선임연구원 - (교신저자) 한국과학기술연구원 김진영 책임연구원 - (교신저자) 한국과학기술원 정연식 교수 그림 설명 [그림 1] 철골구조와 비슷한 형태의 멀티스케일 백금 나노 아키텍처 전극 모식도 [그림 2] 멀티스케일 백금 나노아키텍처 기반 박막형 막전극접합체(MEA) 모식도 [그림 3] PET 유연기판위에 롤투롤 대면적 나노인쇄공정 구현 및 전사된 백금 나노선 SEM 이미지 [그림 4] 20 nm 급 고해상도 나노인쇄공정과정 및 마스터몰드에 따른 백금 나노아키텍처 SEM 이미지 [그림 5] 기존 상용 Pt/C 전극 및 다양한 나노아키텍처 백금 전극 성능 비교 및 탄소담지체 열화테스트 이후 최대전력밀도 유지율
수소전기차의 심장, 연료전지 부식 문제 극복한다
- 도장 찍듯이 간단한 초미세 인쇄 기술 이용, 3차원 나노구조 전극 개발 - 촉매 내구성 증대 및 백금 사용량 저감을 통한 수소연료전지 경제성 확보 수소를 연료로 이용해 전기에너지를 생성하는 친환경 발전장치인 수소연료전지는 수소전기차에서는 엔진과 같은 역할을 한다. 그러나 연료전지의 핵심 구성요소인 백금 촉매를 지지하기 위해 사용되는 탄소 입자가 쉽게 부식되어 연료전지의 수명이 길지 않다는 문제가 있다. 부식된 연료전지는 새로이 교체가 필요한데, 수백~수천만 원을 호가하는 연료전지 교체 비용은 차주로서는 부담스러울 수 밖에 없다. 국내 연구진이 이러한 문제를 해결해 수소연료전지의 수명을 획기적으로 늘릴 수 있는 기술을 개발했다. 한국과학기술연구원(KIST, 원장 윤석진)은 수소·연료전지연구센터 김진영 박사와 물질구조제어연구센터 김종민 박사가 한국과학기술원(KAIST, 총장 이광형) 정연식 교수와의 공동연구를 통해 도장 찍듯이 간단한 20nm급 초미세 인쇄 기술을 활용하여 연료전지 부식 문제의 원인인 탄소를 사용하지 않는 새로운 형태의 백금 나노구조 전극을 개발했다고 밝혔다. 수소연료전지의 촉매로 사용되는 백금은 나노미터 크기일 때 서로 달라붙는 성질이 있어 안정적이지 못해 백금만으로는 촉매 소재로 활용될 수 없다. 이 때문에 현재 상용화된 촉매는 2~5 nm 크기의 백금 나노입자를 탄소 입자 위에 붙여 안정화 시켜 놓은 것이다. 하지만 탄소 입자는 연료전지의 반복 구동 과정에서 부식으로 인해 소실되어 백금을 지탱하지 못하며, 결과적으로 연료전지의 성능이 지속적으로 감소하는 문제를 일으킨다. 또한 전극 두께가 수 마이크로미터로 두껍고 구조가 복잡해 연료전지의 효율 또한 좋지 못했다. 연구진은 수소연료전지 수명에 치명적인 탄소 입자를 사용하지 않고도 안정적인 백금 촉매를 만들기 위해 도장을 찍듯이 간단한 인쇄공정을 여러 번 반복하여 20 nm급의 안정적인 형태의 백금 구조물을 적층하는 초미세 공정을 개발하였다. 이 공정을 통해 개발한 전극은 철골 건축물과 닮아 구조물 사이에 넓은 통로가 있어 연료전지 내부에서의 산소, 수소, 물의 이동이 원활해졌고, 기존의 1/10 이하로 두께가 얇아질 수 있다. 이로 인해 탄소 입자 없이 백금만으로 전극을 제작할 수 있게 됐으며, 해당 전극을 사용할 경우 기존 상용 촉매전극보다 내구성이 3배 이상 향상 됐을 뿐만 아니라 연료전지 출력 또한 27%가량 향상되는 결과를 얻었다. KIST 김진영 박사는 “초미세 인쇄 기술을 통해 개발한 촉매는 전극의 내구성 및 성능을 획기적으로 향상시켜 수소연료전지의 경제성을 확보할 수 있다.”라고 말했다. 공동연구를 수행한 KAIST 정연식 교수는 “연료전지뿐만 아니라 촉매, 센서, 배터리 등 다양한 전기화학 응용 분야에서의 활용을 기대한다.”고 밝혔다. 