검색결과
게시물 키워드""에 대한 9071개의 검색결과를 찾았습니다.
10배 더 안정적으로 정보 저장 가능한 차세대 반도체 소재 특성 발견
- 2차원 소재인 반데르발스 자성체만의 자성 특성 발견 - 교환 바이어스 특성 10배, 스핀 반도체의 획기적 성능 개선 기대 전 세계 반도체 기업과 연구소는 양산되고 있는 실리콘 반도체의 효율 향상에 한계를 느끼고, 이를 뛰어넘을 수 있는 스핀 메모리를 주목하고 있다. 스핀 메모리의 작동원리에 대한 연구는 상당 부분 진전이 있었고 최근에는 적합한 소재를 찾기 위한 노력이 한창인데, 국내 연구진이 스핀 메모리의 소재 후보로 주목받고 있는 반데르발스 자성체의 정보저장 안정성이 다른 소재보다 10배 이상 높다는 연구 결과를 내 화제다. 한국과학기술연구원(KIST, 원장 윤석진)은 스핀융합연구단 최준우 박사팀이 반데르발스 자성체가 정보를 저장할 수 있는 안정성을 나타내는 ‘교환 바이어스’ 특성이 일반 자성체보다 10배 이상 크고, 근본적으로 다른 물성을 가짐을 규명했다고 밝혔다. 반데르발스(van der Waals) 자성체란 물질의 층과 층 사이가 결합력이 약한 ‘반데르발스’ 결합으로 이루어진 자성체로, 3차원의 입체 구조를 갖는 일반 물질과는 달리 층간 결합력이 약해 단일 원자층으로 쉽게 분리시킬 수 있어 평면 형태로도 만들 수 있어 2차원 물질이라고도 불린다. 2017년에는 반데르발스 물질 중 외부의 자성을 유지하려는 특성인 강자성을 나타내는 물질들이 새로이 발견되어 이를 활용하여 자성의 스핀 방향을 정보로 저장하는 차세대 스핀 반도체 연구가 활발히 진행되고 있다. 하지만 활발한 연구에도 불구하고 반데르발스 자성체들은 철, 코발트 등의 기존 자성체와 비교해 원자층 단위로 분리된다는 구조적 특성 외에 눈에 띄게 다른 자성 특성을 발견하지는 못했었다. 최준우 박사 연구팀은 대표적 반데르발스 자성체인 ‘Fe3GeTe2’의 특성을 분석한 결과 두께가 두꺼워 짐에 따라 교환 바이어스의 크기가 약해지는 기존 자성체들과는 달리 두께에 영향을 거의 받지 않으며, 그 교환 바이어스의 크기(정보저장 안정성)가 10배 이상 클 수 있음을 찾아냈다. 또한, 이러한 특이한 자성 특성이 반데르발스 물질이 갖는 내재적 성질인 약한 층간 상호작용 때문인 것을 밝혔다. 교환 바이어스는 2018년부터 양산되고 있는 차세대 스핀 메모리의 핵심 동작 원리로, 스핀 정보의 안정적인 저장에 결정적 역할을 한다. 따라서 이번 연구결과는 큰 교환 바이어스를 갖는 반데르발스 자성체를 활용해 차세대 스핀 메모리의 정보 저장 안정성을 크게 향상시킬 수 있음을 시사한다. KIST 최준우 박사는 “본 연구결과를 토대로 향후 반데르발스 자성체와 다른 성질의 반데르발스 물질들의 접합구조를 활용해 우수한 성능을 가진 스핀 반도체 신소재 개발이 가능해질 것으로 기대된다.”라고 밝혔다. 이번 연구는 과학기술정보통신부(장관 최기영)의 지원으로 KIST 주요사업 및 창의형융합연구사업, 선도연구센터지원사업으로 지원으로 수행되었다. 연구 결과는 나노과학 분야의 국제 저널인 ‘Nano Letters’ (IF: 12.279, JCR 분야 상위 5.743%) 최신 호에 게재되었다. * (논문명) Exchange Bias in Weakly Interlayer-Coupled van der Waals Magnet Fe3GeTe2 - (제 1저자) 한국과학기술연구원 권형근 박사후연구원(現, 삼성전자) - (교신저자) 한국과학기술연구원 최준우 책임연구원 <그림설명> [그림 1] KIST 최준우 박사팀이 개발한 반데르발스 자성체를 활용한 스핀소자의 모습 [그림 2] 층상구조를 가진 Fe3GeTe2 반데르발스 자성체와 반강자성체의 접합구조 [그림 3] 반데르발스 자성체와 일반적인 자성체에서 나타나는 두께에 따른 교환 바이어스 크기 변화. 일반적인 자성체에는 교환 바이어스가 두께에 반비례하여 급격히 감소하는 반면, 반데르발스 자성체에서는 두께 의존성이 작아서, 교환 바이어스가 훨씬 큼.
