검색결과
게시물 키워드""에 대한 9088개의 검색결과를 찾았습니다.
성게를 닮은 ‘뾰족뾰족 그래핀 공’, 슈퍼 전지를 만들다
성게를 닮은 ‘뾰족뾰족 그래핀 공’, 슈퍼 전지를 만들다 - 산화철 입자를 성게 모양으로 식각하여 표면적, 전기전도도, 압축-내성 모두 잡은 성게모양 그래핀 공 제작 - 생산성과 공정성 확보로 고밀도?고출력 슈퍼커패시터 상용화를 앞당길 혁신적 소재 친환경 전기자동차나 신재생 에너지저장 시스템을 위한 중대형 전지, 인간 친화적인 웨어러블 전자기기를 위해서는 고용량이면서도 신속한 충·방전이 가능한 압축형 전지인 슈퍼커패시터(supercapacitor)의 개발이 필수적이다. 이런 이유로 슈퍼커패시터는 현재의 이온전지의 한계를 극복할 수 있는 미래형 전지로 각광받고 있지만 에너지 밀도가 낮아 오랜 시간 동안 전기를 저장하고 사용하는 것이 어려웠다. 국내 연구진이 ‘성게처럼 뾰족한 표면을 가진 구겨진 공’ 모양의 그래핀 분말을 대량으로 저렴하게 합성할 수 있는 방법을 개발했다. 기존 탄소 소재보다 전지 저장용량을 3~4배 향상시킬 수 있어 슈퍼커패시터 개발을 앞당길 전망이다. 한국과학기술연구원(KIST, 원장 이병권) 광전하이브리드연구센터의 손정곤 박사와 이상수 박사팀은, “고밀도 에너지 저장을 위한 산화철 식각 공정을 통한 성게 모양 3차원 그래핀 공 입자를 제작”했다고 밝혔다. 그래핀 소재는 전기전도도가 우수하고 기계적 내구성이 높은데다 표면적이 매우 높아 슈퍼커패시터 전극의 이상적인 소재로 알려져 왔다. 하지만 전지 제조 공정 과정에서 판상 형태의 그래핀은 판과 판사이의 강한 인력에 의하여 흑연과 같은 다층구조로 쌓이거나 빈틈없이 뭉치게 되고, 이 때문에 이온들이 다가갈 수 있는 면적이 줄어들어 전지 성능이 떨어진다. 많은 연구진들은 적층 문제를 해결하기 위해 그래핀의 간극을 넓혀 다양한 3차원 형상의 그래핀 구조로 전지를 구현했지만, 빈 공간이 많아져 부피당 그래핀의 양이 줄어들어 전기용량이 낮아지고 에너지 손실이 생겼다. 일반적으로 다결정의 산화철 입자는 강한 산을 써서 표면을 녹여내면 성게처럼 뾰족한 모양으로 식각이 된다. 연구팀은 산화철 입자의 이러한 식각현상에 주목하여 산화 그래핀 용액을 산화철 입자에 코팅한 후 산화철의 식각 공정과 산화 그래핀의 환원 공정을 동시에 진행했다. 이런 절차를 거치면 뾰족하게 녹아나가는 산화철의 모양에 맞추어 치밀하게 구겨진 성게 모양의 공 구조 그래핀이 만들어진다. 특히, 이 방법은 저렴한 산화철 입자를 녹여내는 간단한 용액 공정으로 진행되기 때문에 저가로 대량생산이 가능하다는 장점이 있다. 이렇게 제조된 그래핀 공은 비표면적과 전기전도도가 높아 전극으로 제작했을 때 무게당 전기의 저장용량이 400 F/g(Farad, 전기 용량의 국제단위)에 달했다. 이는 그래핀의 이론적인 전기저장용량에 가까운 수준이다. 또한, 이 구겨진 형상은 식각에 의해 형성된 재료 본래의 구조로 만들어졌기 때문에 구조 자체의 외부의 강한 압력에도 그 형상과 물성이 유지될 수 있어, 특성의 변화없이 빈 공간을 확연하게 줄여 부피당 저장용량 또한 330 F/cm3 까지 획기적으로 증가되는 현상을 보였다. 이러한 저장용량은 기존의 그래핀 기반 전자 소자의 부피당 저장용량이 100 F/cm3 이하임을 감안할 때 3~4배 이상의 성능향상을 보인 것이라 할 수 있다. 개발한 그래핀 공은 다른 접착제나 첨가제 없이도 다양한 전극 기판에서 압착 등의 방법을 통해 제작이 가능할 뿐만 아니라, 용매에 잘 분산되어 기존 전지 제작 공정에 바로 적용이 가능하고, 우수한 비표면적, 전기전도도 및 압축-내성으로 공정처리 이후에도 성능이 감소되지 않아 우수한 성능의 전극을 구현할 수 있었다. KIST 손정곤, 이상수 박사는 “개발한 성게모양의 그래핀 공은 대량?저가 생산이 가능하고 성능이 뛰어나 차세대 고성능-고압축 전지 개발을 위한 획기적인 솔루션이 될 것으로 기대된다”고 밝혔다. 이번 연구는 미래창조과학부 글로벌프론티어연구개발사업, KIST 기관고유사업, 국가과학기술연구회 R&D 컨버전스 프로그램에서 지원되었다. 연구 결과는 신소재 분야 권위지인 ‘Advanced Functional Materials’ 5월 7일자 온라인에 게재되었다. *(논문명) "Sea-Urchin-Inspired 3D Crumpled Graphene Balls Using Simultaneous Etching and Reduction Process for High-Density Capacitive Energy Storage" - (제1저자) 한국과학기술연구원 이장열 박사 - (교신저자) 한국과학기술연구원 손정곤 박사 - (교신저자) 한국과학기술연구원 이상수 박사 <그림자료> <그림 1> 성게형 입자로 본뜬 구겨진 그래핀 공의 합성 과정 및 원리 모식도. (a) 성게 모양으로 식각되는 산화철 입자. (b) 환원과 함께 적층이 일어나는 산화 그래핀. (c) 식각-환원이 동시에 진행되어 적층 없이 자연스럽게 구겨지는 그래핀. <그림 2> 그래핀이 코팅된 산화철 입자의 형상 변화를 보여주는 전자주사현미경 이미지. (a) 성게 모양으로 식각되는 산화철 입자(좌)와 실제 성게 모습(우, 출처: ocean.nationalgeographic.com). (b) 식각-환원 처리 시간에 따른 형상 변화(좌)와 최종적으로 제조된 구겨진 그래핀 공.