한편, 본 연구에는 연료전지 계산전문가인 인하대학교 주현철 교수도 참여해 연료전지 전극 내 유체의 거동에 대한 시뮬레이션 분석 역할을 담당했다. 본 연구는 과학기술정보통신부(장관 임혜숙)의 지원을 받아 KIST 주요 사업, 기후변화대응사업, 글로벌프론티어사업을 통해 수행되었으며, 이번 연구 결과는 국제 과학 저널인 ‘Science Advances’ (IF: 14.136, JCR 분야 상위 6.164%) 최신 호에 게재되었다. * (논문명) Conformation-Modulated Three Dimensional Electrocatalysts for High Performance Fuel Cell Electrodes - (제 1저자) 한국과학기술연구원 김종민 선임연구원 - (교신저자) 한국과학기술연구원 김진영 책임연구원 - (교신저자) 한국과학기술원 정연식 교수 그림 설명 [그림 1] 철골구조와 비슷한 형태의 멀티스케일 백금 나노 아키텍처 전극 모식도 [그림 2] 멀티스케일 백금 나노아키텍처 기반 박막형 막전극접합체(MEA) 모식도 [그림 3] PET 유연기판위에 롤투롤 대면적 나노인쇄공정 구현 및 전사된 백금 나노선 SEM 이미지 [그림 4] 20 nm 급 고해상도 나노인쇄공정과정 및 마스터몰드에 따른 백금 나노아키텍처 SEM 이미지 [그림 5] 기존 상용 Pt/C 전극 및 다양한 나노아키텍처 백금 전극 성능 비교 및 탄소담지체 열화테스트 이후 최대전력밀도 유지율
수소전기차의 심장, 연료전지 부식 문제 극복한다
- 도장 찍듯이 간단한 초미세 인쇄 기술 이용, 3차원 나노구조 전극 개발 - 촉매 내구성 증대 및 백금 사용량 저감을 통한 수소연료전지 경제성 확보 수소를 연료로 이용해 전기에너지를 생성하는 친환경 발전장치인 수소연료전지는 수소전기차에서는 엔진과 같은 역할을 한다. 그러나 연료전지의 핵심 구성요소인 백금 촉매를 지지하기 위해 사용되는 탄소 입자가 쉽게 부식되어 연료전지의 수명이 길지 않다는 문제가 있다. 부식된 연료전지는 새로이 교체가 필요한데, 수백~수천만 원을 호가하는 연료전지 교체 비용은 차주로서는 부담스러울 수 밖에 없다. 국내 연구진이 이러한 문제를 해결해 수소연료전지의 수명을 획기적으로 늘릴 수 있는 기술을 개발했다. 한국과학기술연구원(KIST, 원장 윤석진)은 수소·연료전지연구센터 김진영 박사와 물질구조제어연구센터 김종민 박사가 한국과학기술원(KAIST, 총장 이광형) 정연식 교수와의 공동연구를 통해 도장 찍듯이 간단한 20nm급 초미세 인쇄 기술을 활용하여 연료전지 부식 문제의 원인인 탄소를 사용하지 않는 새로운 형태의 백금 나노구조 전극을 개발했다고 밝혔다. 수소연료전지의 촉매로 사용되는 백금은 나노미터 크기일 때 서로 달라붙는 성질이 있어 안정적이지 못해 백금만으로는 촉매 소재로 활용될 수 없다. 이 때문에 현재 상용화된 촉매는 2~5 nm 크기의 백금 나노입자를 탄소 입자 위에 붙여 안정화 시켜 놓은 것이다. 하지만 탄소 입자는 연료전지의 반복 구동 과정에서 부식으로 인해 소실되어 백금을 지탱하지 못하며, 결과적으로 연료전지의 성능이 지속적으로 감소하는 문제를 일으킨다. 또한 전극 두께가 수 마이크로미터로 두껍고 구조가 복잡해 연료전지의 효율 또한 좋지 못했다. 연구진은 수소연료전지 수명에 치명적인 탄소 입자를 사용하지 않고도 안정적인 백금 촉매를 만들기 위해 도장을 찍듯이 간단한 인쇄공정을 여러 번 반복하여 20 nm급의 안정적인 형태의 백금 구조물을 적층하는 초미세 공정을 개발하였다. 이 공정을 통해 개발한 전극은 철골 건축물과 닮아 구조물 사이에 넓은 통로가 있어 연료전지 내부에서의 산소, 수소, 물의 이동이 원활해졌고, 기존의 1/10 이하로 두께가 얇아질 수 있다. 