10배 더 안정적으로 정보 저장 가능한 차세대 반도체 소재 특성 발견
- 2차원 소재인 반데르발스 자성체만의 자성 특성 발견 - 교환 바이어스 특성 10배, 스핀 반도체의 획기적 성능 개선 기대 전 세계 반도체 기업과 연구소는 양산되고 있는 실리콘 반도체의 효율 향상에 한계를 느끼고, 이를 뛰어넘을 수 있는 스핀 메모리를 주목하고 있다. 스핀 메모리의 작동원리에 대한 연구는 상당 부분 진전이 있었고 최근에는 적합한 소재를 찾기 위한 노력이 한창인데, 국내 연구진이 스핀 메모리의 소재 후보로 주목받고 있는 반데르발스 자성체의 정보저장 안정성이 다른 소재보다 10배 이상 높다는 연구 결과를 내 화제다. 한국과학기술연구원(KIST, 원장 윤석진)은 스핀융합연구단 최준우 박사팀이 반데르발스 자성체가 정보를 저장할 수 있는 안정성을 나타내는 ‘교환 바이어스’ 특성이 일반 자성체보다 10배 이상 크고, 근본적으로 다른 물성을 가짐을 규명했다고 밝혔다. 반데르발스(van der Waals) 자성체란 물질의 층과 층 사이가 결합력이 약한 ‘반데르발스’ 결합으로 이루어진 자성체로, 3차원의 입체 구조를 갖는 일반 물질과는 달리 층간 결합력이 약해 단일 원자층으로 쉽게 분리시킬 수 있어 평면 형태로도 만들 수 있어 2차원 물질이라고도 불린다. 2017년에는 반데르발스 물질 중 외부의 자성을 유지하려는 특성인 강자성을 나타내는 물질들이 새로이 발견되어 이를 활용하여 자성의 스핀 방향을 정보로 저장하는 차세대 스핀 반도체 연구가 활발히 진행되고 있다. 하지만 활발한 연구에도 불구하고 반데르발스 자성체들은 철, 코발트 등의 기존 자성체와 비교해 원자층 단위로 분리된다는 구조적 특성 외에 눈에 띄게 다른 자성 특성을 발견하지는 못했었다. 최준우 박사 연구팀은 대표적 반데르발스 자성체인 ‘Fe3GeTe2’의 특성을 분석한 결과 두께가 두꺼워 짐에 따라 교환 바이어스의 크기가 약해지는 기존 자성체들과는 달리 두께에 영향을 거의 받지 않으며, 그 교환 바이어스의 크기(정보저장 안정성)가 10배 이상 클 수 있음을 찾아냈다. 또한, 이러한 특이한 자성 특성이 반데르발스 물질이 갖는 내재적 성질인 약한 층간 상호작용 때문인 것을 밝혔다. 교환 바이어스는 2018년부터 양산되고 있는 차세대 스핀 메모리의 핵심 동작 원리로, 스핀 정보의 안정적인 저장에 결정적 역할을 한다. 따라서 이번 연구결과는 큰 교환 바이어스를 갖는 반데르발스 자성체를 활용해 차세대 스핀 메모리의 정보 저장 안정성을 크게 향상시킬 수 있음을 시사한다. KIST 최준우 박사는 “본 연구결과를 토대로 향후 반데르발스 자성체와 다른 성질의 반데르발스 물질들의 접합구조를 활용해 우수한 성능을 가진 스핀 반도체 신소재 개발이 가능해질 것으로 기대된다.”라고 밝혔다. 이번 연구는 과학기술정보통신부(장관 최기영)의 지원으로 KIST 주요사업 및 창의형융합연구사업, 선도연구센터지원사업으로 지원으로 수행되었다. 연구 결과는 나노과학 분야의 국제 저널인 ‘Nano Letters’ (IF: 12.279, JCR 분야 상위 5.743%) 최신 호에 게재되었다. * (논문명) Exchange Bias in Weakly Interlayer-Coupled van der Waals Magnet Fe3GeTe2 - (제 1저자) 한국과학기술연구원 권형근 박사후연구원(現, 삼성전자) - (교신저자) 한국과학기술연구원 최준우 책임연구원 <그림설명> [그림 1] KIST 최준우 박사팀이 개발한 반데르발스 자성체를 활용한 스핀소자의 모습 [그림 2] 층상구조를 가진 Fe3GeTe2 반데르발스 자성체와 반강자성체의 접합구조 [그림 3] 반데르발스 자성체와 일반적인 자성체에서 나타나는 두께에 따른 교환 바이어스 크기 변화. 일반적인 자성체에는 교환 바이어스가 두께에 반비례하여 급격히 감소하는 반면, 반데르발스 자성체에서는 두께 의존성이 작아서, 교환 바이어스가 훨씬 큼.
