검색결과
게시물 키워드""에 대한 9092개의 검색결과를 찾았습니다.
전원이 꺼져도 정보가 보존되는 강유전체 터널소자 원리 규명, 비휘발성 메모리 개발 박차
전원이 꺼져도 정보가 보존되는 강유전체 터널소자 원리 규명, 비휘발성 메모리 개발 박차 - 강유전체의 자발분극 방향에 따라 양자역학적 전자의 흐름을 달리하는 터널접합소자의 거대 전극의존성 발견 - 거대전극효과는 강유전체와 전극 사이에 존재하는 양자역학적 에너지 장벽의 차이에 기인함을 규명 한국과학기술연구원(KIST, 원장 이병권)은 전자재료연구센터 정두석 박사 연구팀이 독일 킬 대학, 율리히 연구소, 러시아 아이오페 연구소와의 공동연구를 통해 강유전체 터널접합소자의 거대전극효과를 발견, 그 원리를 규명했다고 밝혔다. 전기가 통하지 않는 절연체인 유전체는 상온에서 전압을 흘려주었을 때 내부에 +, - 이온이 쌍을 이루는 전기쌍극자(electric dipole)가 형성되고, 이로 인해 유전체의 +,- 극이 분리되어 메모리로 활용이 가능하다. 유전체는 현재 컴퓨터 하드 드라이브에 저장된 정보를 중앙처리장치(CPU)로 불러오는 DRAM 반도체에 많이 쓰이고 있다. 그러나 유전체는 전압이 사라지면 이러한 성질이 사라지는데 이 때문에 컴퓨터 부팅에는 일정 시간이 소모된다. 유전체 중 전압이 사라져도 +,- 한 쌍의 이온이 사라지지 않는 유전체가 ‘강유전체’이다. 이런 이유로 강유전체는 전기를 꺼도 저장된 정보가 사라지지 않는 ‘자발분극’ 현상이 일어나 비휘발성 메모리 연구에 활발히 쓰이고 있다. 실제로 세계 각국의 반도체 기업은 강유전체 축전기(ferroelectric capacitor)를 이용한 FeRAM 개발을 현재까지 이어오고 있다. ※ 자발분극 : 외부 인가 전기장에 의해 절연체 내 생성된 전기쌍극자가 외부 전기장 제거 후 잔존하는 현상을 의미함. 하지만 FeRAM이 소형화되면 정전용량이 확보를 하기가 어렵다는 단점이 있다. 따라서 현재는 축전기 형태의 강유전체 소자가 아닌 소형화에 유리한 저항을 기반으로 한 강유전체 소자를 이용 메모리소자 구현을 위한 연구가 활발히 진행 중이다. 연구팀은 3 나노미터 두께의 티탄산바륨 (barium titanate) 단결정 강유전체 박막을 이용하여 터널접합소자를 제작하였다(그림 1). 연구팀은 터널 접합소자 상부에 구리, 금 등의 재료를 전극으로 붙였다. 상부 전극의 재료의 종류에 달리하여 실험을 한 결과 터널접합소자를 통해 흐르는 양자역학적 전자의 흐름이 강유전체의 자발분극 방향에 영향을 받으며 상부 전극물질의 종류에 크게 의존함을 발견하였다. * 양자역학적 전자의 흐름 : 전자는 파동과 입자의 특성을 보이며 파동특성에 의해 두 전극사이에 위치한 강유전체 장벽을 통과할 수 있다. 이 현상을 양자역학적 터널링 효과라 부름. 상부전극이 구리인 터널접합소자의 자발분극 방향에 따른 저항비는 금에 비해 50~60배 이상에 달하는 거대전극효과 (giant electrode effect)를 보였다. 메모리소자의 높은 저항비는 저장된 정보의 읽기과정 시 발생 가능한 오류를 줄일 수 있어 터널접합소자 기반 메모리 개발에 박차를 가할 수 있을 것으로 예상된다. KIST 전자재료연구센터 정두석 박사는 “강유전체 터널접합소자는 향후 디지털 컴퓨터의 비휘발성 메모리, 신경망 모방 컴퓨터의 인공시냅스 소자 등에 활용될 수 있으며”, “학문적, 산업적으로 거대전극효과는 터널접합소자의 특성설계에 중요한 척도로 이용될 가능성이 있다”고 연구 의의를 밝혔다. 본 연구는 한국과학기술연구원(KIST, 원장 이병권) 전자재료연구센터 정두석 박사 연구팀에서 진행된 연구로, 강유전체 터널접합소자의 거대전극효과를 최초로 발견하였을 뿐 아니라 현상학적인 원리를 규명하였다. 이번 연구 성과는 Nature Communications에 “Giant electrode effect on tunnelling electroresistance in ferroelectric tunnel junctions” (DOI: 10.1038/ncomms6414)라는 제목으로 11월 17일(월)에 온라인 게재되었다. 이번 연구는 KIST의 K-GRL 기관고유연구사업 지원으로 수행되었다. ○ 연구진: ■ Dr. 정두석, 선임연구원, 전자재료연구센터, KIST ■ Dr. 김성근, 선임연구원, 전자재료연구센터, KIST ■ Dr. Rohit Soni, 박사후 연구원, Christian-Albrechts-Universit?t zu Kiel ■ Dr. Hermann Kohlstedt, 교수, Christian-Albrechts-Universit?t zu Kiel ■ Dr. Nikolay A. Pertsev, 연구원, A. F. Ioffe Physical-Technical Institute of the Russian Academy of Sciences ○ 사진 정두석, 선임연구원, 전자재료연구센터, KIST ○ 관련자료 그림 1 강유전체 터널접합소자의 고해상 투과전자현미경 사진, Cu(구리-상부전극), BTO(강유전체), LSMO(하부전극) 그림 2 좌측: 금 상부전극을 이용한 강유전체 터널접합소자의(위) 강유전 특성과 (아래) 저항 특성. 우측: 구리 상부전극을 이용한 터널접합소자의(위) 강유전 특성과 (아래) 저항 특성. 아래쪽은 두 그래프는 전류의 비를 나타내는데, 오른쪽이 비율이 커, 저항비가 크다고 볼 수 있다.