이로 인해 탄소 입자 없이 백금만으로 전극을 제작할 수 있게 됐으며, 해당 전극을 사용할 경우 기존 상용 촉매전극보다 내구성이 3배 이상 향상 됐을 뿐만 아니라 연료전지 출력 또한 27%가량 향상되는 결과를 얻었다. KIST 김진영 박사는 “초미세 인쇄 기술을 통해 개발한 촉매는 전극의 내구성 및 성능을 획기적으로 향상시켜 수소연료전지의 경제성을 확보할 수 있다.”라고 말했다. 공동연구를 수행한 KAIST 정연식 교수는 “연료전지뿐만 아니라 촉매, 센서, 배터리 등 다양한 전기화학 응용 분야에서의 활용을 기대한다.”고 밝혔다. 한편, 본 연구에는 연료전지 계산전문가인 인하대학교 주현철 교수도 참여해 연료전지 전극 내 유체의 거동에 대한 시뮬레이션 분석 역할을 담당했다. 본 연구는 과학기술정보통신부(장관 임혜숙)의 지원을 받아 KIST 주요 사업, 기후변화대응사업, 글로벌프론티어사업을 통해 수행되었으며, 이번 연구 결과는 국제 과학 저널인 ‘Science Advances’ (IF: 14.136, JCR 분야 상위 6.164%) 최신 호에 게재되었다. * (논문명) Conformation-Modulated Three Dimensional Electrocatalysts for High Performance Fuel Cell Electrodes - (제 1저자) 한국과학기술연구원 김종민 선임연구원 - (교신저자) 한국과학기술연구원 김진영 책임연구원 - (교신저자) 한국과학기술원 정연식 교수 그림 설명 [그림 1] 철골구조와 비슷한 형태의 멀티스케일 백금 나노 아키텍처 전극 모식도 [그림 2] 멀티스케일 백금 나노아키텍처 기반 박막형 막전극접합체(MEA) 모식도 [그림 3] PET 유연기판위에 롤투롤 대면적 나노인쇄공정 구현 및 전사된 백금 나노선 SEM 이미지 [그림 4] 20 nm 급 고해상도 나노인쇄공정과정 및 마스터몰드에 따른 백금 나노아키텍처 SEM 이미지 [그림 5] 기존 상용 Pt/C 전극 및 다양한 나노아키텍처 백금 전극 성능 비교 및 탄소담지체 열화테스트 이후 최대전력밀도 유지율
수소전기차의 심장, 연료전지 부식 문제 극복한다
- 도장 찍듯이 간단한 초미세 인쇄 기술 이용, 3차원 나노구조 전극 개발 - 촉매 내구성 증대 및 백금 사용량 저감을 통한 수소연료전지 경제성 확보 수소를 연료로 이용해 전기에너지를 생성하는 친환경 발전장치인 수소연료전지는 수소전기차에서는 엔진과 같은 역할을 한다. 그러나 연료전지의 핵심 구성요소인 백금 촉매를 지지하기 위해 사용되는 탄소 입자가 쉽게 부식되어 연료전지의 수명이 길지 않다는 문제가 있다. 부식된 연료전지는 새로이 교체가 필요한데, 수백~수천만 원을 호가하는 연료전지 교체 비용은 차주로서는 부담스러울 수 밖에 없다. 국내 연구진이 이러한 문제를 해결해 수소연료전지의 수명을 획기적으로 늘릴 수 있는 기술을 개발했다. 한국과학기술연구원(KIST, 원장 윤석진)은 수소·연료전지연구센터 김진영 박사와 물질구조제어연구센터 김종민 박사가 한국과학기술원(KAIST, 총장 이광형) 정연식 교수와의 공동연구를 통해 도장 찍듯이 간단한 20nm급 초미세 인쇄 기술을 활용하여 연료전지 부식 문제의 원인인 탄소를 사용하지 않는 새로운 형태의 백금 나노구조 전극을 개발했다고 밝혔다. 수소연료전지의 촉매로 사용되는 백금은 나노미터 크기일 때 서로 달라붙는 성질이 있어 안정적이지 못해 백금만으로는 촉매 소재로 활용될 수 없다. 이 때문에 현재 상용화된 촉매는 2~5 nm 크기의 백금 나노입자를 탄소 입자 위에 붙여 안정화 시켜 놓은 것이다. 