10배 더 안정적으로 정보 저장 가능한 차세대 반도체 소재 특성 발견
- 2차원 소재인 반데르발스 자성체만의 자성 특성 발견 - 교환 바이어스 특성 10배, 스핀 반도체의 획기적 성능 개선 기대 전 세계 반도체 기업과 연구소는 양산되고 있는 실리콘 반도체의 효율 향상에 한계를 느끼고, 이를 뛰어넘을 수 있는 스핀 메모리를 주목하고 있다. 스핀 메모리의 작동원리에 대한 연구는 상당 부분 진전이 있었고 최근에는 적합한 소재를 찾기 위한 노력이 한창인데, 국내 연구진이 스핀 메모리의 소재 후보로 주목받고 있는 반데르발스 자성체의 정보저장 안정성이 다른 소재보다 10배 이상 높다는 연구 결과를 내 화제다. 한국과학기술연구원(KIST, 원장 윤석진)은 스핀융합연구단 최준우 박사팀이 반데르발스 자성체가 정보를 저장할 수 있는 안정성을 나타내는 ‘교환 바이어스’ 특성이 일반 자성체보다 10배 이상 크고, 근본적으로 다른 물성을 가짐을 규명했다고 밝혔다. 반데르발스(van der Waals) 자성체란 물질의 층과 층 사이가 결합력이 약한 ‘반데르발스’ 결합으로 이루어진 자성체로, 3차원의 입체 구조를 갖는 일반 물질과는 달리 층간 결합력이 약해 단일 원자층으로 쉽게 분리시킬 수 있어 평면 형태로도 만들 수 있어 2차원 물질이라고도 불린다. 2017년에는 반데르발스 물질 중 외부의 자성을 유지하려는 특성인 강자성을 나타내는 물질들이 새로이 발견되어 이를 활용하여 자성의 스핀 방향을 정보로 저장하는 차세대 스핀 반도체 연구가 활발히 진행되고 있다. 하지만 활발한 연구에도 불구하고 반데르발스 자성체들은 철, 코발트 등의 기존 자성체와 비교해 원자층 단위로 분리된다는 구조적 특성 외에 눈에 띄게 다른 자성 특성을 발견하지는 못했었다. 최준우 박사 연구팀은 대표적 반데르발스 자성체인 ‘Fe3GeTe2’의 특성을 분석한 결과 두께가 두꺼워 짐에 따라 교환 바이어스의 크기가 약해지는 기존 자성체들과는 달리 두께에 영향을 거의 받지 않으며, 그 교환 바이어스의 크기(정보저장 안정성)가 10배 이상 클 수 있음을 찾아냈다. 또한, 이러한 특이한 자성 특성이 반데르발스 물질이 갖는 내재적 성질인 약한 층간 상호작용 때문인 것을 밝혔다. 교환 바이어스는 2018년부터 양산되고 있는 차세대 스핀 메모리의 핵심 동작 원리로, 스핀 정보의 안정적인 저장에 결정적 역할을 한다. 따라서 이번 연구결과는 큰 교환 바이어스를 갖는 반데르발스 자성체를 활용해 차세대 스핀 메모리의 정보 저장 안정성을 크게 향상시킬 수 있음을 시사한다. KIST 최준우 박사는 “본 연구결과를 토대로 향후 반데르발스 자성체와 다른 성질의 반데르발스 물질들의 접합구조를 활용해 우수한 성능을 가진 스핀 반도체 신소재 개발이 가능해질 것으로 기대된다.”라고 밝혔다. 이번 연구는 과학기술정보통신부(장관 최기영)의 지원으로 KIST 주요사업 및 창의형융합연구사업, 선도연구센터지원사업으로 지원으로 수행되었다. 연구 결과는 나노과학 분야의 국제 저널인 ‘Nano Letters’ (IF: 12.279, JCR 분야 상위 5.743%) 최신 호에 게재되었다. * (논문명) Exchange Bias in Weakly Interlayer-Coupled van der Waals Magnet Fe3GeTe2 - (제 1저자) 한국과학기술연구원 권형근 박사후연구원(現, 삼성전자) - (교신저자) 한국과학기술연구원 최준우 책임연구원 <그림설명> [그림 1] KIST 최준우 박사팀이 개발한 반데르발스 자성체를 활용한 스핀소자의 모습 [그림 2] 층상구조를 가진 Fe3GeTe2 반데르발스 자성체와 반강자성체의 접합구조 [그림 3] 반데르발스 자성체와 일반적인 자성체에서 나타나는 두께에 따른 교환 바이어스 크기 변화. 일반적인 자성체에는 교환 바이어스가 두께에 반비례하여 급격히 감소하는 반면, 반데르발스 자성체에서는 두께 의존성이 작아서, 교환 바이어스가 훨씬 큼.
10배 더 안정적으로 정보 저장 가능한 차세대 반도체 소재 특성 발견
- 2차원 소재인 반데르발스 자성체만의 자성 특성 발견 - 교환 바이어스 특성 10배, 스핀 반도체의 획기적 성능 개선 기대 전 세계 반도체 기업과 연구소는 양산되고 있는 실리콘 반도체의 효율 향상에 한계를 느끼고, 이를 뛰어넘을 수 있는 스핀 메모리를 주목하고 있다. 스핀 메모리의 작동원리에 대한 연구는 상당 부분 진전이 있었고 최근에는 적합한 소재를 찾기 위한 노력이 한창인데, 국내 연구진이 스핀 메모리의 소재 후보로 주목받고 있는 반데르발스 자성체의 정보저장 안정성이 다른 소재보다 10배 이상 높다는 연구 결과를 내 화제다. 한국과학기술연구원(KIST, 원장 윤석진)은 스핀융합연구단 최준우 박사팀이 반데르발스 자성체가 정보를 저장할 수 있는 안정성을 나타내는 ‘교환 바이어스’ 특성이 일반 자성체보다 10배 이상 크고, 근본적으로 다른 물성을 가짐을 규명했다고 밝혔다. 반데르발스(van der Waals) 자성체란 물질의 층과 층 사이가 결합력이 약한 ‘반데르발스’ 결합으로 이루어진 자성체로, 3차원의 입체 구조를 갖는 일반 물질과는 달리 층간 결합력이 약해 단일 원자층으로 쉽게 분리시킬 수 있어 평면 형태로도 만들 수 있어 2차원 물질이라고도 불린다. 2017년에는 반데르발스 물질 중 외부의 자성을 유지하려는 특성인 강자성을 나타내는 물질들이 새로이 발견되어 이를 활용하여 자성의 스핀 방향을 정보로 저장하는 차세대 스핀 반도체 연구가 활발히 진행되고 있다. 