성게를 닮은 ‘뾰족뾰족 그래핀 공’, 슈퍼 전지를 만들다
성게를 닮은 ‘뾰족뾰족 그래핀 공’, 슈퍼 전지를 만들다 - 산화철 입자를 성게 모양으로 식각하여 표면적, 전기전도도, 압축-내성 모두 잡은 성게모양 그래핀 공 제작 - 생산성과 공정성 확보로 고밀도?고출력 슈퍼커패시터 상용화를 앞당길 혁신적 소재 친환경 전기자동차나 신재생 에너지저장 시스템을 위한 중대형 전지, 인간 친화적인 웨어러블 전자기기를 위해서는 고용량이면서도 신속한 충·방전이 가능한 압축형 전지인 슈퍼커패시터(supercapacitor)의 개발이 필수적이다. 이런 이유로 슈퍼커패시터는 현재의 이온전지의 한계를 극복할 수 있는 미래형 전지로 각광받고 있지만 에너지 밀도가 낮아 오랜 시간 동안 전기를 저장하고 사용하는 것이 어려웠다. 국내 연구진이 ‘성게처럼 뾰족한 표면을 가진 구겨진 공’ 모양의 그래핀 분말을 대량으로 저렴하게 합성할 수 있는 방법을 개발했다. 기존 탄소 소재보다 전지 저장용량을 3~4배 향상시킬 수 있어 슈퍼커패시터 개발을 앞당길 전망이다. 한국과학기술연구원(KIST, 원장 이병권) 광전하이브리드연구센터의 손정곤 박사와 이상수 박사팀은, “고밀도 에너지 저장을 위한 산화철 식각 공정을 통한 성게 모양 3차원 그래핀 공 입자를 제작”했다고 밝혔다. 그래핀 소재는 전기전도도가 우수하고 기계적 내구성이 높은데다 표면적이 매우 높아 슈퍼커패시터 전극의 이상적인 소재로 알려져 왔다. 하지만 전지 제조 공정 과정에서 판상 형태의 그래핀은 판과 판사이의 강한 인력에 의하여 흑연과 같은 다층구조로 쌓이거나 빈틈없이 뭉치게 되고, 이 때문에 이온들이 다가갈 수 있는 면적이 줄어들어 전지 성능이 떨어진다. 많은 연구진들은 적층 문제를 해결하기 위해 그래핀의 간극을 넓혀 다양한 3차원 형상의 그래핀 구조로 전지를 구현했지만, 빈 공간이 많아져 부피당 그래핀의 양이 줄어들어 전기용량이 낮아지고 에너지 손실이 생겼다. 일반적으로 다결정의 산화철 입자는 강한 산을 써서 표면을 녹여내면 성게처럼 뾰족한 모양으로 식각이 된다. 연구팀은 산화철 입자의 이러한 식각현상에 주목하여 산화 그래핀 용액을 산화철 입자에 코팅한 후 산화철의 식각 공정과 산화 그래핀의 환원 공정을 동시에 진행했다. 이런 절차를 거치면 뾰족하게 녹아나가는 산화철의 모양에 맞추어 치밀하게 구겨진 성게 모양의 공 구조 그래핀이 만들어진다. 특히, 이 방법은 저렴한 산화철 입자를 녹여내는 간단한 용액 공정으로 진행되기 때문에 저가로 대량생산이 가능하다는 장점이 있다. 이렇게 제조된 그래핀 공은 비표면적과 전기전도도가 높아 전극으로 제작했을 때 무게당 전기의 저장용량이 400 F/g(Farad, 전기 용량의 국제단위)에 달했다. 이는 그래핀의 이론적인 전기저장용량에 가까운 수준이다. 또한, 이 구겨진 형상은 식각에 의해 형성된 재료 본래의 구조로 만들어졌기 때문에 구조 자체의 외부의 강한 압력에도 그 형상과 물성이 유지될 수 있어, 특성의 변화없이 빈 공간을 확연하게 줄여 부피당 저장용량 또한 330 F/cm3 까지 획기적으로 증가되는 현상을 보였다. 이러한 저장용량은 기존의 그래핀 기반 전자 소자의 부피당 저장용량이 100 F/cm3 이하임을 감안할 때 3~4배 이상의 성능향상을 보인 것이라 할 수 있다. 개발한 그래핀 공은 다른 접착제나 첨가제 없이도 다양한 전극 기판에서 압착 등의 방법을 통해 제작이 가능할 뿐만 아니라, 용매에 잘 분산되어 기존 전지 제작 공정에 바로 적용이 가능하고, 우수한 비표면적, 전기전도도 및 압축-내성으로 공정처리 이후에도 성능이 감소되지 않아 우수한 성능의 전극을 구현할 수 있었다. KIST 손정곤, 이상수 박사는 “개발한 성게모양의 그래핀 공은 대량?저가 생산이 가능하고 성능이 뛰어나 차세대 고성능-고압축 전지 개발을 위한 획기적인 솔루션이 될 것으로 기대된다”고 밝혔다. 이번 연구는 미래창조과학부 글로벌프론티어연구개발사업, KIST 기관고유사업, 국가과학기술연구회 R&D 컨버전스 프로그램에서 지원되었다. 연구 결과는 신소재 분야 권위지인 ‘Advanced Functional Materials’ 5월 7일자 온라인에 게재되었다. *(논문명) "Sea-Urchin-Inspired 3D Crumpled Graphene Balls Using Simultaneous Etching and Reduction Process for High-Density Capacitive Energy Storage" - (제1저자) 한국과학기술연구원 이장열 박사 - (교신저자) 한국과학기술연구원 손정곤 박사 - (교신저자) 한국과학기술연구원 이상수 박사 <그림자료> <그림 1> 성게형 입자로 본뜬 구겨진 그래핀 공의 합성 과정 및 원리 모식도. (a) 성게 모양으로 식각되는 산화철 입자. (b) 환원과 함께 적층이 일어나는 산화 그래핀. (c) 식각-환원이 동시에 진행되어 적층 없이 자연스럽게 구겨지는 그래핀. <그림 2> 그래핀이 코팅된 산화철 입자의 형상 변화를 보여주는 전자주사현미경 이미지. (a) 성게 모양으로 식각되는 산화철 입자(좌)와 실제 성게 모습(우, 출처: ocean.nationalgeographic.com). (b) 식각-환원 처리 시간에 따른 형상 변화(좌)와 최종적으로 제조된 구겨진 그래핀 공.