전원이 꺼져도 정보가 보존되는 강유전체 터널소자 원리 규명, 비휘발성 메모리 개발 박차
전원이 꺼져도 정보가 보존되는 강유전체 터널소자 원리 규명, 비휘발성 메모리 개발 박차 - 강유전체의 자발분극 방향에 따라 양자역학적 전자의 흐름을 달리하는 터널접합소자의 거대 전극의존성 발견 - 거대전극효과는 강유전체와 전극 사이에 존재하는 양자역학적 에너지 장벽의 차이에 기인함을 규명 한국과학기술연구원(KIST, 원장 이병권)은 전자재료연구센터 정두석 박사 연구팀이 독일 킬 대학, 율리히 연구소, 러시아 아이오페 연구소와의 공동연구를 통해 강유전체 터널접합소자의 거대전극효과를 발견, 그 원리를 규명했다고 밝혔다. 전기가 통하지 않는 절연체인 유전체는 상온에서 전압을 흘려주었을 때 내부에 +, - 이온이 쌍을 이루는 전기쌍극자(electric dipole)가 형성되고, 이로 인해 유전체의 +,- 극이 분리되어 메모리로 활용이 가능하다. 유전체는 현재 컴퓨터 하드 드라이브에 저장된 정보를 중앙처리장치(CPU)로 불러오는 DRAM 반도체에 많이 쓰이고 있다. 그러나 유전체는 전압이 사라지면 이러한 성질이 사라지는데 이 때문에 컴퓨터 부팅에는 일정 시간이 소모된다. 유전체 중 전압이 사라져도 +,- 한 쌍의 이온이 사라지지 않는 유전체가 ‘강유전체’이다. 이런 이유로 강유전체는 전기를 꺼도 저장된 정보가 사라지지 않는 ‘자발분극’ 현상이 일어나 비휘발성 메모리 연구에 활발히 쓰이고 있다. 실제로 세계 각국의 반도체 기업은 강유전체 축전기(ferroelectric capacitor)를 이용한 FeRAM 개발을 현재까지 이어오고 있다. ※ 자발분극 : 외부 인가 전기장에 의해 절연체 내 생성된 전기쌍극자가 외부 전기장 제거 후 잔존하는 현상을 의미함. 하지만 FeRAM이 소형화되면 정전용량이 확보를 하기가 어렵다는 단점이 있다. 따라서 현재는 축전기 형태의 강유전체 소자가 아닌 소형화에 유리한 저항을 기반으로 한 강유전체 소자를 이용 메모리소자 구현을 위한 연구가 활발히 진행 중이다. 연구팀은 3 나노미터 두께의 티탄산바륨 (barium titanate) 단결정 강유전체 박막을 이용하여 터널접합소자를 제작하였다(그림 1). 연구팀은 터널 접합소자 상부에 구리, 금 등의 재료를 전극으로 붙였다. 상부 전극의 재료의 종류에 달리하여 실험을 한 결과 터널접합소자를 통해 흐르는 양자역학적 전자의 흐름이 강유전체의 자발분극 방향에 영향을 받으며 상부 전극물질의 종류에 크게 의존함을 발견하였다. * 양자역학적 전자의 흐름 : 전자는 파동과 입자의 특성을 보이며 파동특성에 의해 두 전극사이에 위치한 강유전체 장벽을 통과할 수 있다. 이 현상을 양자역학적 터널링 효과라 부름. 상부전극이 구리인 터널접합소자의 자발분극 방향에 따른 저항비는 금에 비해 50~60배 이상에 달하는 거대전극효과 (giant electrode effect)를 보였다. 메모리소자의 높은 저항비는 저장된 정보의 읽기과정 시 발생 가능한 오류를 줄일 수 있어 터널접합소자 기반 메모리 개발에 박차를 가할 수 있을 것으로 예상된다. KIST 전자재료연구센터 정두석 박사는 “강유전체 터널접합소자는 향후 디지털 컴퓨터의 비휘발성 메모리, 신경망 모방 컴퓨터의 인공시냅스 소자 등에 활용될 수 있으며”, “학문적, 산업적으로 거대전극효과는 터널접합소자의 특성설계에 중요한 척도로 이용될 가능성이 있다”고 연구 의의를 밝혔다. 본 연구는 한국과학기술연구원(KIST, 원장 이병권) 전자재료연구센터 정두석 박사 연구팀에서 진행된 연구로, 강유전체 터널접합소자의 거대전극효과를 최초로 발견하였을 뿐 아니라 현상학적인 원리를 규명하였다. 이번 연구 성과는 Nature Communications에 “Giant electrode effect on tunnelling electroresistance in ferroelectric tunnel junctions” (DOI: 10.1038/ncomms6414)라는 제목으로 11월 17일(월)에 온라인 게재되었다. 이번 연구는 KIST의 K-GRL 기관고유연구사업 지원으로 수행되었다. ○ 연구진: ■ Dr. 정두석, 선임연구원, 전자재료연구센터, KIST ■ Dr. 김성근, 선임연구원, 전자재료연구센터, KIST ■ Dr. Rohit Soni, 박사후 연구원, Christian-Albrechts-Universit?t zu Kiel ■ Dr. Hermann Kohlstedt, 교수, Christian-Albrechts-Universit?t zu Kiel ■ Dr. Nikolay A. Pertsev, 연구원, A. F. Ioffe Physical-Technical Institute of the Russian Academy of Sciences ○ 사진 정두석, 선임연구원, 전자재료연구센터, KIST ○ 관련자료 그림 1 강유전체 터널접합소자의 고해상 투과전자현미경 사진, Cu(구리-상부전극), BTO(강유전체), LSMO(하부전극) 그림 2 좌측: 금 상부전극을 이용한 강유전체 터널접합소자의(위) 강유전 특성과 (아래) 저항 특성. 우측: 구리 상부전극을 이용한 터널접합소자의(위) 강유전 특성과 (아래) 저항 특성. 아래쪽은 두 그래프는 전류의 비를 나타내는데, 오른쪽이 비율이 커, 저항비가 크다고 볼 수 있다.