하지만 활발한 연구에도 불구하고 반데르발스 자성체들은 철, 코발트 등의 기존 자성체와 비교해 원자층 단위로 분리된다는 구조적 특성 외에 눈에 띄게 다른 자성 특성을 발견하지는 못했었다. 최준우 박사 연구팀은 대표적 반데르발스 자성체인 ‘Fe3GeTe2’의 특성을 분석한 결과 두께가 두꺼워 짐에 따라 교환 바이어스의 크기가 약해지는 기존 자성체들과는 달리 두께에 영향을 거의 받지 않으며, 그 교환 바이어스의 크기(정보저장 안정성)가 10배 이상 클 수 있음을 찾아냈다. 또한, 이러한 특이한 자성 특성이 반데르발스 물질이 갖는 내재적 성질인 약한 층간 상호작용 때문인 것을 밝혔다. 교환 바이어스는 2018년부터 양산되고 있는 차세대 스핀 메모리의 핵심 동작 원리로, 스핀 정보의 안정적인 저장에 결정적 역할을 한다. 따라서 이번 연구결과는 큰 교환 바이어스를 갖는 반데르발스 자성체를 활용해 차세대 스핀 메모리의 정보 저장 안정성을 크게 향상시킬 수 있음을 시사한다. KIST 최준우 박사는 “본 연구결과를 토대로 향후 반데르발스 자성체와 다른 성질의 반데르발스 물질들의 접합구조를 활용해 우수한 성능을 가진 스핀 반도체 신소재 개발이 가능해질 것으로 기대된다.”라고 밝혔다. 이번 연구는 과학기술정보통신부(장관 최기영)의 지원으로 KIST 주요사업 및 창의형융합연구사업, 선도연구센터지원사업으로 지원으로 수행되었다. 연구 결과는 나노과학 분야의 국제 저널인 ‘Nano Letters’ (IF: 12.279, JCR 분야 상위 5.743%) 최신 호에 게재되었다. * (논문명) Exchange Bias in Weakly Interlayer-Coupled van der Waals Magnet Fe3GeTe2 - (제 1저자) 한국과학기술연구원 권형근 박사후연구원(現, 삼성전자) - (교신저자) 한국과학기술연구원 최준우 책임연구원 <그림설명> [그림 1] KIST 최준우 박사팀이 개발한 반데르발스 자성체를 활용한 스핀소자의 모습 [그림 2] 층상구조를 가진 Fe3GeTe2 반데르발스 자성체와 반강자성체의 접합구조 [그림 3] 반데르발스 자성체와 일반적인 자성체에서 나타나는 두께에 따른 교환 바이어스 크기 변화. 일반적인 자성체에는 교환 바이어스가 두께에 반비례하여 급격히 감소하는 반면, 반데르발스 자성체에서는 두께 의존성이 작아서, 교환 바이어스가 훨씬 큼.
10배 더 안정적으로 정보 저장 가능한 차세대 반도체 소재 특성 발견
- 2차원 소재인 반데르발스 자성체만의 자성 특성 발견 - 교환 바이어스 특성 10배, 스핀 반도체의 획기적 성능 개선 기대 전 세계 반도체 기업과 연구소는 양산되고 있는 실리콘 반도체의 효율 향상에 한계를 느끼고, 이를 뛰어넘을 수 있는 스핀 메모리를 주목하고 있다. 스핀 메모리의 작동원리에 대한 연구는 상당 부분 진전이 있었고 최근에는 적합한 소재를 찾기 위한 노력이 한창인데, 국내 연구진이 스핀 메모리의 소재 후보로 주목받고 있는 반데르발스 자성체의 정보저장 안정성이 다른 소재보다 10배 이상 높다는 연구 결과를 내 화제다. 한국과학기술연구원(KIST, 원장 윤석진)은 스핀융합연구단 최준우 박사팀이 반데르발스 자성체가 정보를 저장할 수 있는 안정성을 나타내는 ‘교환 바이어스’ 특성이 일반 자성체보다 10배 이상 크고, 근본적으로 다른 물성을 가짐을 규명했다고 밝혔다. 반데르발스(van der Waals) 자성체란 물질의 층과 층 사이가 결합력이 약한 ‘반데르발스’ 결합으로 이루어진 자성체로, 3차원의 입체 구조를 갖는 일반 물질과는 달리 층간 결합력이 약해 단일 원자층으로 쉽게 분리시킬 수 있어 평면 형태로도 만들 수 있어 2차원 물질이라고도 불린다. 2017년에는 반데르발스 물질 중 외부의 자성을 유지하려는 특성인 강자성을 나타내는 물질들이 새로이 발견되어 이를 활용하여 자성의 스핀 방향을 정보로 저장하는 차세대 스핀 반도체 연구가 활발히 진행되고 있다. 하지만 활발한 연구에도 불구하고 반데르발스 자성체들은 철, 코발트 등의 기존 자성체와 비교해 원자층 단위로 분리된다는 구조적 특성 외에 눈에 띄게 다른 자성 특성을 발견하지는 못했었다. 최준우 박사 연구팀은 대표적 반데르발스 자성체인 ‘Fe3GeTe2’의 특성을 분석한 결과 두께가 두꺼워 짐에 따라 교환 바이어스의 크기가 약해지는 기존 자성체들과는 달리 두께에 영향을 거의 받지 않으며, 그 교환 바이어스의 크기(정보저장 안정성)가 10배 이상 클 수 있음을 찾아냈다. 또한, 이러한 특이한 자성 특성이 반데르발스 물질이 갖는 내재적 성질인 약한 층간 상호작용 때문인 것을 밝혔다. 교환 바이어스는 2018년부터 양산되고 있는 차세대 스핀 메모리의 핵심 동작 원리로, 스핀 정보의 안정적인 저장에 결정적 역할을 한다. 따라서 이번 연구결과는 큰 교환 바이어스를 갖는 반데르발스 자성체를 활용해 차세대 스핀 메모리의 정보 저장 안정성을 크게 향상시킬 수 있음을 시사한다. KIST 최준우 박사는 “본 연구결과를 토대로 향후 반데르발스 자성체와 다른 성질의 반데르발스 물질들의 접합구조를 활용해 우수한 성능을 가진 스핀 반도체 신소재 개발이 가능해질 것으로 기대된다.”