성게를 닮은 ‘뾰족뾰족 그래핀 공’, 슈퍼 전지를 만들다
성게를 닮은 ‘뾰족뾰족 그래핀 공’, 슈퍼 전지를 만들다 - 산화철 입자를 성게 모양으로 식각하여 표면적, 전기전도도, 압축-내성 모두 잡은 성게모양 그래핀 공 제작 - 생산성과 공정성 확보로 고밀도?고출력 슈퍼커패시터 상용화를 앞당길 혁신적 소재 친환경 전기자동차나 신재생 에너지저장 시스템을 위한 중대형 전지, 인간 친화적인 웨어러블 전자기기를 위해서는 고용량이면서도 신속한 충·방전이 가능한 압축형 전지인 슈퍼커패시터(supercapacitor)의 개발이 필수적이다. 이런 이유로 슈퍼커패시터는 현재의 이온전지의 한계를 극복할 수 있는 미래형 전지로 각광받고 있지만 에너지 밀도가 낮아 오랜 시간 동안 전기를 저장하고 사용하는 것이 어려웠다. 국내 연구진이 ‘성게처럼 뾰족한 표면을 가진 구겨진 공’ 모양의 그래핀 분말을 대량으로 저렴하게 합성할 수 있는 방법을 개발했다. 기존 탄소 소재보다 전지 저장용량을 3~4배 향상시킬 수 있어 슈퍼커패시터 개발을 앞당길 전망이다. 한국과학기술연구원(KIST, 원장 이병권) 광전하이브리드연구센터의 손정곤 박사와 이상수 박사팀은, “고밀도 에너지 저장을 위한 산화철 식각 공정을 통한 성게 모양 3차원 그래핀 공 입자를 제작”했다고 밝혔다. 그래핀 소재는 전기전도도가 우수하고 기계적 내구성이 높은데다 표면적이 매우 높아 슈퍼커패시터 전극의 이상적인 소재로 알려져 왔다. 하지만 전지 제조 공정 과정에서 판상 형태의 그래핀은 판과 판사이의 강한 인력에 의하여 흑연과 같은 다층구조로 쌓이거나 빈틈없이 뭉치게 되고, 이 때문에 이온들이 다가갈 수 있는 면적이 줄어들어 전지 성능이 떨어진다. 많은 연구진들은 적층 문제를 해결하기 위해 그래핀의 간극을 넓혀 다양한 3차원 형상의 그래핀 구조로 전지를 구현했지만, 빈 공간이 많아져 부피당 그래핀의 양이 줄어들어 전기용량이 낮아지고 에너지 손실이 생겼다. 일반적으로 다결정의 산화철 입자는 강한 산을 써서 표면을 녹여내면 성게처럼 뾰족한 모양으로 식각이 된다. 연구팀은 산화철 입자의 이러한 식각현상에 주목하여 산화 그래핀 용액을 산화철 입자에 코팅한 후 산화철의 식각 공정과 산화 그래핀의 환원 공정을 동시에 진행했다. 이런 절차를 거치면 뾰족하게 녹아나가는 산화철의 모양에 맞추어 치밀하게 구겨진 성게 모양의 공 구조 그래핀이 만들어진다. 특히, 이 방법은 저렴한 산화철 입자를 녹여내는 간단한 용액 공정으로 진행되기 때문에 저가로 대량생산이 가능하다는 장점이 있다. 이렇게 제조된 그래핀 공은 비표면적과 전기전도도가 높아 전극으로 제작했을 때 무게당 전기의 저장용량이 400 F/g(Farad, 전기 용량의 국제단위)에 달했다. 이는 그래핀의 이론적인 전기저장용량에 가까운 수준이다. 또한, 이 구겨진 형상은 식각에 의해 형성된 재료 본래의 구조로 만들어졌기 때문에 구조 자체의 외부의 강한 압력에도 그 형상과 물성이 유지될 수 있어, 특성의 변화없이 빈 공간을 확연하게 줄여 부피당 저장용량 또한 330 F/cm3 까지 획기적으로 증가되는 현상을 보였다. 이러한 저장용량은 기존의 그래핀 기반 전자 소자의 부피당 저장용량이 100 F/cm3 이하임을 감안할 때 3~4배 이상의 성능향상을 보인 것이라 할 수 있다. 개발한 그래핀 공은 다른 접착제나 첨가제 없이도 다양한 전극 기판에서 압착 등의 방법을 통해 제작이 가능할 뿐만 아니라, 용매에 잘 분산되어 기존 전지 제작 공정에 바로 적용이 가능하고, 우수한 비표면적, 전기전도도 및 압축-내성으로 공정처리 이후에도 성능이 감소되지 않아 우수한 성능의 전극을 구현할 수 있었다. KIST 손정곤, 이상수 박사는 “개발한 성게모양의 그래핀 공은 대량?저가 생산이 가능하고 성능이 뛰어나 차세대 고성능-고압축 전지 개발을 위한 획기적인 솔루션이 될 것으로 기대된다”고 밝혔다. 이번 연구는 미래창조과학부 글로벌프론티어연구개발사업, KIST 기관고유사업, 국가과학기술연구회 R&D 컨버전스 프로그램에서 지원되었다. 연구 결과는 신소재 분야 권위지인 ‘Advanced Functional Materials’ 5월 7일자 온라인에 게재되었다. *(논문명) "Sea-Urchin-Inspired 3D Crumpled Graphene Balls Using Simultaneous Etching and Reduction Process for High-Density Capacitive Energy Storage" - (제1저자) 한국과학기술연구원 이장열 박사 - (교신저자) 한국과학기술연구원 손정곤 박사 - (교신저자) 한국과학기술연구원 이상수 박사 <그림자료> <그림 1> 성게형 입자로 본뜬 구겨진 그래핀 공의 합성 과정 및 원리 모식도. (a) 성게 모양으로 식각되는 산화철 입자. (b) 환원과 함께 적층이 일어나는 산화 그래핀. (c) 식각-환원이 동시에 진행되어 적층 없이 자연스럽게 구겨지는 그래핀. <그림 2> 그래핀이 코팅된 산화철 입자의 형상 변화를 보여주는 전자주사현미경 이미지. (a) 성게 모양으로 식각되는 산화철 입자(좌)와 실제 성게 모습(우, 출처: ocean.nationalgeographic.com). (b) 식각-환원 처리 시간에 따른 형상 변화(좌)와 최종적으로 제조된 구겨진 그래핀 공.
성게를 닮은 ‘뾰족뾰족 그래핀 공’, 슈퍼 전지를 만들다
성게를 닮은 ‘뾰족뾰족 그래핀 공’, 슈퍼 전지를 만들다 - 산화철 입자를 성게 모양으로 식각하여 표면적, 전기전도도, 압축-내성 모두 잡은 성게모양 그래핀 공 제작 - 생산성과 공정성 확보로 고밀도?고출력 슈퍼커패시터 상용화를 앞당길 혁신적 소재 친환경 전기자동차나 신재생 에너지저장 시스템을 위한 중대형 전지, 인간 친화적인 웨어러블 전자기기를 위해서는 고용량이면서도 신속한 충·방전이 가능한 압축형 전지인 슈퍼커패시터(supercapacitor)의 개발이 필수적이다. 이런 이유로 슈퍼커패시터는 현재의 이온전지의 한계를 극복할 수 있는 미래형 전지로 각광받고 있지만 에너지 밀도가 낮아 오랜 시간 동안 전기를 저장하고 사용하는 것이 어려웠다. 국내 연구진이 ‘성게처럼 뾰족한 표면을 가진 구겨진 공’ 모양의 그래핀 분말을 대량으로 저렴하게 합성할 수 있는 방법을 개발했다. 기존 탄소 소재보다 전지 저장용량을 3~4배 향상시킬 수 있어 슈퍼커패시터 개발을 앞당길 전망이다. 한국과학기술연구원(KIST, 원장 이병권) 광전하이브리드연구센터의 손정곤 박사와 이상수 박사팀은, “고밀도 에너지 저장을 위한 산화철 식각 공정을 통한 성게 모양 3차원 그래핀 공 입자를 제작”했다고 밝혔다. 그래핀 소재는 전기전도도가 우수하고 기계적 내구성이 높은데다 표면적이 매우 높아 슈퍼커패시터 전극의 이상적인 소재로 알려져 왔다. 하지만 전지 제조 공정 과정에서 판상 형태의 그래핀은 판과 판사이의 강한 인력에 의하여 흑연과 같은 다층구조로 쌓이거나 빈틈없이 뭉치게 되고, 이 때문에 이온들이 다가갈 수 있는 면적이 줄어들어 전지 성능이 떨어진다. 