하지만 탄소 입자는 연료전지의 반복 구동 과정에서 부식으로 인해 소실되어 백금을 지탱하지 못하며, 결과적으로 연료전지의 성능이 지속적으로 감소하는 문제를 일으킨다. 또한 전극 두께가 수 마이크로미터로 두껍고 구조가 복잡해 연료전지의 효율 또한 좋지 못했다. 연구진은 수소연료전지 수명에 치명적인 탄소 입자를 사용하지 않고도 안정적인 백금 촉매를 만들기 위해 도장을 찍듯이 간단한 인쇄공정을 여러 번 반복하여 20 nm급의 안정적인 형태의 백금 구조물을 적층하는 초미세 공정을 개발하였다. 이 공정을 통해 개발한 전극은 철골 건축물과 닮아 구조물 사이에 넓은 통로가 있어 연료전지 내부에서의 산소, 수소, 물의 이동이 원활해졌고, 기존의 1/10 이하로 두께가 얇아질 수 있다. 이로 인해 탄소 입자 없이 백금만으로 전극을 제작할 수 있게 됐으며, 해당 전극을 사용할 경우 기존 상용 촉매전극보다 내구성이 3배 이상 향상 됐을 뿐만 아니라 연료전지 출력 또한 27%가량 향상되는 결과를 얻었다. KIST 김진영 박사는 “초미세 인쇄 기술을 통해 개발한 촉매는 전극의 내구성 및 성능을 획기적으로 향상시켜 수소연료전지의 경제성을 확보할 수 있다.”라고 말했다. 공동연구를 수행한 KAIST 정연식 교수는 “연료전지뿐만 아니라 촉매, 센서, 배터리 등 다양한 전기화학 응용 분야에서의 활용을 기대한다.”고 밝혔다. 한편, 본 연구에는 연료전지 계산전문가인 인하대학교 주현철 교수도 참여해 연료전지 전극 내 유체의 거동에 대한 시뮬레이션 분석 역할을 담당했다. 본 연구는 과학기술정보통신부(장관 임혜숙)의 지원을 받아 KIST 주요 사업, 기후변화대응사업, 글로벌프론티어사업을 통해 수행되었으며, 이번 연구 결과는 국제 과학 저널인 ‘Science Advances’ (IF: 14.136, JCR 분야 상위 6.164%) 최신 호에 게재되었다. * (논문명) Conformation-Modulated Three Dimensional Electrocatalysts for High Performance Fuel Cell Electrodes - (제 1저자) 한국과학기술연구원 김종민 선임연구원 - (교신저자) 한국과학기술연구원 김진영 책임연구원 - (교신저자) 한국과학기술원 정연식 교수 그림 설명 [그림 1] 철골구조와 비슷한 형태의 멀티스케일 백금 나노 아키텍처 전극 모식도 [그림 2] 멀티스케일 백금 나노아키텍처 기반 박막형 막전극접합체(MEA) 모식도 [그림 3] PET 유연기판위에 롤투롤 대면적 나노인쇄공정 구현 및 전사된 백금 나노선 SEM 이미지 [그림 4] 20 nm 급 고해상도 나노인쇄공정과정 및 마스터몰드에 따른 백금 나노아키텍처 SEM 이미지 [그림 5] 기존 상용 Pt/C 전극 및 다양한 나노아키텍처 백금 전극 성능 비교 및 탄소담지체 열화테스트 이후 최대전력밀도 유지율
수소전기차의 심장, 연료전지 부식 문제 극복한다
- 도장 찍듯이 간단한 초미세 인쇄 기술 이용, 3차원 나노구조 전극 개발 - 촉매 내구성 증대 및 백금 사용량 저감을 통한 수소연료전지 경제성 확보 수소를 연료로 이용해 전기에너지를 생성하는 친환경 발전장치인 수소연료전지는 수소전기차에서는 엔진과 같은 역할을 한다. 그러나 연료전지의 핵심 구성요소인 백금 촉매를 지지하기 위해 사용되는 탄소 입자가 쉽게 부식되어 연료전지의 수명이 길지 않다는 문제가 있다. 부식된 연료전지는 새로이 교체가 필요한데, 수백~수천만 원을 호가하는 연료전지 교체 비용은 차주로서는 부담스러울 수 밖에 없다. 