라고 밝혔다. 이번 연구는 과학기술정보통신부(장관 최기영)의 지원으로 KIST 주요사업 및 창의형융합연구사업, 선도연구센터지원사업으로 지원으로 수행되었다. 연구 결과는 나노과학 분야의 국제 저널인 ‘Nano Letters’ (IF: 12.279, JCR 분야 상위 5.743%) 최신 호에 게재되었다. * (논문명) Exchange Bias in Weakly Interlayer-Coupled van der Waals Magnet Fe3GeTe2 - (제 1저자) 한국과학기술연구원 권형근 박사후연구원(現, 삼성전자) - (교신저자) 한국과학기술연구원 최준우 책임연구원 <그림설명> [그림 1] KIST 최준우 박사팀이 개발한 반데르발스 자성체를 활용한 스핀소자의 모습 [그림 2] 층상구조를 가진 Fe3GeTe2 반데르발스 자성체와 반강자성체의 접합구조 [그림 3] 반데르발스 자성체와 일반적인 자성체에서 나타나는 두께에 따른 교환 바이어스 크기 변화. 일반적인 자성체에는 교환 바이어스가 두께에 반비례하여 급격히 감소하는 반면, 반데르발스 자성체에서는 두께 의존성이 작아서, 교환 바이어스가 훨씬 큼.
10배 더 안정적으로 정보 저장 가능한 차세대 반도체 소재 특성 발견
- 2차원 소재인 반데르발스 자성체만의 자성 특성 발견 - 교환 바이어스 특성 10배, 스핀 반도체의 획기적 성능 개선 기대 전 세계 반도체 기업과 연구소는 양산되고 있는 실리콘 반도체의 효율 향상에 한계를 느끼고, 이를 뛰어넘을 수 있는 스핀 메모리를 주목하고 있다. 스핀 메모리의 작동원리에 대한 연구는 상당 부분 진전이 있었고 최근에는 적합한 소재를 찾기 위한 노력이 한창인데, 국내 연구진이 스핀 메모리의 소재 후보로 주목받고 있는 반데르발스 자성체의 정보저장 안정성이 다른 소재보다 10배 이상 높다는 연구 결과를 내 화제다. 한국과학기술연구원(KIST, 원장 윤석진)은 스핀융합연구단 최준우 박사팀이 반데르발스 자성체가 정보를 저장할 수 있는 안정성을 나타내는 ‘교환 바이어스’ 특성이 일반 자성체보다 10배 이상 크고, 근본적으로 다른 물성을 가짐을 규명했다고 밝혔다. 반데르발스(van der Waals) 자성체란 물질의 층과 층 사이가 결합력이 약한 ‘반데르발스’ 결합으로 이루어진 자성체로, 3차원의 입체 구조를 갖는 일반 물질과는 달리 층간 결합력이 약해 단일 원자층으로 쉽게 분리시킬 수 있어 평면 형태로도 만들 수 있어 2차원 물질이라고도 불린다. 2017년에는 반데르발스 물질 중 외부의 자성을 유지하려는 특성인 강자성을 나타내는 물질들이 새로이 발견되어 이를 활용하여 자성의 스핀 방향을 정보로 저장하는 차세대 스핀 반도체 연구가 활발히 진행되고 있다. 하지만 활발한 연구에도 불구하고 반데르발스 자성체들은 철, 코발트 등의 기존 자성체와 비교해 원자층 단위로 분리된다는 구조적 특성 외에 눈에 띄게 다른 자성 특성을 발견하지는 못했었다. 최준우 박사 연구팀은 대표적 반데르발스 자성체인 ‘Fe3GeTe2’의 특성을 분석한 결과 두께가 두꺼워 짐에 따라 교환 바이어스의 크기가 약해지는 기존 자성체들과는 달리 두께에 영향을 거의 받지 않으며, 그 교환 바이어스의 크기(정보저장 안정성)가 10배 이상 클 수 있음을 찾아냈다. 또한, 이러한 특이한 자성 특성이 반데르발스 물질이 갖는 내재적 성질인 약한 층간 상호작용 때문인 것을 밝혔다. 교환 바이어스는 2018년부터 양산되고 있는 차세대 스핀 메모리의 핵심 동작 원리로, 스핀 정보의 안정적인 저장에 결정적 역할을 한다. 따라서 이번 연구결과는 큰 교환 바이어스를 갖는 반데르발스 자성체를 활용해 차세대 스핀 메모리의 정보 저장 안정성을 크게 향상시킬 수 있음을 시사한다. KIST 최준우 박사는 “본 연구결과를 토대로 향후 반데르발스 자성체와 다른 성질의 반데르발스 물질들의 접합구조를 활용해 우수한 성능을 가진 스핀 반도체 신소재 개발이 가능해질 것으로 기대된다.”라고 밝혔다. 이번 연구는 과학기술정보통신부(장관 최기영)의 지원으로 KIST 주요사업 및 창의형융합연구사업, 선도연구센터지원사업으로 지원으로 수행되었다. 연구 결과는 나노과학 분야의 국제 저널인 ‘Nano Letters’ (IF: 12.279, JCR 분야 상위 5.743%) 최신 호에 게재되었다. * (논문명) Exchange Bias in Weakly Interlayer-Coupled van der Waals Magnet Fe3GeTe2 - (제 1저자) 한국과학기술연구원 권형근 박사후연구원(現, 삼성전자) - (교신저자) 한국과학기술연구원 최준우 책임연구원 <그림설명> [그림 1] KIST 최준우 박사팀이 개발한 반데르발스 자성체를 활용한 스핀소자의 모습 [그림 2] 층상구조를 가진 Fe3GeTe2 반데르발스 자성체와 반강자성체의 접합구조 [그림 3] 반데르발스 자성체와 일반적인 자성체에서 나타나는 두께에 따른 교환 바이어스 크기 변화. 일반적인 자성체에는 교환 바이어스가 두께에 반비례하여 급격히 감소하는 반면, 반데르발스 자성체에서는 두께 의존성이 작아서, 교환 바이어스가 훨씬 큼.