많은 연구진들은 적층 문제를 해결하기 위해 그래핀의 간극을 넓혀 다양한 3차원 형상의 그래핀 구조로 전지를 구현했지만, 빈 공간이 많아져 부피당 그래핀의 양이 줄어들어 전기용량이 낮아지고 에너지 손실이 생겼다. 일반적으로 다결정의 산화철 입자는 강한 산을 써서 표면을 녹여내면 성게처럼 뾰족한 모양으로 식각이 된다. 연구팀은 산화철 입자의 이러한 식각현상에 주목하여 산화 그래핀 용액을 산화철 입자에 코팅한 후 산화철의 식각 공정과 산화 그래핀의 환원 공정을 동시에 진행했다. 이런 절차를 거치면 뾰족하게 녹아나가는 산화철의 모양에 맞추어 치밀하게 구겨진 성게 모양의 공 구조 그래핀이 만들어진다. 특히, 이 방법은 저렴한 산화철 입자를 녹여내는 간단한 용액 공정으로 진행되기 때문에 저가로 대량생산이 가능하다는 장점이 있다. 이렇게 제조된 그래핀 공은 비표면적과 전기전도도가 높아 전극으로 제작했을 때 무게당 전기의 저장용량이 400 F/g(Farad, 전기 용량의 국제단위)에 달했다. 이는 그래핀의 이론적인 전기저장용량에 가까운 수준이다. 또한, 이 구겨진 형상은 식각에 의해 형성된 재료 본래의 구조로 만들어졌기 때문에 구조 자체의 외부의 강한 압력에도 그 형상과 물성이 유지될 수 있어, 특성의 변화없이 빈 공간을 확연하게 줄여 부피당 저장용량 또한 330 F/cm3 까지 획기적으로 증가되는 현상을 보였다. 이러한 저장용량은 기존의 그래핀 기반 전자 소자의 부피당 저장용량이 100 F/cm3 이하임을 감안할 때 3~4배 이상의 성능향상을 보인 것이라 할 수 있다. 개발한 그래핀 공은 다른 접착제나 첨가제 없이도 다양한 전극 기판에서 압착 등의 방법을 통해 제작이 가능할 뿐만 아니라, 용매에 잘 분산되어 기존 전지 제작 공정에 바로 적용이 가능하고, 우수한 비표면적, 전기전도도 및 압축-내성으로 공정처리 이후에도 성능이 감소되지 않아 우수한 성능의 전극을 구현할 수 있었다. KIST 손정곤, 이상수 박사는 “개발한 성게모양의 그래핀 공은 대량?저가 생산이 가능하고 성능이 뛰어나 차세대 고성능-고압축 전지 개발을 위한 획기적인 솔루션이 될 것으로 기대된다”고 밝혔다. 이번 연구는 미래창조과학부 글로벌프론티어연구개발사업, KIST 기관고유사업, 국가과학기술연구회 R&D 컨버전스 프로그램에서 지원되었다. 연구 결과는 신소재 분야 권위지인 ‘Advanced Functional Materials’ 5월 7일자 온라인에 게재되었다. *(논문명) "Sea-Urchin-Inspired 3D Crumpled Graphene Balls Using Simultaneous Etching and Reduction Process for High-Density Capacitive Energy Storage" - (제1저자) 한국과학기술연구원 이장열 박사 - (교신저자) 한국과학기술연구원 손정곤 박사 - (교신저자) 한국과학기술연구원 이상수 박사 <그림자료> <그림 1> 성게형 입자로 본뜬 구겨진 그래핀 공의 합성 과정 및 원리 모식도. (a) 성게 모양으로 식각되는 산화철 입자. (b) 환원과 함께 적층이 일어나는 산화 그래핀. (c) 식각-환원이 동시에 진행되어 적층 없이 자연스럽게 구겨지는 그래핀. <그림 2> 그래핀이 코팅된 산화철 입자의 형상 변화를 보여주는 전자주사현미경 이미지. (a) 성게 모양으로 식각되는 산화철 입자(좌)와 실제 성게 모습(우, 출처: ocean.nationalgeographic.com). (b) 식각-환원 처리 시간에 따른 형상 변화(좌)와 최종적으로 제조된 구겨진 그래핀 공.
성게를 닮은 ‘뾰족뾰족 그래핀 공’, 슈퍼 전지를 만들다
성게를 닮은 ‘뾰족뾰족 그래핀 공’, 슈퍼 전지를 만들다 - 산화철 입자를 성게 모양으로 식각하여 표면적, 전기전도도, 압축-내성 모두 잡은 성게모양 그래핀 공 제작 - 생산성과 공정성 확보로 고밀도?고출력 슈퍼커패시터 상용화를 앞당길 혁신적 소재 친환경 전기자동차나 신재생 에너지저장 시스템을 위한 중대형 전지, 인간 친화적인 웨어러블 전자기기를 위해서는 고용량이면서도 신속한 충·방전이 가능한 압축형 전지인 슈퍼커패시터(supercapacitor)의 개발이 필수적이다. 이런 이유로 슈퍼커패시터는 현재의 이온전지의 한계를 극복할 수 있는 미래형 전지로 각광받고 있지만 에너지 밀도가 낮아 오랜 시간 동안 전기를 저장하고 사용하는 것이 어려웠다. 국내 연구진이 ‘성게처럼 뾰족한 표면을 가진 구겨진 공’ 모양의 그래핀 분말을 대량으로 저렴하게 합성할 수 있는 방법을 개발했다. 기존 탄소 소재보다 전지 저장용량을 3~4배 향상시킬 수 있어 슈퍼커패시터 개발을 앞당길 전망이다. 한국과학기술연구원(KIST, 원장 이병권) 광전하이브리드연구센터의 손정곤 박사와 이상수 박사팀은, “고밀도 에너지 저장을 위한 산화철 식각 공정을 통한 성게 모양 3차원 그래핀 공 입자를 제작”했다고 밝혔다. 그래핀 소재는 전기전도도가 우수하고 기계적 내구성이 높은데다 표면적이 매우 높아 슈퍼커패시터 전극의 이상적인 소재로 알려져 왔다. 하지만 전지 제조 공정 과정에서 판상 형태의 그래핀은 판과 판사이의 강한 인력에 의하여 흑연과 같은 다층구조로 쌓이거나 빈틈없이 뭉치게 되고, 이 때문에 이온들이 다가갈 수 있는 면적이 줄어들어 전지 성능이 떨어진다. 많은 연구진들은 적층 문제를 해결하기 위해 그래핀의 간극을 넓혀 다양한 3차원 형상의 그래핀 구조로 전지를 구현했지만, 빈 공간이 많아져 부피당 그래핀의 양이 줄어들어 전기용량이 낮아지고 에너지 손실이 생겼다. 일반적으로 다결정의 산화철 입자는 강한 산을 써서 표면을 녹여내면 성게처럼 뾰족한 모양으로 식각이 된다. 연구팀은 산화철 입자의 이러한 식각현상에 주목하여 산화 그래핀 용액을 산화철 입자에 코팅한 후 산화철의 식각 공정과 산화 그래핀의 환원 공정을 동시에 진행했다. 이런 절차를 거치면 뾰족하게 녹아나가는 산화철의 모양에 맞추어 치밀하게 구겨진 성게 모양의 공 구조 그래핀이 만들어진다. 특히, 이 방법은 저렴한 산화철 입자를 녹여내는 간단한 용액 공정으로 진행되기 때문에 저가로 대량생산이 가능하다는 장점이 있다. 이렇게 제조된 그래핀 공은 비표면적과 전기전도도가 높아 전극으로 제작했을 때 무게당 전기의 저장용량이 400 F/g(Farad, 전기 용량의 국제단위)에 달했다. 이는 그래핀의 이론적인 전기저장용량에 가까운 수준이다. 또한, 이 구겨진 형상은 식각에 의해 형성된 재료 본래의 구조로 만들어졌기 때문에 구조 자체의 외부의 강한 압력에도 그 형상과 물성이 유지될 수 있어, 특성의 변화없이 빈 공간을 확연하게 줄여 부피당 저장용량 또한 330 F/cm3 까지 획기적으로 증가되는 현상을 보였다. 이러한 저장용량은 기존의 그래핀 기반 전자 소자의 부피당 저장용량이 100 F/cm3 이하임을 감안할 때 3~4배 이상의 성능향상을 보인 것이라 할 수 있다. 개발한 그래핀 공은 다른 접착제나 첨가제 없이도 다양한 전극 기판에서 압착 등의 방법을 통해 제작이 가능할 뿐만 아니라, 용매에 잘 분산되어 기존 전지 제작 공정에 바로 적용이 가능하고, 우수한 비표면적, 전기전도도 및 압축-내성으로 공정처리 이후에도 성능이 감소되지 않아 우수한 성능의 전극을 구현할 수 있었다. KIST 손정곤, 이상수 박사는 “개발한 성게모양의 그래핀 공은 대량?