전원이 꺼져도 정보가 보존되는 강유전체 터널소자 원리 규명, 비휘발성 메모리 개발 박차
전원이 꺼져도 정보가 보존되는 강유전체 터널소자 원리 규명, 비휘발성 메모리 개발 박차 - 강유전체의 자발분극 방향에 따라 양자역학적 전자의 흐름을 달리하는 터널접합소자의 거대 전극의존성 발견 - 거대전극효과는 강유전체와 전극 사이에 존재하는 양자역학적 에너지 장벽의 차이에 기인함을 규명 한국과학기술연구원(KIST, 원장 이병권)은 전자재료연구센터 정두석 박사 연구팀이 독일 킬 대학, 율리히 연구소, 러시아 아이오페 연구소와의 공동연구를 통해 강유전체 터널접합소자의 거대전극효과를 발견, 그 원리를 규명했다고 밝혔다. 전기가 통하지 않는 절연체인 유전체는 상온에서 전압을 흘려주었을 때 내부에 +, - 이온이 쌍을 이루는 전기쌍극자(electric dipole)가 형성되고, 이로 인해 유전체의 +,- 극이 분리되어 메모리로 활용이 가능하다. 유전체는 현재 컴퓨터 하드 드라이브에 저장된 정보를 중앙처리장치(CPU)로 불러오는 DRAM 반도체에 많이 쓰이고 있다. 그러나 유전체는 전압이 사라지면 이러한 성질이 사라지는데 이 때문에 컴퓨터 부팅에는 일정 시간이 소모된다. 유전체 중 전압이 사라져도 +,- 한 쌍의 이온이 사라지지 않는 유전체가 ‘강유전체’이다. 이런 이유로 강유전체는 전기를 꺼도 저장된 정보가 사라지지 않는 ‘자발분극’ 현상이 일어나 비휘발성 메모리 연구에 활발히 쓰이고 있다. 실제로 세계 각국의 반도체 기업은 강유전체 축전기(ferroelectric capacitor)를 이용한 FeRAM 개발을 현재까지 이어오고 있다. ※ 자발분극 : 외부 인가 전기장에 의해 절연체 내 생성된 전기쌍극자가 외부 전기장 제거 후 잔존하는 현상을 의미함. 하지만 FeRAM이 소형화되면 정전용량이 확보를 하기가 어렵다는 단점이 있다. 따라서 현재는 축전기 형태의 강유전체 소자가 아닌 소형화에 유리한 저항을 기반으로 한 강유전체 소자를 이용 메모리소자 구현을 위한 연구가 활발히 진행 중이다. 연구팀은 3 나노미터 두께의 티탄산바륨 (barium titanate) 단결정 강유전체 박막을 이용하여 터널접합소자를 제작하였다(그림 1). 연구팀은 터널 접합소자 상부에 구리, 금 등의 재료를 전극으로 붙였다. 상부 전극의 재료의 종류에 달리하여 실험을 한 결과 터널접합소자를 통해 흐르는 양자역학적 전자의 흐름이 강유전체의 자발분극 방향에 영향을 받으며 상부 전극물질의 종류에 크게 의존함을 발견하였다. * 양자역학적 전자의 흐름 : 전자는 파동과 입자의 특성을 보이며 파동특성에 의해 두 전극사이에 위치한 강유전체 장벽을 통과할 수 있다. 이 현상을 양자역학적 터널링 효과라 부름. 상부전극이 구리인 터널접합소자의 자발분극 방향에 따른 저항비는 금에 비해 50~60배 이상에 달하는 거대전극효과 (giant electrode effect)를 보였다. 메모리소자의 높은 저항비는 저장된 정보의 읽기과정 시 발생 가능한 오류를 줄일 수 있어 터널접합소자 기반 메모리 개발에 박차를 가할 수 있을 것으로 예상된다. KIST 전자재료연구센터 정두석 박사는 “강유전체 터널접합소자는 향후 디지털 컴퓨터의 비휘발성 메모리, 신경망 모방 컴퓨터의 인공시냅스 소자 등에 활용될 수 있으며”, “학문적, 산업적으로 거대전극효과는 터널접합소자의 특성설계에 중요한 척도로 이용될 가능성이 있다”고 연구 의의를 밝혔다. 본 연구는 한국과학기술연구원(KIST, 원장 이병권) 전자재료연구센터 정두석 박사 연구팀에서 진행된 연구로, 강유전체 터널접합소자의 거대전극효과를 최초로 발견하였을 뿐 아니라 현상학적인 원리를 규명하였다. 이번 연구 성과는 Nature Communications에 “Giant electrode effect on tunnelling electroresistance in ferroelectric tunnel junctions” (DOI: 10.1038/ncomms6414)라는 제목으로 11월 17일(월)에 온라인 게재되었다. 이번 연구는 KIST의 K-GRL 기관고유연구사업 지원으로 수행되었다. ○ 연구진: ■ Dr. 정두석, 선임연구원, 전자재료연구센터, KIST ■ Dr. 김성근, 선임연구원, 전자재료연구센터, KIST ■ Dr. Rohit Soni, 박사후 연구원, Christian-Albrechts-Universit?t zu Kiel ■ Dr. Hermann Kohlstedt, 교수, Christian-Albrechts-Universit?t zu Kiel ■ Dr. Nikolay A. Pertsev, 연구원, A. F. Ioffe Physical-Technical Institute of the Russian Academy of Sciences ○ 사진 정두석, 선임연구원, 전자재료연구센터, KIST ○ 관련자료 그림 1 강유전체 터널접합소자의 고해상 투과전자현미경 사진, Cu(구리-상부전극), BTO(강유전체), LSMO(하부전극) 그림 2 좌측: 금 상부전극을 이용한 강유전체 터널접합소자의(위) 강유전 특성과 (아래) 저항 특성. 우측: 구리 상부전극을 이용한 터널접합소자의(위) 강유전 특성과 (아래) 저항 특성. 아래쪽은 두 그래프는 전류의 비를 나타내는데, 오른쪽이 비율이 커, 저항비가 크다고 볼 수 있다.