11개 입상팀 전원 투자의향 확보, 홍릉강소특구 이노폴리스캠퍼스 GRaND-K 창업학교 마무리
- “끝이 아닌 시작” 창업팀은 유니콘 기업으로, 홍릉은 창업의 메카로 도약하길 - 공통교육, 인턴십, 라운드별 경연 등 6개월에 걸친 대장정 마무리 홍릉강소특구사업단 및 기술핵심기관인 한국과학기술연구원(KIST, 원장 윤석진), 경희대, 고려대가 주관하는 오디션형 창업지원 프로그램이 성공적으로 마무리 되었다. 최종 라운드에서 입상한 11개 창업기업 모두 투자기관으로부터 투자의향서를 확보했다. GRaND-K 창업학교는 국내 11개 투자기관으로부터 입상팀에 대한 사전 투자 검토를 확약받으며 시작됐다. 서면평가를 통해 선정된 64개 팀이 각 분야 창업 성공사례 및 투자 실무 등에 대한 총 6회에 걸친 공통 창업교육을 수료하였으며, 이 중 45개 팀이 창업경진대회 경연에 참가했다. 각 창업팀은 1라운드에서 전담 엑셀러레이터 및 투자기관과 매칭되어 인턴십 프로그램에 참여해 벤처기업의 투자 현장을 경험하였고, 매 라운드를 통과하기 위해 피나는 노력을 기울였다. 그간 창업팀의 기술성(Tech), 시장성(Market), 혁신성(Renovation)을 주제로 3라운드에 걸쳐 경연이 진행되었다. 10월 21일 오전부터 진행된 최종 라운드에선 참가 팀의 노력을 집대성하여 11개 팀이 ‘최종 기업투자설명회(IR)’을 주제로 경연을 펼쳤다. 창업학교 런칭에 참가했던 11개 투자기관 대표들과 청중평가단 15인이 평가한 결과, 최종적으로 ㈜시프트바이오가 대상을, ㈜마이오텍사이언스가 최우수상을 차지하였다. 대상을 수상한 (주)시프트바이오는 엑소좀 기반 플랫폼 기술로 새로운 신약 개발 방식을 구축해 항암 면역 그리고 희귀성난치성질환 치료제 개발에 도전하고 있다. 경연에서 입상한 팀에게는 대상 3천만 원에서부터 장려상 3백만 원까지의 바우처가 제공됐다. 또한, 창업학교의 가장 중요한 취지였던 투자와 관련해서는 입상한 11개 기업 전체가 8개 투자기관으로부터 투자의향서를 전달받았으며, 이 중 5개 기업은 2건 이상의 투자의향서를 전달받아 입상팀의 창업 성공 가능성이 더욱 높이 평가되었다. 각 입상팀은 홍릉강소특구와 KIST, 경희대와 고려대 등 기술핵심기관의 창업 활동 지원을 받으며 유니콘 기업으로의 도약을 시도하며, 아쉽게 경진대회에서 입상하지 못한 창업팀들도 2회 창업학교를 기약하며 새로운 도전을 준비하게 된다. ㈜시프트바이오 남기훈 부대표는 “산업계 선배들의 강연, 많은 투자자를 직접만날 수 있는 소중한 경험이었다. 저희의 비전인 혁신 신약을 만들어서 많은 환자에게 두 번째 기회를 제공할 수 있는 기업이 될 수 있도록 노력하겠다.”라고 수상소감을 밝혔다. KIST 윤석진 원장은 “컨셉페이퍼 한 장에서 시작된 GRaND-K 창업학교가 대단원의 막을 내리고 있는 지금, 기대이상의 참여와 열정으로 홍릉강소특구 창업생태계 조성의 씨앗이 뿌려졌다. 차기 창업학교는 새로운 도전과 시도를 바탕으로 특화 프로그램으로 자리매김하여 홍릉이 창업의 메카로 도약할 수 있도록 노력할 예정”이라고 밝혔다. 한편 이날 행사에는 보건복지위원회 김민석 위원장을 비롯하여, 서울시 황보연 경제정책실장, 연구개발특구재단 강병삼 이사장, 경희대 한균태 총장, 고려대 정진택 총장 등 외빈이 참석하였다.
12th HFSP 수상자 총회 - 특별 강연(2012.7.2)
생명과학 중심의 다학제·다대륙간 기초 연구프로그램인 Human Frontier Science Program(HFSP)가 주최하고 교육과학기술부와 우리원이 공동 주관한 “12th 수상자 총회(Awardees Meeting)”의 개막식이 2012년 7월 2일 대구 EXCO에서 개최되었다. 35개국에서 참가한 200여명의 HFSP 수상자와 HFSP본부 주요 임원진이 참석한 본 개막식에서 문길주 원장은 “We are living in a changing society"라는 주제로 변화하는 환경 속에서의 과학기술 역할과 방향에 대하여 특별 강연(Special Lecture)을 하였다.