저가 생산이 가능하고 성능이 뛰어나 차세대 고성능-고압축 전지 개발을 위한 획기적인 솔루션이 될 것으로 기대된다”고 밝혔다. 이번 연구는 미래창조과학부 글로벌프론티어연구개발사업, KIST 기관고유사업, 국가과학기술연구회 R&D 컨버전스 프로그램에서 지원되었다. 연구 결과는 신소재 분야 권위지인 ‘Advanced Functional Materials’ 5월 7일자 온라인에 게재되었다. *(논문명) "Sea-Urchin-Inspired 3D Crumpled Graphene Balls Using Simultaneous Etching and Reduction Process for High-Density Capacitive Energy Storage" - (제1저자) 한국과학기술연구원 이장열 박사 - (교신저자) 한국과학기술연구원 손정곤 박사 - (교신저자) 한국과학기술연구원 이상수 박사 <그림자료> <그림 1> 성게형 입자로 본뜬 구겨진 그래핀 공의 합성 과정 및 원리 모식도. (a) 성게 모양으로 식각되는 산화철 입자. (b) 환원과 함께 적층이 일어나는 산화 그래핀. (c) 식각-환원이 동시에 진행되어 적층 없이 자연스럽게 구겨지는 그래핀. <그림 2> 그래핀이 코팅된 산화철 입자의 형상 변화를 보여주는 전자주사현미경 이미지. (a) 성게 모양으로 식각되는 산화철 입자(좌)와 실제 성게 모습(우, 출처: ocean.nationalgeographic.com). (b) 식각-환원 처리 시간에 따른 형상 변화(좌)와 최종적으로 제조된 구겨진 그래핀 공.
성게를 닮은 ‘뾰족뾰족 그래핀 공’, 슈퍼 전지를 만들다
성게를 닮은 ‘뾰족뾰족 그래핀 공’, 슈퍼 전지를 만들다 - 산화철 입자를 성게 모양으로 식각하여 표면적, 전기전도도, 압축-내성 모두 잡은 성게모양 그래핀 공 제작 - 생산성과 공정성 확보로 고밀도?고출력 슈퍼커패시터 상용화를 앞당길 혁신적 소재 친환경 전기자동차나 신재생 에너지저장 시스템을 위한 중대형 전지, 인간 친화적인 웨어러블 전자기기를 위해서는 고용량이면서도 신속한 충·방전이 가능한 압축형 전지인 슈퍼커패시터(supercapacitor)의 개발이 필수적이다. 이런 이유로 슈퍼커패시터는 현재의 이온전지의 한계를 극복할 수 있는 미래형 전지로 각광받고 있지만 에너지 밀도가 낮아 오랜 시간 동안 전기를 저장하고 사용하는 것이 어려웠다. 국내 연구진이 ‘성게처럼 뾰족한 표면을 가진 구겨진 공’ 모양의 그래핀 분말을 대량으로 저렴하게 합성할 수 있는 방법을 개발했다. 기존 탄소 소재보다 전지 저장용량을 3~4배 향상시킬 수 있어 슈퍼커패시터 개발을 앞당길 전망이다. 한국과학기술연구원(KIST, 원장 이병권) 광전하이브리드연구센터의 손정곤 박사와 이상수 박사팀은, “고밀도 에너지 저장을 위한 산화철 식각 공정을 통한 성게 모양 3차원 그래핀 공 입자를 제작”했다고 밝혔다. 그래핀 소재는 전기전도도가 우수하고 기계적 내구성이 높은데다 표면적이 매우 높아 슈퍼커패시터 전극의 이상적인 소재로 알려져 왔다. 하지만 전지 제조 공정 과정에서 판상 형태의 그래핀은 판과 판사이의 강한 인력에 의하여 흑연과 같은 다층구조로 쌓이거나 빈틈없이 뭉치게 되고, 이 때문에 이온들이 다가갈 수 있는 면적이 줄어들어 전지 성능이 떨어진다. 많은 연구진들은 적층 문제를 해결하기 위해 그래핀의 간극을 넓혀 다양한 3차원 형상의 그래핀 구조로 전지를 구현했지만, 빈 공간이 많아져 부피당 그래핀의 양이 줄어들어 전기용량이 낮아지고 에너지 손실이 생겼다. 일반적으로 다결정의 산화철 입자는 강한 산을 써서 표면을 녹여내면 성게처럼 뾰족한 모양으로 식각이 된다. 연구팀은 산화철 입자의 이러한 식각현상에 주목하여 산화 그래핀 용액을 산화철 입자에 코팅한 후 산화철의 식각 공정과 산화 그래핀의 환원 공정을 동시에 진행했다. 이런 절차를 거치면 뾰족하게 녹아나가는 산화철의 모양에 맞추어 치밀하게 구겨진 성게 모양의 공 구조 그래핀이 만들어진다. 특히, 이 방법은 저렴한 산화철 입자를 녹여내는 간단한 용액 공정으로 진행되기 때문에 저가로 대량생산이 가능하다는 장점이 있다. 이렇게 제조된 그래핀 공은 비표면적과 전기전도도가 높아 전극으로 제작했을 때 무게당 전기의 저장용량이 400 F/g(Farad, 전기 용량의 국제단위)에 달했다. 이는 그래핀의 이론적인 전기저장용량에 가까운 수준이다. 또한, 이 구겨진 형상은 식각에 의해 형성된 재료 본래의 구조로 만들어졌기 때문에 구조 자체의 외부의 강한 압력에도 그 형상과 물성이 유지될 수 있어, 특성의 변화없이 빈 공간을 확연하게 줄여 부피당 저장용량 또한 330 F/cm3 까지 획기적으로 증가되는 현상을 보였다. 이러한 저장용량은 기존의 그래핀 기반 전자 소자의 부피당 저장용량이 100 F/cm3 이하임을 감안할 때 3~4배 이상의 성능향상을 보인 것이라 할 수 있다. 개발한 그래핀 공은 다른 접착제나 첨가제 없이도 다양한 전극 기판에서 압착 등의 방법을 통해 제작이 가능할 뿐만 아니라, 용매에 잘 분산되어 기존 전지 제작 공정에 바로 적용이 가능하고, 우수한 비표면적, 전기전도도 및 압축-내성으로 공정처리 이후에도 성능이 감소되지 않아 우수한 성능의 전극을 구현할 수 있었다. KIST 손정곤, 이상수 박사는 “개발한 성게모양의 그래핀 공은 대량?저가 생산이 가능하고 성능이 뛰어나 차세대 고성능-고압축 전지 개발을 위한 획기적인 솔루션이 될 것으로 기대된다”고 밝혔다. 이번 연구는 미래창조과학부 글로벌프론티어연구개발사업, KIST 기관고유사업, 국가과학기술연구회 R&D 컨버전스 프로그램에서 지원되었다. 연구 결과는 신소재 분야 권위지인 ‘Advanced Functional Materials’ 5월 7일자 온라인에 게재되었다. *(논문명) "Sea-Urchin-Inspired 3D Crumpled Graphene Balls Using Simultaneous Etching and Reduction Process for High-Density Capacitive Energy Storage" - (제1저자) 한국과학기술연구원 이장열 박사 - (교신저자) 한국과학기술연구원 손정곤 박사 - (교신저자) 한국과학기술연구원 이상수 박사 <그림자료> <그림 1> 성게형 입자로 본뜬 구겨진 그래핀 공의 합성 과정 및 원리 모식도. (a) 성게 모양으로 식각되는 산화철 입자. (b) 환원과 함께 적층이 일어나는 산화 그래핀. (c) 식각-환원이 동시에 진행되어 적층 없이 자연스럽게 구겨지는 그래핀. <그림 2> 그래핀이 코팅된 산화철 입자의 형상 변화를 보여주는 전자주사현미경 이미지. (a) 성게 모양으로 식각되는 산화철 입자(좌)와 실제 성게 모습(우, 출처: ocean.nationalgeographic.com). (b) 식각-환원 처리 시간에 따른 형상 변화(좌)와 최종적으로 제조된 구겨진 그래핀 공.
