연구본부소개
박테리아와 바이러스에 치명적인 은나노복합체 개발
- 등록일 : 13-06-04
- 미래융합기술연구본부 분자인식연구센터 우경자 박사팀
- 조회수 : 42020
-
첨부파일 :
박테리아와 바이러스에 치명적인
은나노 복합체 개발
- KIST, 영국 왕립화학회가 출판하는 세계적 국제학술지에 표지 논문으로 발표
환경오염 없이, 유해 박테리아와 바이러스에 치명적인 ‘은나노복합체 소재’가 국내 연구진에 의해 개발되어 그린 환경을 구축하고 삶의 질 향상에 기여할 것으로 기대된다.
은 나노입자를 마이크론 크기의 자성복합체 소재 위에 키워서 3차원 구조화함으로써, 유해 박테리아와 바이러스에 치명적이면서 환경으로 유실될 염려가 없는 은나노복합체 소재가 국내 융합연구진에 의해 개발되었다.
한국과학기술연구원(KIST, 원장 문길주) 분자인식연구센터 우경자 박사팀과 서울대학교 보건대학원 고광표 교수팀이 공동으로 수행한 이번 연구는 미래창조과학부와 한국연구재단이 추진하는 나노·소재 기술개발사업 및 KIST 기관고유사업의 일환으로 수행되었으며, 영국 왕립화학회가 출판하는 세계적 국제학술지인 ‘Journal of Materials Chemistry B’ 에 표지(front cover) 제1권 21호의 표지 논문으로 선정되어 5월 8일 온라인 게재되었고 6월 7일 출판 예정이다. (논문명 : Magnetic hybrid colloids decorated with Ag nanoparticles bite away bacteria and chemisorb viruses)
SARS와 조류 독감, 집단 식중독 등 각종 바이러스에 의한 발병이 급증하면서 유해 미생물에 대한 관심이 높아지고 있다. 나노소재기술이 발전하면서 나노입자를 유해 미생물 제거에 이용하는 기술에 대한 관심 또한 높아지고 있다. 은 나노입자는 유해 미생물에 대해 아주 우수한 효용을 나타내고 있으나, 환경으로 유실되면 생명체에 독성을 나타낼 수 있는 것으로 인식되고 있다. 은 나노입자는 작을수록 독성이 심하며, 입자 자체로써, 은 이온으로써, 그리고 이들이 발생시키는 활성 산소 종으로써 유해 미생물에 작용하는 것으로 알려져 있다. 따라서 지금까지 은 나노입자를 이용하여 유해 미생물을 제거하는 연구의 대부분은 20 nm 이하의 단위 나노입자에 집중되어 있고 단위 나노입자를 사용하는 한, 환경으로의 유실 문제를 근본적으로 해결할 수 없다. 그리고 표면이 보호된 나노입자는 유해 미생물과 직접 접촉을 할 수 없고, 표면이 보호되지 않은 단위 나노입자는 응집되어 나노 특성을 잃어버리게 되어 효과를 나타낼 수 없다.
이 문제들을 동시에 해결하는 방법이 나노소재를 마이크론소재에 접목시켜 복합소재로 만드는 것이다. 자성을 갖는 마이크론소재에 은 나노입자를 견고하게 결합하면 회수와 분산이 용이해져 환경오염은 줄이고 나노입자 표면이 그대로 노출되어 유해 미생물에 직접 작용할 수 있기 때문이다.
우경자 박사와 고광표 교수 공동 연구팀은 자성이 있는 마이크론 크기의 소재에 핵과 핵을 떠받치는 기둥을 함께 감싸는 견고한 3차원 구조로 고정된 은나노복합체 소재를 개발하고 박테리아와 바이러스 제거 효과 및 그 메커니즘을 밝혀냈다. 연구팀은 공 모양의 자성을 가진 마이크론소재 표면에 많은 수의 팔을 만들고, 팔 끝에 은으로 된 핵(1~3 nm)을 매단 후, 이 핵들을 적정 크기로 뭉쳐서 간격을 재배치하였다.