130g 소프트 로봇 그리퍼가 100kg을 들어 올린다고?
- 직조 구조를 모방한 소프트 로봇 그리퍼 개발 - 소프트 로봇 그리퍼의 우수한 성능·경제성·공정 효율성 모두 확보 천, 종이, 실리콘과 같은 부드럽고 유연한 소재를 활용해 만든 소프트 로봇 그리퍼(Gripper)는 로봇의 손처럼 동작해 물체를 안전하게 잡거나 놓는 등의 기능을 수행하는 필수 장치이다. 기존의 강성 재료 그리퍼와 달리 유연성과 안전성이 높아 계란과 같이 깨지기 쉬운 물체를 다루는 가사용 로봇이나 다양한 형태의 물건을 운반해야 하는 물류용 로봇을 위해 연구되고 있다. 하지만 적재 용량이 낮아 무거운 물체를 들어올리기가 어렵고, 파지(grasping) 안정성이 떨어져 약한 외부 충격에도 물체를 놓치기 쉬웠다. 한국과학기술연구원(KIST, 원장 윤석진) 지능로봇연구단 송가혜 박사 연구팀은 한국과학기술원(KAIST, 총장 이광형) 항공우주공학과 이대영 교수팀과 함께 130g의 소재로 100kg 이상의 물체를 파지할 수 있는 직조 구조의 소프트 그리퍼를 공동 개발했다고 밝혔다. 연구팀은 소프트 로봇 그리퍼의 적재 용량을 높이기 위해 새로운 소재를 개발하거나 구조를 보강하는 기존 방식과 달리 직물에서 착안한 새로운 구조를 적용했다. 연구팀이 주목한 직조 기술은 낱개의 실을 단단히 얽어 견고한 직물을 만드는 기술로, 무거운 물건을 안정적으로 지지할 수 있어 수 세기에 걸쳐 의류, 가방 및 산업용 직물 등에 활용되고 있다. 연구팀은 얇은 PET플라스틱 띠들이 직조 구조로 얽히고 풀어질 수 있도록 설계해 그리퍼를 제작했다. 이렇게 제작된 직조 구조의 그리퍼는 130g의 무게로 100kg의 물체를 파지할 수 있다. 같은 무게의 기존 그리퍼는 최대 20kg 이내를 들어 올릴 수 있었고, 동일한 무게를 들어 올릴 수 있었던 그리퍼는 무게가 100kg에 달하는 점을 고려했을 때 자체 무게 대비 적재 용량을 월등히 증가시키는 데 성공했다. 또한, 연구팀이 개발한 소프트 로봇 그리퍼는 재료 단가가 수천 원에 불과한 플라스틱을 사용하며, 다양한 형상과 무게의 물체도 파지가 가능한 범용 그리퍼로 활용할 수 있어 높은 가격 경쟁력을 가지고 있다. 뿐만 아니라 플라스틱 띠를 체결하는 방식만으로 소프트 로봇 그리퍼의 제작이 완료되기 때문에 제작공정이 10분 이내로 간단하고 교체 및 유지보수도 쉬워 공정 효율성이 뛰어나다. 한편, 연구팀이 주재료로 활용한 PET 외에도 탄성을 보유한 고무 및 화합물 등의 다양한 재료로도 제작할 수 있어 강한 파지 성능이 필요한 산업 및 물류 현장이나 극한 환경을 견뎌야 하는 다양한 환경에 적합한 그리퍼를 맞춤 제작, 활용할 수 있다. KIST 송가혜 박사는 “이번에 개발된 직조 구조의 그리퍼는 소프트 로봇의 강점이 있으면서도 강성 그리퍼 수준으로 무거운 물체를 움켜쥘 수 있다. 또한, 동전부터 자동차까지 다양한 크기로 제작할 수 있으며, 얇은 카드부터 꽃에 이르기까지 여러 가지의 형태와 무게의 물체를 파지할 수 있어 소프트 그리퍼를 필요로 하는 산업, 물류, 가사 등의 분야에서 활용가능할 것으로 기대된다"라고 밝혔다. 본 연구는 과학기술정보통신부 (장관 이종호) 지원으로 KIST 주요사업과 한국연구재단 기초연구사업(2022R1C1C1003718), 해외고급과학자 초빙사업(NRF-2020H1D3A2A03099291), 기초연구실지원사업(NRF-2020R1A6A3A01099512)을 통해 수행됐다. 연구 결과는 국제학술지 ‘Nature Communications’ (IF:16.6, JCR 분야 상위 8.2%)에 8월 2일 게재됐으며 분야별 최고의 50개 논문을 소개하는 Editors’ Highlights에 선정됐다. [그림 1] 직조 구조의 그리퍼 구상도 [그림 2] 그리퍼의 동작 모습 및 성능 [그림 3] 직조 구조의 그리퍼와 소프트 그리퍼, 강체 그리퍼의 그리퍼 무게 대비 페이로드(로봇이 들어올릴 수 있는 최대 무게) 비교 ○ 논문명: Grasping through dynamic weaving with entangled closed loops ○ 학술지: Nature Communications ○ 게재일: 2023. 8. 2. ○ DOI: https://doi.org/10.1038/s41467-023-40358-y ○ 논문저자 - 강경지 학생연구원(제1저자/KIST 지능로봇연구단) - 송가혜 선임연구원(교신저자/KIST 지능로봇연구단) - 이대영 교수(교신저자/ KAIST 항공우주공학과)
130g 소프트 로봇 그리퍼가 100kg을 들어 올린다고?