성게를 닮은 ‘뾰족뾰족 그래핀 공’, 슈퍼 전지를 만들다
성게를 닮은 ‘뾰족뾰족 그래핀 공’, 슈퍼 전지를 만들다 - 산화철 입자를 성게 모양으로 식각하여 표면적, 전기전도도, 압축-내성 모두 잡은 성게모양 그래핀 공 제작 - 생산성과 공정성 확보로 고밀도?고출력 슈퍼커패시터 상용화를 앞당길 혁신적 소재 친환경 전기자동차나 신재생 에너지저장 시스템을 위한 중대형 전지, 인간 친화적인 웨어러블 전자기기를 위해서는 고용량이면서도 신속한 충·방전이 가능한 압축형 전지인 슈퍼커패시터(supercapacitor)의 개발이 필수적이다. 이런 이유로 슈퍼커패시터는 현재의 이온전지의 한계를 극복할 수 있는 미래형 전지로 각광받고 있지만 에너지 밀도가 낮아 오랜 시간 동안 전기를 저장하고 사용하는 것이 어려웠다. 국내 연구진이 ‘성게처럼 뾰족한 표면을 가진 구겨진 공’ 모양의 그래핀 분말을 대량으로 저렴하게 합성할 수 있는 방법을 개발했다. 기존 탄소 소재보다 전지 저장용량을 3~4배 향상시킬 수 있어 슈퍼커패시터 개발을 앞당길 전망이다. 한국과학기술연구원(KIST, 원장 이병권) 광전하이브리드연구센터의 손정곤 박사와 이상수 박사팀은, “고밀도 에너지 저장을 위한 산화철 식각 공정을 통한 성게 모양 3차원 그래핀 공 입자를 제작”했다고 밝혔다. 그래핀 소재는 전기전도도가 우수하고 기계적 내구성이 높은데다 표면적이 매우 높아 슈퍼커패시터 전극의 이상적인 소재로 알려져 왔다. 하지만 전지 제조 공정 과정에서 판상 형태의 그래핀은 판과 판사이의 강한 인력에 의하여 흑연과 같은 다층구조로 쌓이거나 빈틈없이 뭉치게 되고, 이 때문에 이온들이 다가갈 수 있는 면적이 줄어들어 전지 성능이 떨어진다. 많은 연구진들은 적층 문제를 해결하기 위해 그래핀의 간극을 넓혀 다양한 3차원 형상의 그래핀 구조로 전지를 구현했지만, 빈 공간이 많아져 부피당 그래핀의 양이 줄어들어 전기용량이 낮아지고 에너지 손실이 생겼다. 일반적으로 다결정의 산화철 입자는 강한 산을 써서 표면을 녹여내면 성게처럼 뾰족한 모양으로 식각이 된다. 연구팀은 산화철 입자의 이러한 식각현상에 주목하여 산화 그래핀 용액을 산화철 입자에 코팅한 후 산화철의 식각 공정과 산화 그래핀의 환원 공정을 동시에 진행했다. 이런 절차를 거치면 뾰족하게 녹아나가는 산화철의 모양에 맞추어 치밀하게 구겨진 성게 모양의 공 구조 그래핀이 만들어진다. 특히, 이 방법은 저렴한 산화철 입자를 녹여내는 간단한 용액 공정으로 진행되기 때문에 저가로 대량생산이 가능하다는 장점이 있다. 이렇게 제조된 그래핀 공은 비표면적과 전기전도도가 높아 전극으로 제작했을 때 무게당 전기의 저장용량이 400 F/g(Farad, 전기 용량의 국제단위)에 달했다. 이는 그래핀의 이론적인 전기저장용량에 가까운 수준이다. 또한, 이 구겨진 형상은 식각에 의해 형성된 재료 본래의 구조로 만들어졌기 때문에 구조 자체의 외부의 강한 압력에도 그 형상과 물성이 유지될 수 있어, 특성의 변화없이 빈 공간을 확연하게 줄여 부피당 저장용량 또한 330 F/cm3 까지 획기적으로 증가되는 현상을 보였다. 이러한 저장용량은 기존의 그래핀 기반 전자 소자의 부피당 저장용량이 100 F/cm3 이하임을 감안할 때 3~4배 이상의 성능향상을 보인 것이라 할 수 있다. 개발한 그래핀 공은 다른 접착제나 첨가제 없이도 다양한 전극 기판에서 압착 등의 방법을 통해 제작이 가능할 뿐만 아니라, 용매에 잘 분산되어 기존 전지 제작 공정에 바로 적용이 가능하고, 우수한 비표면적, 전기전도도 및 압축-내성으로 공정처리 이후에도 성능이 감소되지 않아 우수한 성능의 전극을 구현할 수 있었다. KIST 손정곤, 이상수 박사는 “개발한 성게모양의 그래핀 공은 대량?저가 생산이 가능하고 성능이 뛰어나 차세대 고성능-고압축 전지 개발을 위한 획기적인 솔루션이 될 것으로 기대된다”고 밝혔다. 이번 연구는 미래창조과학부 글로벌프론티어연구개발사업, KIST 기관고유사업, 국가과학기술연구회 R&D 컨버전스 프로그램에서 지원되었다. 연구 결과는 신소재 분야 권위지인 ‘Advanced Functional Materials’ 5월 7일자 온라인에 게재되었다. *(논문명) "Sea-Urchin-Inspired 3D Crumpled Graphene Balls Using Simultaneous Etching and Reduction Process for High-Density Capacitive Energy Storage" - (제1저자) 한국과학기술연구원 이장열 박사 - (교신저자) 한국과학기술연구원 손정곤 박사 - (교신저자) 한국과학기술연구원 이상수 박사 <그림자료> <그림 1> 성게형 입자로 본뜬 구겨진 그래핀 공의 합성 과정 및 원리 모식도. (a) 성게 모양으로 식각되는 산화철 입자. (b) 환원과 함께 적층이 일어나는 산화 그래핀. (c) 식각-환원이 동시에 진행되어 적층 없이 자연스럽게 구겨지는 그래핀. <그림 2> 그래핀이 코팅된 산화철 입자의 형상 변화를 보여주는 전자주사현미경 이미지. (a) 성게 모양으로 식각되는 산화철 입자(좌)와 실제 성게 모습(우, 출처: ocean.nationalgeographic.com). (b) 식각-환원 처리 시간에 따른 형상 변화(좌)와 최종적으로 제조된 구겨진 그래핀 공.