전원이 꺼져도 정보가 보존되는 강유전체 터널소자 원리 규명, 비휘발성 메모리 개발 박차
전원이 꺼져도 정보가 보존되는 강유전체 터널소자 원리 규명, 비휘발성 메모리 개발 박차 - 강유전체의 자발분극 방향에 따라 양자역학적 전자의 흐름을 달리하는 터널접합소자의 거대 전극의존성 발견 - 거대전극효과는 강유전체와 전극 사이에 존재하는 양자역학적 에너지 장벽의 차이에 기인함을 규명 한국과학기술연구원(KIST, 원장 이병권)은 전자재료연구센터 정두석 박사 연구팀이 독일 킬 대학, 율리히 연구소, 러시아 아이오페 연구소와의 공동연구를 통해 강유전체 터널접합소자의 거대전극효과를 발견, 그 원리를 규명했다고 밝혔다. 전기가 통하지 않는 절연체인 유전체는 상온에서 전압을 흘려주었을 때 내부에 +, - 이온이 쌍을 이루는 전기쌍극자(electric dipole)가 형성되고, 이로 인해 유전체의 +,- 극이 분리되어 메모리로 활용이 가능하다. 유전체는 현재 컴퓨터 하드 드라이브에 저장된 정보를 중앙처리장치(CPU)로 불러오는 DRAM 반도체에 많이 쓰이고 있다. 그러나 유전체는 전압이 사라지면 이러한 성질이 사라지는데 이 때문에 컴퓨터 부팅에는 일정 시간이 소모된다. 유전체 중 전압이 사라져도 +,- 한 쌍의 이온이 사라지지 않는 유전체가 ‘강유전체’이다. 이런 이유로 강유전체는 전기를 꺼도 저장된 정보가 사라지지 않는 ‘자발분극’ 현상이 일어나 비휘발성 메모리 연구에 활발히 쓰이고 있다. 실제로 세계 각국의 반도체 기업은 강유전체 축전기(ferroelectric capacitor)를 이용한 FeRAM 개발을 현재까지 이어오고 있다. ※ 자발분극 : 외부 인가 전기장에 의해 절연체 내 생성된 전기쌍극자가 외부 전기장 제거 후 잔존하는 현상을 의미함. 하지만 FeRAM이 소형화되면 정전용량이 확보를 하기가 어렵다는 단점이 있다. 따라서 현재는 축전기 형태의 강유전체 소자가 아닌 소형화에 유리한 저항을 기반으로 한 강유전체 소자를 이용 메모리소자 구현을 위한 연구가 활발히 진행 중이다. 연구팀은 3 나노미터 두께의 티탄산바륨 (barium titanate) 단결정 강유전체 박막을 이용하여 터널접합소자를 제작하였다(그림 1). 연구팀은 터널 접합소자 상부에 구리, 금 등의 재료를 전극으로 붙였다. 상부 전극의 재료의 종류에 달리하여 실험을 한 결과 터널접합소자를 통해 흐르는 양자역학적 전자의 흐름이 강유전체의 자발분극 방향에 영향을 받으며 상부 전극물질의 종류에 크게 의존함을 발견하였다. * 양자역학적 전자의 흐름 : 전자는 파동과 입자의 특성을 보이며 파동특성에 의해 두 전극사이에 위치한 강유전체 장벽을 통과할 수 있다. 이 현상을 양자역학적 터널링 효과라 부름. 상부전극이 구리인 터널접합소자의 자발분극 방향에 따른 저항비는 금에 비해 50~60배 이상에 달하는 거대전극효과 (giant electrode effect)를 보였다. 메모리소자의 높은 저항비는 저장된 정보의 읽기과정 시 발생 가능한 오류를 줄일 수 있어 터널접합소자 기반 메모리 개발에 박차를 가할 수 있을 것으로 예상된다. KIST 전자재료연구센터 정두석 박사는 “강유전체 터널접합소자는 향후 디지털 컴퓨터의 비휘발성 메모리, 신경망 모방 컴퓨터의 인공시냅스 소자 등에 활용될 수 있으며”, “학문적, 산업적으로 거대전극효과는 터널접합소자의 특성설계에 중요한 척도로 이용될 가능성이 있다”고 연구 의의를 밝혔다. 본 연구는 한국과학기술연구원(KIST, 원장 이병권) 전자재료연구센터 정두석 박사 연구팀에서 진행된 연구로, 강유전체 터널접합소자의 거대전극효과를 최초로 발견하였을 뿐 아니라 현상학적인 원리를 규명하였다. 이번 연구 성과는 Nature Communications에 “Giant electrode effect on tunnelling electroresistance in ferroelectric tunnel junctions” (DOI: 10.1038/ncomms6414)라는 제목으로 11월 17일(월)에 온라인 게재되었다. 이번 연구는 KIST의 K-GRL 기관고유연구사업 지원으로 수행되었다. ○ 연구진: ■ Dr. 정두석, 선임연구원, 전자재료연구센터, KIST ■ Dr. 김성근, 선임연구원, 전자재료연구센터, KIST ■ Dr. Rohit Soni, 박사후 연구원, Christian-Albrechts-Universit?t zu Kiel ■ Dr. Hermann Kohlstedt, 교수, Christian-Albrechts-Universit?t zu Kiel ■ Dr. Nikolay A. Pertsev, 연구원, A. F. Ioffe Physical-Technical Institute of the Russian Academy of Sciences ○ 사진 정두석, 선임연구원, 전자재료연구센터, KIST ○ 관련자료 그림 1 강유전체 터널접합소자의 고해상 투과전자현미경 사진, Cu(구리-상부전극), BTO(강유전체), LSMO(하부전극) 그림 2 좌측: 금 상부전극을 이용한 강유전체 터널접합소자의(위) 강유전 특성과 (아래) 저항 특성. 우측: 구리 상부전극을 이용한 터널접합소자의(위) 강유전 특성과 (아래) 저항 특성. 아래쪽은 두 그래프는 전류의 비를 나타내는데, 오른쪽이 비율이 커, 저항비가 크다고 볼 수 있다.