- 직조 구조를 모방한 소프트 로봇 그리퍼 개발 - 소프트 로봇 그리퍼의 우수한 성능·경제성·공정 효율성 모두 확보 천, 종이, 실리콘과 같은 부드럽고 유연한 소재를 활용해 만든 소프트 로봇 그리퍼(Gripper)는 로봇의 손처럼 동작해 물체를 안전하게 잡거나 놓는 등의 기능을 수행하는 필수 장치이다. 기존의 강성 재료 그리퍼와 달리 유연성과 안전성이 높아 계란과 같이 깨지기 쉬운 물체를 다루는 가사용 로봇이나 다양한 형태의 물건을 운반해야 하는 물류용 로봇을 위해 연구되고 있다. 하지만 적재 용량이 낮아 무거운 물체를 들어올리기가 어렵고, 파지(grasping) 안정성이 떨어져 약한 외부 충격에도 물체를 놓치기 쉬웠다. 한국과학기술연구원(KIST, 원장 윤석진) 지능로봇연구단 송가혜 박사 연구팀은 한국과학기술원(KAIST, 총장 이광형) 항공우주공학과 이대영 교수팀과 함께 130g의 소재로 100kg 이상의 물체를 파지할 수 있는 직조 구조의 소프트 그리퍼를 공동 개발했다고 밝혔다. 연구팀은 소프트 로봇 그리퍼의 적재 용량을 높이기 위해 새로운 소재를 개발하거나 구조를 보강하는 기존 방식과 달리 직물에서 착안한 새로운 구조를 적용했다. 연구팀이 주목한 직조 기술은 낱개의 실을 단단히 얽어 견고한 직물을 만드는 기술로, 무거운 물건을 안정적으로 지지할 수 있어 수 세기에 걸쳐 의류, 가방 및 산업용 직물 등에 활용되고 있다. 연구팀은 얇은 PET플라스틱 띠들이 직조 구조로 얽히고 풀어질 수 있도록 설계해 그리퍼를 제작했다. 이렇게 제작된 직조 구조의 그리퍼는 130g의 무게로 100kg의 물체를 파지할 수 있다. 같은 무게의 기존 그리퍼는 최대 20kg 이내를 들어 올릴 수 있었고, 동일한 무게를 들어 올릴 수 있었던 그리퍼는 무게가 100kg에 달하는 점을 고려했을 때 자체 무게 대비 적재 용량을 월등히 증가시키는 데 성공했다. 또한, 연구팀이 개발한 소프트 로봇 그리퍼는 재료 단가가 수천 원에 불과한 플라스틱을 사용하며, 다양한 형상과 무게의 물체도 파지가 가능한 범용 그리퍼로 활용할 수 있어 높은 가격 경쟁력을 가지고 있다. 뿐만 아니라 플라스틱 띠를 체결하는 방식만으로 소프트 로봇 그리퍼의 제작이 완료되기 때문에 제작공정이 10분 이내로 간단하고 교체 및 유지보수도 쉬워 공정 효율성이 뛰어나다. 한편, 연구팀이 주재료로 활용한 PET 외에도 탄성을 보유한 고무 및 화합물 등의 다양한 재료로도 제작할 수 있어 강한 파지 성능이 필요한 산업 및 물류 현장이나 극한 환경을 견뎌야 하는 다양한 환경에 적합한 그리퍼를 맞춤 제작, 활용할 수 있다. KIST 송가혜 박사는 “이번에 개발된 직조 구조의 그리퍼는 소프트 로봇의 강점이 있으면서도 강성 그리퍼 수준으로 무거운 물체를 움켜쥘 수 있다. 또한, 동전부터 자동차까지 다양한 크기로 제작할 수 있으며, 얇은 카드부터 꽃에 이르기까지 여러 가지의 형태와 무게의 물체를 파지할 수 있어 소프트 그리퍼를 필요로 하는 산업, 물류, 가사 등의 분야에서 활용가능할 것으로 기대된다"라고 밝혔다. 본 연구는 과학기술정보통신부 (장관 이종호) 지원으로 KIST 주요사업과 한국연구재단 기초연구사업(2022R1C1C1003718), 해외고급과학자 초빙사업(NRF-2020H1D3A2A03099291), 기초연구실지원사업(NRF-2020R1A6A3A01099512)을 통해 수행됐다. 연구 결과는 국제학술지 ‘Nature Communications’ (IF:16.6, JCR 분야 상위 8.2%)에 8월 2일 게재됐으며 분야별 최고의 50개 논문을 소개하는 Editors’ Highlights에 선정됐다. [그림 1] 직조 구조의 그리퍼 구상도 [그림 2] 그리퍼의 동작 모습 및 성능 [그림 3] 직조 구조의 그리퍼와 소프트 그리퍼, 강체 그리퍼의 그리퍼 무게 대비 페이로드(로봇이 들어올릴 수 있는 최대 무게) 비교 ○ 논문명: Grasping through dynamic weaving with entangled closed loops ○ 학술지: Nature Communications ○ 게재일: 2023. 8. 2. ○ DOI: https://doi.org/10.1038/s41467-023-40358-y ○ 논문저자 - 강경지 학생연구원(제1저자/KIST 지능로봇연구단) - 송가혜 선임연구원(교신저자/KIST 지능로봇연구단) - 이대영 교수(교신저자/ KAIST 항공우주공학과)