[Vol.118] 나노촉매로 담배연기 잡는다
초저가와 고효율 달성이 동시에 가능한 신구조 플렉서블 태양전지 기술개발
초저가와 고효율 달성이 동시에 가능한 신구조 플렉서블 태양전지 기술개발 - 고가의 투명전도성 전극소재가 필요하지 않아 기존 소재의 절반 가격으로 고효율 플렉서블 태양전지 구현 가능 - 전사법을 이용하여 플렉서블한 다양한 기판에 광전극 구현이 가능해 향후 웨어러블 기기에 구현이 가능 태양전지 가격경쟁력은 전지를 구성하는 소재의 가격과 태양전지 효율에 의해서 결정된다. 국내 연구진이 현재 태양전지 가격에 큰 영향을 미치는 고가의 투명전도성 전극을 전혀 사용하지 않으면서도 고효율 달성이 가능한 신 구조 플렉서블 태양전지 원천 기술을 개발하였다. 한국과학기술연구원(KIST, 원장 이병권) 광전하이브리드연구센터 고민재 박사팀은 고온에서 열처리 한 무기 광전극을 떼어내어 플라스틱처럼 잘 휘어지는 기판 (플라스틱, 종이, 섬유) 등에 전사하여 붙이는 방식을 이용한 신 구조 고효율의 염료감응 플렉서블 태양전지를 개발하였다고 밝혔다. 태양전지나 디스플레이 등의 전자소자는 소자의 효율 향상을 위해 가시광선 영역에서 85% 이상의 높은 광투과도와 전기 전도도를 요구하는 ITO(Indium Tin Oxide)와 같은 투명전도성 전극(Transparent conducting oxide)이 필요하다. 하지만, ITO의 주원료인 인듐은 희귀 금속으로 가격이 비싸, 차세대 태양전지인 염료감응 태양전지의 재료비 중 가장 큰 부분을 차지하고 있다. 고효율의 태양전지를 제작하기 위해서는 이러한 값비싼 투명전도성 전극외에도 무기 광전극을 고온에서 열처리하는 과정이 반드시 필요한데, 이는 무기 광전극 내부가 단단히 연결이 되고 기판과의 접착력이 좋아져서 소자저항이 작아지기 때문이다. 플렉서블 태양전지를 만들기 위해 기존에는 유연하지만 열에 약한 플라스틱 기판을 활용하기 위해 효율이 낮은 저온 공정을 사용했다. 또한 투명전도성 전극을 사용하는 경우, 태양전지를 휘었을 경우 ITO가 깨져 전기적 특성이 감소하는 등의 단점이 있었다. 연구팀이 개발한 제작방법은 유리기판 위에 고온에서 열처리한 TiO2(산화타이타늄) 전극을 형성시킨 후, 플렉서블한 기판에 옮겨 붙이는 전사 방법을 적용하여 플라스틱 기판에서 고효율의 태양전지를 구현하였다. 전사방법을 사용하면 고온 열처리한 저항이 낮은 광전극을 다양한 플렉서블한 기판에 옮겨 붙일 수 있기 때문에 고효율 달성이 용이하다. 후면전극 역시 인듐보다 상대적으로 가격이 저렴한 타이타늄 질화물(nitride)로 만들었고, 상대전극도 투명 전도성 물질을 사용하지 않고 탄소와 백금 복합체를 사용하여 플라스틱 전극 위에 제작하였다. 이렇게 제작된 염료감응 태양전지는 기존 전지에 비해 소재가격은 50% 이하로, 전체 태양전지 가격은 30%이하로 가격이 낮아지는 효과를 보였다. 또한 개발한 전사법은 휘어짐에 강한 타이타늄 계열의 광전극을 고분자 필름위에 붙여, 태양전지를 휘었을 경우에도 기판의 손상과 효율의 감소 없이 특성이 좋은 태양전지를 제작할 수 있었다. 이렇게 개발한 태양전지는 투명 전도성 물질을 전혀 사용하지 않음에도 불구하고, 보고된 염료감응 플렉서블 태양전지 중 최고 수준인 8.10%의 광변환 효율을 기록하였다. 연구책임자인 고민재 박사는 “개발한 태양전지는 기판의 종류에 상관없이 제작할 수 있고, 잘 휘어지면서도 효율이 높아 웨어러블 태양전지, 휴대 전자 소자 등 다양한 분야의 핵심소재로 활용될 수 있을 것으로 기대된다” 며 “연구팀에서 개발한 전사법을 이용하면 태양전지 이외에도 다양한 전자 기기 및 전기화학 기기 등 전자소자를 사용하는 응용분야에서 직물이나 종이, 플라스틱, 금속 등 휘어질 수 있는 다양한 기판 위에 제작할 수 있어 광범위한 응용을 기대할 수 있다”고 밝혔다. 본 연구는 KIST 주요연구사업인 영 펠로우 연구사업과 미래창조과학부와 한국연구재단이 추진하는 글로벌프런티어사업 멀티스케일 에너지시스템연구단의 지원으로 수행되었다. 연구결과는 나노 분야의 전문학술지인 ACS Nano 4월 28일자에 게재되었으며, 국내 및 해외 특허를 출원하였다. 이번 성과로 지난 '15.4.22(수) 정부가 발표한 "기후변화 대응을 위한 에너지 신산업 및 핵심기술개발전략"에서 제시한 차세대 태양전지 개발에도 더욱 탄력이 붙을 것으로 기대된다. <그림 1> 투명 전도성 전극이 없는 고효율 초저가 플렉서블 태양전지 / 전지 사이즈 2cm X 2cm의 태양전지 전류전압 곡선. (대면적인 10cm X 10cm에서도 가능) <그림 2> (a) 전사법을 이용하여 고온소성한 태양전지 광전극을 OHP 필름 위에 적용 (b) 전사법을 이용하여 염료가 흡착된 고온소성한 태양전지 광전극을 OHP 필름 위에 적용 (c) 전사법을 이용하여 고온소성한 태양전지 광전극을 염료 흡착하여 극세사(천) 위에 적용 (d) 전사법을 이용하여 고온소성한 태양전지 상대전극을 OHP 필름 위에 적용 (e) 전사법을 이용하여 고온소성한 태양전지 상대전극의 전도성을 보기 위해 밴딩 후에 LED연결 (f) 전사법을 이용하여 고온소성한 태양전지 상대전극을 극세사(천) 위에 적용 (g) 고온소성한 태양전지 상대전극을 전사법을 극세사(천) 적용 (접힌 후에도 전도성을 가지고 있음) (h) 전사법을 이용하여 고온소성한 Ag 전극을 전사하여 연필에 감싼 뒤에도 좋은 전도도를 가짐을 확인하였음. <그림 3> (a) 전사법을 이용하여 태양전지 광전극을 만드는 방법 (b) 전사법을 이용하여 태양전지 상대전극을 만드는 방법 <그림 4> 일반적인 태양전지와 신구조 태양전지의 구조 비교