전원이 꺼져도 정보가 보존되는 강유전체 터널소자 원리 규명, 비휘발성 메모리 개발 박차
전원이 꺼져도 정보가 보존되는 강유전체 터널소자 원리 규명, 비휘발성 메모리 개발 박차 - 강유전체의 자발분극 방향에 따라 양자역학적 전자의 흐름을 달리하는 터널접합소자의 거대 전극의존성 발견 - 거대전극효과는 강유전체와 전극 사이에 존재하는 양자역학적 에너지 장벽의 차이에 기인함을 규명 한국과학기술연구원(KIST, 원장 이병권)은 전자재료연구센터 정두석 박사 연구팀이 독일 킬 대학, 율리히 연구소, 러시아 아이오페 연구소와의 공동연구를 통해 강유전체 터널접합소자의 거대전극효과를 발견, 그 원리를 규명했다고 밝혔다. 전기가 통하지 않는 절연체인 유전체는 상온에서 전압을 흘려주었을 때 내부에 +, - 이온이 쌍을 이루는 전기쌍극자(electric dipole)가 형성되고, 이로 인해 유전체의 +,- 극이 분리되어 메모리로 활용이 가능하다. 유전체는 현재 컴퓨터 하드 드라이브에 저장된 정보를 중앙처리장치(CPU)로 불러오는 DRAM 반도체에 많이 쓰이고 있다. 그러나 유전체는 전압이 사라지면 이러한 성질이 사라지는데 이 때문에 컴퓨터 부팅에는 일정 시간이 소모된다. 유전체 중 전압이 사라져도 +,- 한 쌍의 이온이 사라지지 않는 유전체가 ‘강유전체’이다. 이런 이유로 강유전체는 전기를 꺼도 저장된 정보가 사라지지 않는 ‘자발분극’ 현상이 일어나 비휘발성 메모리 연구에 활발히 쓰이고 있다. 실제로 세계 각국의 반도체 기업은 강유전체 축전기(ferroelectric capacitor)를 이용한 FeRAM 개발을 현재까지 이어오고 있다. ※ 자발분극 : 외부 인가 전기장에 의해 절연체 내 생성된 전기쌍극자가 외부 전기장 제거 후 잔존하는 현상을 의미함. 하지만 FeRAM이 소형화되면 정전용량이 확보를 하기가 어렵다는 단점이 있다. 따라서 현재는 축전기 형태의 강유전체 소자가 아닌 소형화에 유리한 저항을 기반으로 한 강유전체 소자를 이용 메모리소자 구현을 위한 연구가 활발히 진행 중이다. 연구팀은 3 나노미터 두께의 티탄산바륨 (barium titanate) 단결정 강유전체 박막을 이용하여 터널접합소자를 제작하였다(그림 1). 연구팀은 터널 접합소자 상부에 구리, 금 등의 재료를 전극으로 붙였다. 상부 전극의 재료의 종류에 달리하여 실험을 한 결과 터널접합소자를 통해 흐르는 양자역학적 전자의 흐름이 강유전체의 자발분극 방향에 영향을 받으며 상부 전극물질의 종류에 크게 의존함을 발견하였다. * 양자역학적 전자의 흐름 : 전자는 파동과 입자의 특성을 보이며 파동특성에 의해 두 전극사이에 위치한 강유전체 장벽을 통과할 수 있다. 이 현상을 양자역학적 터널링 효과라 부름. 상부전극이 구리인 터널접합소자의 자발분극 방향에 따른 저항비는 금에 비해 50~60배 이상에 달하는 거대전극효과 (giant electrode effect)를 보였다. 메모리소자의 높은 저항비는 저장된 정보의 읽기과정 시 발생 가능한 오류를 줄일 수 있어 터널접합소자 기반 메모리 개발에 박차를 가할 수 있을 것으로 예상된다. KIST 전자재료연구센터 정두석 박사는 “강유전체 터널접합소자는 향후 디지털 컴퓨터의 비휘발성 메모리, 신경망 모방 컴퓨터의 인공시냅스 소자 등에 활용될 수 있으며”, “학문적, 산업적으로 거대전극효과는 터널접합소자의 특성설계에 중요한 척도로 이용될 가능성이 있다”고 연구 의의를 밝혔다. 본 연구는 한국과학기술연구원(KIST, 원장 이병권) 전자재료연구센터 정두석 박사 연구팀에서 진행된 연구로, 강유전체 터널접합소자의 거대전극효과를 최초로 발견하였을 뿐 아니라 현상학적인 원리를 규명하였다. 이번 연구 성과는 Nature Communications에 “Giant electrode effect on tunnelling electroresistance in ferroelectric tunnel junctions” (DOI: 10.1038/ncomms6414)라는 제목으로 11월 17일(월)에 온라인 게재되었다. 이번 연구는 KIST의 K-GRL 기관고유연구사업 지원으로 수행되었다. ○ 연구진: ■ Dr. 정두석, 선임연구원, 전자재료연구센터, KIST ■ Dr. 김성근, 선임연구원, 전자재료연구센터, KIST ■ Dr. Rohit Soni, 박사후 연구원, Christian-Albrechts-Universit?t zu Kiel ■ Dr. Hermann Kohlstedt, 교수, Christian-Albrechts-Universit?t zu Kiel ■ Dr. Nikolay A. Pertsev, 연구원, A. F. Ioffe Physical-Technical Institute of the Russian Academy of Sciences ○ 사진 정두석, 선임연구원, 전자재료연구센터, KIST ○ 관련자료 그림 1 강유전체 터널접합소자의 고해상 투과전자현미경 사진, Cu(구리-상부전극), BTO(강유전체), LSMO(하부전극) 그림 2 좌측: 금 상부전극을 이용한 강유전체 터널접합소자의(위) 강유전 특성과 (아래) 저항 특성. 우측: 구리 상부전극을 이용한 터널접합소자의(위) 강유전 특성과 (아래) 저항 특성. 아래쪽은 두 그래프는 전류의 비를 나타내는데, 오른쪽이 비율이 커, 저항비가 크다고 볼 수 있다.
전원이 꺼져도 정보가 보존되는 강유전체 터널소자 원리 규명, 비휘발성 메모리 개발 박차