국내 연구진이 이러한 문제를 해결해 수소연료전지의 수명을 획기적으로 늘릴 수 있는 기술을 개발했다. 한국과학기술연구원(KIST, 원장 윤석진)은 수소·연료전지연구센터 김진영 박사와 물질구조제어연구센터 김종민 박사가 한국과학기술원(KAIST, 총장 이광형) 정연식 교수와의 공동연구를 통해 도장 찍듯이 간단한 20nm급 초미세 인쇄 기술을 활용하여 연료전지 부식 문제의 원인인 탄소를 사용하지 않는 새로운 형태의 백금 나노구조 전극을 개발했다고 밝혔다. 수소연료전지의 촉매로 사용되는 백금은 나노미터 크기일 때 서로 달라붙는 성질이 있어 안정적이지 못해 백금만으로는 촉매 소재로 활용될 수 없다. 이 때문에 현재 상용화된 촉매는 2~5 nm 크기의 백금 나노입자를 탄소 입자 위에 붙여 안정화 시켜 놓은 것이다. 하지만 탄소 입자는 연료전지의 반복 구동 과정에서 부식으로 인해 소실되어 백금을 지탱하지 못하며, 결과적으로 연료전지의 성능이 지속적으로 감소하는 문제를 일으킨다. 또한 전극 두께가 수 마이크로미터로 두껍고 구조가 복잡해 연료전지의 효율 또한 좋지 못했다. 연구진은 수소연료전지 수명에 치명적인 탄소 입자를 사용하지 않고도 안정적인 백금 촉매를 만들기 위해 도장을 찍듯이 간단한 인쇄공정을 여러 번 반복하여 20 nm급의 안정적인 형태의 백금 구조물을 적층하는 초미세 공정을 개발하였다. 이 공정을 통해 개발한 전극은 철골 건축물과 닮아 구조물 사이에 넓은 통로가 있어 연료전지 내부에서의 산소, 수소, 물의 이동이 원활해졌고, 기존의 1/10 이하로 두께가 얇아질 수 있다. 이로 인해 탄소 입자 없이 백금만으로 전극을 제작할 수 있게 됐으며, 해당 전극을 사용할 경우 기존 상용 촉매전극보다 내구성이 3배 이상 향상 됐을 뿐만 아니라 연료전지 출력 또한 27%가량 향상되는 결과를 얻었다. KIST 김진영 박사는 “초미세 인쇄 기술을 통해 개발한 촉매는 전극의 내구성 및 성능을 획기적으로 향상시켜 수소연료전지의 경제성을 확보할 수 있다.”라고 말했다. 공동연구를 수행한 KAIST 정연식 교수는 “연료전지뿐만 아니라 촉매, 센서, 배터리 등 다양한 전기화학 응용 분야에서의 활용을 기대한다.”고 밝혔다. 한편, 본 연구에는 연료전지 계산전문가인 인하대학교 주현철 교수도 참여해 연료전지 전극 내 유체의 거동에 대한 시뮬레이션 분석 역할을 담당했다. 본 연구는 과학기술정보통신부(장관 임혜숙)의 지원을 받아 KIST 주요 사업, 기후변화대응사업, 글로벌프론티어사업을 통해 수행되었으며, 이번 연구 결과는 국제 과학 저널인 ‘Science Advances’ (IF: 14.136, JCR 분야 상위 6.164%) 최신 호에 게재되었다. * (논문명) Conformation-Modulated Three Dimensional Electrocatalysts for High Performance Fuel Cell Electrodes - (제 1저자) 한국과학기술연구원 김종민 선임연구원 - (교신저자) 한국과학기술연구원 김진영 책임연구원 - (교신저자) 한국과학기술원 정연식 교수 그림 설명 [그림 1] 철골구조와 비슷한 형태의 멀티스케일 백금 나노 아키텍처 전극 모식도 [그림 2] 멀티스케일 백금 나노아키텍처 기반 박막형 막전극접합체(MEA) 모식도 [그림 3] PET 유연기판위에 롤투롤 대면적 나노인쇄공정 구현 및 전사된 백금 나노선 SEM 이미지 [그림 4] 20 nm 급 고해상도 나노인쇄공정과정 및 마스터몰드에 따른 백금 나노아키텍처 SEM 이미지 [그림 5] 기존 상용 Pt/C 전극 및 다양한 나노아키텍처 백금 전극 성능 비교 및 탄소담지체 열화테스트 이후 최대전력밀도 유지율