초저가와 고효율 달성이 동시에 가능한 신구조 플렉서블 태양전지 기술개발
초저가와 고효율 달성이 동시에 가능한 신구조 플렉서블 태양전지 기술개발 - 고가의 투명전도성 전극소재가 필요하지 않아 기존 소재의 절반 가격으로 고효율 플렉서블 태양전지 구현 가능 - 전사법을 이용하여 플렉서블한 다양한 기판에 광전극 구현이 가능해 향후 웨어러블 기기에 구현이 가능 태양전지 가격경쟁력은 전지를 구성하는 소재의 가격과 태양전지 효율에 의해서 결정된다. 국내 연구진이 현재 태양전지 가격에 큰 영향을 미치는 고가의 투명전도성 전극을 전혀 사용하지 않으면서도 고효율 달성이 가능한 신 구조 플렉서블 태양전지 원천 기술을 개발하였다. 한국과학기술연구원(KIST, 원장 이병권) 광전하이브리드연구센터 고민재 박사팀은 고온에서 열처리 한 무기 광전극을 떼어내어 플라스틱처럼 잘 휘어지는 기판 (플라스틱, 종이, 섬유) 등에 전사하여 붙이는 방식을 이용한 신 구조 고효율의 염료감응 플렉서블 태양전지를 개발하였다고 밝혔다. 태양전지나 디스플레이 등의 전자소자는 소자의 효율 향상을 위해 가시광선 영역에서 85% 이상의 높은 광투과도와 전기 전도도를 요구하는 ITO(Indium Tin Oxide)와 같은 투명전도성 전극(Transparent conducting oxide)이 필요하다. 하지만, ITO의 주원료인 인듐은 희귀 금속으로 가격이 비싸, 차세대 태양전지인 염료감응 태양전지의 재료비 중 가장 큰 부분을 차지하고 있다. 고효율의 태양전지를 제작하기 위해서는 이러한 값비싼 투명전도성 전극외에도 무기 광전극을 고온에서 열처리하는 과정이 반드시 필요한데, 이는 무기 광전극 내부가 단단히 연결이 되고 기판과의 접착력이 좋아져서 소자저항이 작아지기 때문이다. 플렉서블 태양전지를 만들기 위해 기존에는 유연하지만 열에 약한 플라스틱 기판을 활용하기 위해 효율이 낮은 저온 공정을 사용했다. 또한 투명전도성 전극을 사용하는 경우, 태양전지를 휘었을 경우 ITO가 깨져 전기적 특성이 감소하는 등의 단점이 있었다. 연구팀이 개발한 제작방법은 유리기판 위에 고온에서 열처리한 TiO2(산화타이타늄) 전극을 형성시킨 후, 플렉서블한 기판에 옮겨 붙이는 전사 방법을 적용하여 플라스틱 기판에서 고효율의 태양전지를 구현하였다. 전사방법을 사용하면 고온 열처리한 저항이 낮은 광전극을 다양한 플렉서블한 기판에 옮겨 붙일 수 있기 때문에 고효율 달성이 용이하다. 후면전극 역시 인듐보다 상대적으로 가격이 저렴한 타이타늄 질화물(nitride)로 만들었고, 상대전극도 투명 전도성 물질을 사용하지 않고 탄소와 백금 복합체를 사용하여 플라스틱 전극 위에 제작하였다. 이렇게 제작된 염료감응 태양전지는 기존 전지에 비해 소재가격은 50% 이하로, 전체 태양전지 가격은 30%이하로 가격이 낮아지는 효과를 보였다. 또한 개발한 전사법은 휘어짐에 강한 타이타늄 계열의 광전극을 고분자 필름위에 붙여, 태양전지를 휘었을 경우에도 기판의 손상과 효율의 감소 없이 특성이 좋은 태양전지를 제작할 수 있었다. 이렇게 개발한 태양전지는 투명 전도성 물질을 전혀 사용하지 않음에도 불구하고, 보고된 염료감응 플렉서블 태양전지 중 최고 수준인 8.10%의 광변환 효율을 기록하였다. 연구책임자인 고민재 박사는 “개발한 태양전지는 기판의 종류에 상관없이 제작할 수 있고, 잘 휘어지면서도 효율이 높아 웨어러블 태양전지, 휴대 전자 소자 등 다양한 분야의 핵심소재로 활용될 수 있을 것으로 기대된다” 며 “연구팀에서 개발한 전사법을 이용하면 태양전지 이외에도 다양한 전자 기기 및 전기화학 기기 등 전자소자를 사용하는 응용분야에서 직물이나 종이, 플라스틱, 금속 등 휘어질 수 있는 다양한 기판 위에 제작할 수 있어 광범위한 응용을 기대할 수 있다”고 밝혔다. 본 연구는 KIST 주요연구사업인 영 펠로우 연구사업과 미래창조과학부와 한국연구재단이 추진하는 글로벌프런티어사업 멀티스케일 에너지시스템연구단의 지원으로 수행되었다. 연구결과는 나노 분야의 전문학술지인 ACS Nano 4월 28일자에 게재되었으며, 국내 및 해외 특허를 출원하였다. 이번 성과로 지난 '15.4.22(수) 정부가 발표한 "기후변화 대응을 위한 에너지 신산업 및 핵심기술개발전략"에서 제시한 차세대 태양전지 개발에도 더욱 탄력이 붙을 것으로 기대된다. <그림 1> 투명 전도성 전극이 없는 고효율 초저가 플렉서블 태양전지 / 전지 사이즈 2cm X 2cm의 태양전지 전류전압 곡선. (대면적인 10cm X 10cm에서도 가능) <그림 2> (a) 전사법을 이용하여 고온소성한 태양전지 광전극을 OHP 필름 위에 적용 (b) 전사법을 이용하여 염료가 흡착된 고온소성한 태양전지 광전극을 OHP 필름 위에 적용 (c) 전사법을 이용하여 고온소성한 태양전지 광전극을 염료 흡착하여 극세사(천) 위에 적용 (d) 전사법을 이용하여 고온소성한 태양전지 상대전극을 OHP 필름 위에 적용 (e) 전사법을 이용하여 고온소성한 태양전지 상대전극의 전도성을 보기 위해 밴딩 후에 LED연결 (f) 전사법을 이용하여 고온소성한 태양전지 상대전극을 극세사(천) 위에 적용 (g) 고온소성한 태양전지 상대전극을 전사법을 극세사(천) 적용 (접힌 후에도 전도성을 가지고 있음) (h) 전사법을 이용하여 고온소성한 Ag 전극을 전사하여 연필에 감싼 뒤에도 좋은 전도도를 가짐을 확인하였음. <그림 3> (a) 전사법을 이용하여 태양전지 광전극을 만드는 방법 (b) 전사법을 이용하여 태양전지 상대전극을 만드는 방법 <그림 4> 일반적인 태양전지와 신구조 태양전지의 구조 비교