전원이 꺼져도 정보가 보존되는 강유전체 터널소자 원리 규명, 비휘발성 메모리 개발 박차 - 강유전체의 자발분극 방향에 따라 양자역학적 전자의 흐름을 달리하는 터널접합소자의 거대 전극의존성 발견 - 거대전극효과는 강유전체와 전극 사이에 존재하는 양자역학적 에너지 장벽의 차이에 기인함을 규명 한국과학기술연구원(KIST, 원장 이병권)은 전자재료연구센터 정두석 박사 연구팀이 독일 킬 대학, 율리히 연구소, 러시아 아이오페 연구소와의 공동연구를 통해 강유전체 터널접합소자의 거대전극효과를 발견, 그 원리를 규명했다고 밝혔다. 전기가 통하지 않는 절연체인 유전체는 상온에서 전압을 흘려주었을 때 내부에 +, - 이온이 쌍을 이루는 전기쌍극자(electric dipole)가 형성되고, 이로 인해 유전체의 +,- 극이 분리되어 메모리로 활용이 가능하다. 유전체는 현재 컴퓨터 하드 드라이브에 저장된 정보를 중앙처리장치(CPU)로 불러오는 DRAM 반도체에 많이 쓰이고 있다. 그러나 유전체는 전압이 사라지면 이러한 성질이 사라지는데 이 때문에 컴퓨터 부팅에는 일정 시간이 소모된다. 유전체 중 전압이 사라져도 +,- 한 쌍의 이온이 사라지지 않는 유전체가 ‘강유전체’이다. 이런 이유로 강유전체는 전기를 꺼도 저장된 정보가 사라지지 않는 ‘자발분극’ 현상이 일어나 비휘발성 메모리 연구에 활발히 쓰이고 있다. 실제로 세계 각국의 반도체 기업은 강유전체 축전기(ferroelectric capacitor)를 이용한 FeRAM 개발을 현재까지 이어오고 있다. ※ 자발분극 : 외부 인가 전기장에 의해 절연체 내 생성된 전기쌍극자가 외부 전기장 제거 후 잔존하는 현상을 의미함. 하지만 FeRAM이 소형화되면 정전용량이 확보를 하기가 어렵다는 단점이 있다. 따라서 현재는 축전기 형태의 강유전체 소자가 아닌 소형화에 유리한 저항을 기반으로 한 강유전체 소자를 이용 메모리소자 구현을 위한 연구가 활발히 진행 중이다. 연구팀은 3 나노미터 두께의 티탄산바륨 (barium titanate) 단결정 강유전체 박막을 이용하여 터널접합소자를 제작하였다(그림 1). 연구팀은 터널 접합소자 상부에 구리, 금 등의 재료를 전극으로 붙였다. 상부 전극의 재료의 종류에 달리하여 실험을 한 결과 터널접합소자를 통해 흐르는 양자역학적 전자의 흐름이 강유전체의 자발분극 방향에 영향을 받으며 상부 전극물질의 종류에 크게 의존함을 발견하였다. * 양자역학적 전자의 흐름 : 전자는 파동과 입자의 특성을 보이며 파동특성에 의해 두 전극사이에 위치한 강유전체 장벽을 통과할 수 있다. 이 현상을 양자역학적 터널링 효과라 부름. 상부전극이 구리인 터널접합소자의 자발분극 방향에 따른 저항비는 금에 비해 50~60배 이상에 달하는 거대전극효과 (giant electrode effect)를 보였다. 메모리소자의 높은 저항비는 저장된 정보의 읽기과정 시 발생 가능한 오류를 줄일 수 있어 터널접합소자 기반 메모리 개발에 박차를 가할 수 있을 것으로 예상된다. KIST 전자재료연구센터 정두석 박사는 “강유전체 터널접합소자는 향후 디지털 컴퓨터의 비휘발성 메모리, 신경망 모방 컴퓨터의 인공시냅스 소자 등에 활용될 수 있으며”, “학문적, 산업적으로 거대전극효과는 터널접합소자의 특성설계에 중요한 척도로 이용될 가능성이 있다”고 연구 의의를 밝혔다. 본 연구는 한국과학기술연구원(KIST, 원장 이병권) 전자재료연구센터 정두석 박사 연구팀에서 진행된 연구로, 강유전체 터널접합소자의 거대전극효과를 최초로 발견하였을 뿐 아니라 현상학적인 원리를 규명하였다. 이번 연구 성과는 Nature Communications에 “Giant electrode effect on tunnelling electroresistance in ferroelectric tunnel junctions” (DOI: 10.1038/ncomms6414)라는 제목으로 11월 17일(월)에 온라인 게재되었다. 이번 연구는 KIST의 K-GRL 기관고유연구사업 지원으로 수행되었다. ○ 연구진: ■ Dr. 정두석, 선임연구원, 전자재료연구센터, KIST ■ Dr. 김성근, 선임연구원, 전자재료연구센터, KIST ■ Dr. Rohit Soni, 박사후 연구원, Christian-Albrechts-Universit?t zu Kiel ■ Dr. Hermann Kohlstedt, 교수, Christian-Albrechts-Universit?t zu Kiel ■ Dr. Nikolay A. Pertsev, 연구원, A. F. Ioffe Physical-Technical Institute of the Russian Academy of Sciences ○ 사진 정두석, 선임연구원, 전자재료연구센터, KIST ○ 관련자료 그림 1 강유전체 터널접합소자의 고해상 투과전자현미경 사진, Cu(구리-상부전극), BTO(강유전체), LSMO(하부전극) 그림 2 좌측: 금 상부전극을 이용한 강유전체 터널접합소자의(위) 강유전 특성과 (아래) 저항 특성. 우측: 구리 상부전극을 이용한 터널접합소자의(위) 강유전 특성과 (아래) 저항 특성. 아래쪽은 두 그래프는 전류의 비를 나타내는데, 오른쪽이 비율이 커, 저항비가 크다고 볼 수 있다.
전자기파와 소재간의 공명과 태양광발전효율에 관한 문의글
대한민국의 기술발전에 힘써주셔서 감사드립니다. 최근 어떤 영상과 기사를 보고, 태양광발전효율을 높일수 있겠다는 생각이들어 문의했습니다. (빛 감응 양자점 LED개발) https://blog.naver.com/higer31/220932243785 https://science.sciencemag.org/content/355/6325/616 위의 링크는 2017년도 빛 감응 양자점 LED개발 내용과 관련있습니다. 여기서, 연구진분들은 양자점 LED의 형태를 아령모양으로 제작하였습니다. 이걸보니 포도-전자레인지 실험과 유사하다는 느낌이 들었습니다. 포도-전자레인지 실험은 마이크로파가 포도안에 갇히고, 공명효과로 에너지가 증폭되면서 플라즈마가 발생하는 실험입니다. https://www.youtube.com/watch?v=wCrtk-pyP0I https://www.pnas.org/content/116/10/4000 둘은 달라보이는 실험이지만, 특정 주파수의 전자기파와 공명이 잘되는 "구조"에 대해 설명하고있다고 봅니다. 만약 태양광발전소자를 태양에서 나오는 전자기파와 잘 공명할 수 있게 특성을 조절한다면 발전효율이 보다 높아질것이라고 생각합니다. 마지막으로 전자기파와 공명하는 구조가 밝혀진다면, 감마선의 이온화율을 극대화 시켜서 감마선발전소자에서 감마전지까지 도달할것입니다. 여담으로 이산화탄소의 처리과정에 대해 자외선을 사용하고 있는지 궁금합니다. https://www.sciencetimes.co.kr/?news=%EB%8C%80%EA%B8%B0-%EC%86%8D-%EC%82%B0%EC%86%8C-%EC%83%9D%EC%84%B1-%EA%B3%BC%EC%A0%95%EC%9D%B4-%EB%B0%9D%ED%98%80%EC%A7%80%EB%8B%A4 봐주셔서 감사합니다