이후 재배치된 핵 뭉치와 이를 받치고 있는 팔을 함께 감싸도록 은 성분을 도포함으로써 약 30 nm 크기의 은 나노입자가 견고하게 고정된 3차원 구조의 은나노복합체 소재를 완성하였다.
연구팀은 기존의 연구가 20 nm 이하의 은 나노입자에 집중된 것과는 반대로, 바이러스가 최소 약 30 개발한 은나노복합체의 표면에서 은 나노입자가 고정되지 않은 평평한 부분은 은 이온으로 덮이도록 설계하였으며, 이러한 독특한 구조가 항균, 항바이러스 작용에 시너지 효과를 줄 것으로 예측하였다.
이번에 개발된 은나노복합체 소재를 박테리아(E. coli CN13)*와 바이러스(Bacteriophage MS2)* 제거 실험에 적용하여 효용이 뛰어난 것을 확인하였으며, 각각 99.9999%와 99% 이상의 제거율을 기록했다. 다른 종류의 박테리아와 바이러스에도 적용하여 비슷한 결과를 얻었다.
복합체 위에 고정된 은 나노입자가 이빨과 같은 역할을 하여 박테리아와 접촉하면 박테리아를 물어뜯어 박테리아 몸체가 찢어지는 효과를 주는 것을 전자현미경으로 관찰하였다. 바이러스는 복합체 위에 고정된 은 나노입자와 은 이온에 화학적으로 흡착되는 것을 확인하였다.
이러한 현상은 은 나노입자가 박테리아 몸체를 구성하고 지지하는 막 성분 중에서 칼슘 또는 마그네슘 이온을 흡착하고 또, 박테리아나 바이러스 막을 구성하는 시스테인 부분의 싸이올(╺SH) 그룹과 강한 결합을 만들기 때문에 일어나는 현상으로 해석되었다.
이렇게 큰(~30 nm) 나노입자를 이렇게 큰(~㎛) 지지체 위에 고정하여 복합체 콜로이드로 만든 것은 세계 최초의 시도이며, 유해 미생물에 대한 치명적 효과가 주목을 끌어 표지 논문으로 선정되었다.
연구진은 개발한 은나노복합체를 공기정화필터에 코팅하여 청정공기를 공급하는 시스템을 연세대학교과 공동으로 개발 중이며, 실용화를 목표로 하고 있다.
KIST 우경자 박사는 “이번 연구를 통해 새로운 구조의 나노복합소재를 개발해 원천기술 확보와 그린환경 구축, 삶의 질 향상의 토대를 마련했다”고 연구의의를 밝혔다.
※ E. coli CN13: 그람-음성 박테리아로 직경×길이가 1㎛×2㎛ 크기의 막대 모양임.
※ Bacteriophage MS2: 식물성 RNA 바이러스의 일종으로 직경 27.5 nm의 구형 모양임. 초기 연구 대상으로 안전성을 고려하여 식물성 바이러스를 이용했으며, 이후 행한 병원성 바이러스에 대해서도 우수한 효능을 얻었음.
○ 연구진

<우경자 박사>
○ 그림설명

<그림1> 논문 1권 21호의 표지
왼쪽 아래에 은나노복합체의 3차원 구조를 나타내고 있으며, 여기저기에 은나노복합체가 박테리아를 물어뜯는 모양을 보여주고 있음. 사용한 은나노복합체는 왼쪽 위와 같이 자석을 이용해 회수할 수 있음.

<그림2> 은나노복합체의 합성 과정을 보여주는 모식도
(A)는 평균 7 nm와 15 nm 크기의 입자가 고정된 은나노복합체를 합성하는 과정으로 금 씨드를 사용하고 (B)는 30 nm 크기의 입자가 고정된 은나노복합체를 합성하는 과정으로 은 씨드를 사용함.
<그림3>은나노복합체가 박테리아를 물어뜯는 모양을 보여주는 전자현미경 이미지
왼쪽은 박테리아만 있을 때, 중앙과 오른쪽은 박테리아와 은나노복합체를 섞고 각각 15 분과 30 분이 경과한 때의 이미지임.