전자레인지 원리로 간편히 제작한 로듐 합금 촉매, 알칼리 연료전지 성능 향상시킨다
- 기존의 백금 촉매 대체가능한 로듐 합금 촉매 개발, 연료전지 상용화 기대 - 전자레인지(극초단파)의 원리를 응용한 친환경·초간편 양산 촉매 기술 알칼리 연료전지는 수소와 산소의 전기화학 반응에 의한 전기 에너지 발생 과정에서 물만 배출하여 차세대 친환경 에너지원으로 각광받고 있다. 알칼리 연료전지는 1960년대부터 우주발사체 전원 등에 이용되어 왔으며, 에너지 발생을 위한 나노 촉매로 전기화학적 활성이 우수한 백금 및 팔라듐 기반의 합금 나노 입자를 사용하는 것이 일반적이었다. 최근 국내 연구진이 고가의 백금 대신 로듐(Rh, rhodium) 합금을 간편히 제조하여 연료전지 성능을 향상시키는데 성공했다고 밝혔다. 한국과학기술연구원(KIST, 원장 이병권) 연료전지연구센터 유성종 박사팀은 서울대학교 기초과학연구원 나노입자연구단 성영은 교수와의 공동연구를 통해, 최근 전 세계적으로 차세대 연료전지로 각광을 받고 있는 고체 알칼리막 연료전지에 사용가능한 고성능 비백금계 로듐기반 나노 촉매를 개발했다고 밝혔다. 일반적으로 알칼리 연료전지에는 에너지 발생의 핵심 역할을 하게 되는 나노 촉매로 전기화학적 활성이 우수한 백금 및 팔라듐 기반의 합금 나노 입자를 사용해왔으나, 높은 의존도 문제와 더불어 소재 자체의 안정성에 대한 한계가 제기되어 왔다. 연료전지용 소재는 장시간 산화 환경에 노출되기 때문에 소재의 안정성 및 내구성에 대한 엄격한 수준의 소재 기술이 요구되므로 촉매 전체의 내구성을 감소시키는 백금 및 팔라듐 합금은 치명적인 단점이 있었다. 이에 연구진은 소재 안정성이 뛰어나지만 성능이 낮은 것으로 알려진 로듐에 대해 연료전지용 촉매 연구를 진행한 결과, 로듐과 주석 합금 나노 입자가 연료전지의 전기화학적 산소 환원 반응에 있어서 우수한 특성을 갖는다는 것을 밝혀냈다. 현재까지 연료전지 촉매 분야에서 로듐은 백금의 보조 촉매 수준으로 사용되어 왔으나, 나노미터(nm) 수준에서의 재료의 표면 제어 기술을 사용하게 되면 고안정성 및 고활성 연료전지용 촉매 소재로 활용 가능하다는 것이 증명되었다. 연구진은 로듐과 주석의 합금 구조가 표면의 구조 변화로 활성점이 증대되면서 이용률이 상승하여 로듐 입자 대비 10배 이상 성능이 향상되고, 기존 백금 촉매 대비 4배의 성능이 향상됨을 밝혀냈다. 특히 개발된 촉매는 기존 합성법이 적게는 12시간, 많게는 48시간 소요되던 것과 달리, 일반 가정에서 사용하는 전자레인지와 동일한 원리(극초단파, micro wave)를 이용하여 10분 내에 간편히 제조할 수 있는 기술로 개발되었다. 기존 연료전지용 소재 합성법과 달리 화학 첨가물 투입 및 추가 공정 과정이 배제되기 때문에, 신속한 소재 제조 기술 및 공정 단순화 기술 결합이 가능하였다. 그러므로 시간당 촉매 제조 생산량이 높아 향후 소재 생산 공정에 있어서도 상업적 장벽을 크게 완화시킬 것으로 전망된다. KIST 유성종 박사는 “이번 연구는 연료전지용 촉매 성능 향상 뿐 아니라 기존 연료전지용 촉매에 대한 한정적 선택 환경을 극복하고 새로운 소재의 촉매 설계가 가능해졌다는 점이 핵심”이라 말하며, “향후 차세대 에너지 변환 소재의 설계 및 제조 공정 기술 발전에 기여할 수 있을 것으로 기대한다”라고 연구 의의를 밝혔다. 이번 연구는 과학기술정보통신부(장관 유영민)의 신재생에너지핵심기술사업 한국연구재단, 산업통상자원부 지원으로 수행되었으며, 촉매 분야의 국제 학술저널인 미국화학회 촉매지(ACS Catalysis, IF : 10.614)에 9월 1일 온라인 게재되었다. <그림자료> 그림1. 로듐 합금 나노 입자 표면에서의 전기화학적 반응 모식도
전자레인지 원리로 간편히 제작한 로듐 합금 촉매, 알칼리 연료전지 성능 향상시킨다
- 기존의 백금 촉매 대체가능한 로듐 합금 촉매 개발, 연료전지 상용화 기대 - 전자레인지(극초단파)의 원리를 응용한 친환경·초간편 양산 촉매 기술 알칼리 연료전지는 수소와 산소의 전기화학 반응에 의한 전기 에너지 발생 과정에서 물만 배출하여 차세대 친환경 에너지원으로 각광받고 있다. 알칼리 연료전지는 1960년대부터 우주발사체 전원 등에 이용되어 왔으며, 에너지 발생을 위한 나노 촉매로 전기화학적 활성이 우수한 백금 및 팔라듐 기반의 합금 나노 입자를 사용하는 것이 일반적이었다. 최근 국내 연구진이 고가의 백금 대신 로듐(Rh, rhodium) 합금을 간편히 제조하여 연료전지 성능을 향상시키는데 성공했다고 밝혔다. 한국과학기술연구원(KIST, 원장 이병권) 연료전지연구센터 유성종 박사팀은 서울대학교 기초과학연구원 나노입자연구단 성영은 교수와의 공동연구를 통해, 최근 전 세계적으로 차세대 연료전지로 각광을 받고 있는 고체 알칼리막 연료전지에 사용가능한 고성능 비백금계 로듐기반 나노 촉매를 개발했다고 밝혔다. 일반적으로 알칼리 연료전지에는 에너지 발생의 핵심 역할을 하게 되는 나노 촉매로 전기화학적 활성이 우수한 백금 및 팔라듐 기반의 합금 나노 입자를 사용해왔으나, 높은 의존도 문제와 더불어 소재 자체의 안정성에 대한 한계가 제기되어 왔다. 연료전지용 소재는 장시간 산화 환경에 노출되기 때문에 소재의 안정성 및 내구성에 대한 엄격한 수준의 소재 기술이 요구되므로 촉매 전체의 내구성을 감소시키는 백금 및 팔라듐 합금은 치명적인 단점이 있었다. 이에 연구진은 소재 안정성이 뛰어나지만 성능이 낮은 것으로 알려진 로듐에 대해 연료전지용 촉매 연구를 진행한 결과, 로듐과 주석 합금 나노 입자가 연료전지의 전기화학적 산소 환원 반응에 있어서 우수한 특성을 갖는다는 것을 밝혀냈다. 현재까지 연료전지 촉매 분야에서 로듐은 백금의 보조 촉매 수준으로 사용되어 왔으나, 나노미터(nm) 수준에서의 재료의 표면 제어 기술을 사용하게 되면 고안정성 및 고활성 연료전지용 촉매 소재로 활용 가능하다는 것이 증명되었다. 연구진은 로듐과 주석의 합금 구조가 표면의 구조 변화로 활성점이 증대되면서 이용률이 상승하여 로듐 입자 대비 10배 이상 성능이 향상되고, 기존 백금 촉매 대비 4배의 성능이 향상됨을 밝혀냈다. 특히 개발된 촉매는 기존 합성법이 적게는 12시간, 많게는 48시간 소요되던 것과 달리, 일반 가정에서 사용하는 전자레인지와 동일한 원리(극초단파, micro wave)를 이용하여 10분 내에 간편히 제조할 수 있는 기술로 개발되었다. 기존 연료전지용 소재 합성법과 달리 화학 첨가물 투입 및 추가 공정 과정이 배제되기 때문에, 신속한 소재 제조 기술 및 공정 단순화 기술 결합이 가능하였다. 그러므로 시간당 촉매 제조 생산량이 높아 향후 소재 생산 공정에 있어서도 상업적 장벽을 크게 완화시킬 것으로 전망된다. KIST 유성종 박사는 “이번 연구는 연료전지용 촉매 성능 향상 뿐 아니라 기존 연료전지용 촉매에 대한 한정적 선택 환경을 극복하고 새로운 소재의 촉매 설계가 가능해졌다는 점이 핵심”이라 말하며, “향후 차세대 에너지 변환 소재의 설계 및 제조 공정 기술 발전에 기여할 수 있을 것으로 기대한다”라고 연구 의의를 밝혔다. 이번 연구는 과학기술정보통신부(장관 유영민)의 신재생에너지핵심기술사업 한국연구재단, 산업통상자원부 지원으로 수행되었으며, 촉매 분야의 국제 학술저널인 미국화학회 촉매지(ACS Catalysis, IF : 10.614)에 9월 1일 온라인 게재되었다. <그림자료> 그림1. 로듐 합금 나노 입자 표면에서의 전기화학적 반응 모식도
전자레인지 원리로 간편히 제작한 로듐 합금 촉매, 알칼리 연료전지 성능 향상시킨다
- 기존의 백금 촉매 대체가능한 로듐 합금 촉매 개발, 연료전지 상용화 기대 - 전자레인지(극초단파)의 원리를 응용한 친환경·초간편 양산 촉매 기술 알칼리 연료전지는 수소와 산소의 전기화학 반응에 의한 전기 에너지 발생 과정에서 물만 배출하여 차세대 친환경 에너지원으로 각광받고 있다. 알칼리 연료전지는 1960년대부터 우주발사체 전원 등에 이용되어 왔으며, 에너지 발생을 위한 나노 촉매로 전기화학적 활성이 우수한 백금 및 팔라듐 기반의 합금 나노 입자를 사용하는 것이 일반적이었다. 최근 국내 연구진이 고가의 백금 대신 로듐(Rh, rhodium) 합금을 간편히 제조하여 연료전지 성능을 향상시키는데 성공했다고 밝혔다. 한국과학기술연구원(KIST, 원장 이병권) 연료전지연구센터 유성종 박사팀은 서울대학교 기초과학연구원 나노입자연구단 성영은 교수와의 공동연구를 통해, 최근 전 세계적으로 차세대 연료전지로 각광을 받고 있는 고체 알칼리막 연료전지에 사용가능한 고성능 비백금계 로듐기반 나노 촉매를 개발했다고 밝혔다. 일반적으로 알칼리 연료전지에는 에너지 발생의 핵심 역할을 하게 되는 나노 촉매로 전기화학적 활성이 우수한 백금 및 팔라듐 기반의 합금 나노 입자를 사용해왔으나, 높은 의존도 문제와 더불어 소재 자체의 안정성에 대한 한계가 제기되어 왔다. 연료전지용 소재는 장시간 산화 환경에 노출되기 때문에 소재의 안정성 및 내구성에 대한 엄격한 수준의 소재 기술이 요구되므로 촉매 전체의 내구성을 감소시키는 백금 및 팔라듐 합금은 치명적인 단점이 있었다. 이에 연구진은 소재 안정성이 뛰어나지만 성능이 낮은 것으로 알려진 로듐에 대해 연료전지용 촉매 연구를 진행한 결과, 로듐과 주석 합금 나노 입자가 연료전지의 전기화학적 산소 환원 반응에 있어서 우수한 특성을 갖는다는 것을 밝혀냈다. 현재까지 연료전지 촉매 분야에서 로듐은 백금의 보조 촉매 수준으로 사용되어 왔으나, 나노미터(nm) 수준에서의 재료의 표면 제어 기술을 사용하게 되면 고안정성 및 고활성 연료전지용 촉매 소재로 활용 가능하다는 것이 증명되었다. 연구진은 로듐과 주석의 합금 구조가 표면의 구조 변화로 활성점이 증대되면서 이용률이 상승하여 로듐 입자 대비 10배 이상 성능이 향상되고, 기존 백금 촉매 대비 4배의 성능이 향상됨을 밝혀냈다. 특히 개발된 촉매는 기존 합성법이 적게는 12시간, 많게는 48시간 소요되던 것과 달리, 일반 가정에서 사용하는 전자레인지와 동일한 원리(극초단파, micro wave)를 이용하여 10분 내에 간편히 제조할 수 있는 기술로 개발되었다. 기존 연료전지용 소재 합성법과 달리 화학 첨가물 투입 및 추가 공정 과정이 배제되기 때문에, 신속한 소재 제조 기술 및 공정 단순화 기술 결합이 가능하였다. 그러므로 시간당 촉매 제조 생산량이 높아 향후 소재 생산 공정에 있어서도 상업적 장벽을 크게 완화시킬 것으로 전망된다. KIST 유성종 박사는 “이번 연구는 연료전지용 촉매 성능 향상 뿐 아니라 기존 연료전지용 촉매에 대한 한정적 선택 환경을 극복하고 새로운 소재의 촉매 설계가 가능해졌다는 점이 핵심”이라 말하며, “향후 차세대 에너지 변환 소재의 설계 및 제조 공정 기술 발전에 기여할 수 있을 것으로 기대한다”라고 연구 의의를 밝혔다. 이번 연구는 과학기술정보통신부(장관 유영민)의 신재생에너지핵심기술사업 한국연구재단, 산업통상자원부 지원으로 수행되었으며, 촉매 분야의 국제 학술저널인 미국화학회 촉매지(ACS Catalysis, IF : 10.614)에 9월 1일 온라인 게재되었다. <그림자료> 그림1. 로듐 합금 나노 입자 표면에서의 전기화학적 반응 모식도