검색결과
게시물 키워드""에 대한 9093개의 검색결과를 찾았습니다.
저온 프린팅 공정이 가능한 고분자 신소재 개발, 플라스틱 기반의 고효율 플렉시블 태양전지 만든다
- 고분자 신소재를 광활성층으로 사용, 고효율 유연 유기태양전지 구현 - 향후, 필름 형태의 건물일체형 태양광 모듈(BIPV)에 적용 기대 미래의 핵심 친환경 에너지원으로 자리 잡을 태양전지는 가볍고 유연한 태양전지 소자 기술을 개발하는 것이 하나의 핵심이며, 이를 위해서는 플라스틱 기판 위에 저온 프린팅 공정을 이용한 태양전지 제작이 차세대 태양전지를 선도해나갈 주요기술로 주목을 받고 있다. 최근 국내연구진이 저온 프린팅 공정용 고분자를 이용한 플라스틱 기판 위에 고효율 플렉시블 유기 태양전지를 개발했다고 밝혔다. 한국과학기술연구원(KIST, 원장 이병권) 광전하이브리드연구센터 손해정 박사(책임연구원)팀은 저온 프린팅 공정이 가능한 고성능 고분자 신소재를 개발하였고, 이를 태양전지의 광활성층* 소재로 사용하여 플라스틱(PET) 기판 위에 고효율의 유연한 유기태양전지를 구현하는데 성공하였다고 밝혔다. *광활성층(photoactive layer) : 외부로부터 태양빛이 태양전지의 내부로 흡수되면 빛 에너지에 의해 태양전지 내부에서 전자(electron)와 정공(hole)의 쌍이 생성됨으로써 전력을 생산하는 부분 유기태양전지는 프린팅 방식을 이용한 태양전지들 중 가장 대표적인 기술이다. 또한 고분자 소재의 특성은 가볍고 유연한 태양전지 구현에 가장 적합한 기술 방식이라고 할 수 있다. 플라스틱 기판 위에 유기태양전지를 제작하기 위한 조건으로 100 oC 근처 혹은 그 이하의 상대적인 저온에서 모든 공정이 이루어져야 한다. 하지만 실제로 태양전지에 광활성층이 높은 전기적 특성과 광전 변환 특성을 확보하기 위해서는 고분자 소재의 높은 결정 특성과 고온의 열처리가 필요하다는 단점이 있었다. KIST 손해정 박사팀은 기존 고분자 소재를 대체할 수 있는 신규 전도성 고분자를 개발하여 태양전지 광활성층 소재로 이용하였다. 이 고분자는 기존 고결정성 고분자에 비해 결정성은 낮지만 오히려 광활성층 내 전하의 생성과 운반에 유리한 특성을 지닌다. 그렇기 때문에 기존 고분자가 고결정성을 갖기 위해 160 oC 이상의 높은 온도에서 열처리 공정이 필요한 반면, 신규 고분자의 경우 이러한 열처리 공정을 거치지않아도 높은 특성을 보이는 것으로 나타났다. KIST 연구진은 고결정성 고분자에서 화학구조의 규칙성을 낮춰 새롭게 합성했다. 이 고분자 신소재는 고분자가 광활성층 내 소재(n-형)와 잘 섞이게 되고, 이는 고분자가 우수한 전기적 특성을 가지게 하는 것으로 나타났다. 연구진은 두 경우의 플라스틱 기판 위에 태양전지를 제작했을 때, 기존 고분자의 경우 태양전지 효율 저하를 보였으나, 신규 고분자의 경우 열처리가 필요 없으며 상대적으로 유리 기판에 위에 제작된 소자와 비슷한 효율을 유지하였다. 연구진이 개발한 신규 고분자를 이용한 플라스틱 기반 유연 유기태양전지는 기존 고분자를 이용한 소자에 비해서 40% 가량의 효율 향상을 보였으며, 최고 10.02%까지의 높은 광전변환효율을 기록하였다. 이러한 성능은 플라스틱 기반 유연 유기태양전지 소자 중 최고 수준의 결과이다. KIST 손해정 박사는 “이번 연구를 통해 개발한 유기태양전지 고분자 소재는 태양전지 공정 과정을 획기적으로 개선하여 플라스틱 기반의 고효율 유연 태양전지 구현에 중요한 기여를 한 연구”라고 말하며, “향후 유기태양전지의 상용화를 위한 소재 개발에 가이드라인을 제시할 수 있을 것으로 기대한다.”고 밝혔다. 또한 손해정 박사팀은 최근 개발된 신규 고분자의 후속 연구로 프린팅 공정을 이용한 유연 유기태양전지 모듈을 제작하고 있으며, 향후 건물 창호나 아웃도어 제품에 적용이 가능할 것이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민) 지원으로 KIST 기관고유사업과 KIST ‘Young Fellow’ 프로그램의 지원으로 수행되었으며, 연구결과는 에너지 분야의 국제학술지 ‘Advanced Energy Materials’(IF : 21.950, JCR 분야 상위 1.712%) 최신호에 게재되었으며, 표지 논문(Inside cover)으로 선정, 발행될 예정이다. * (논문명) ‘Low-Temperature Processable High Performance D-A Type Random Copolymers for Nonfullerene Polymer Solar Cells and Application to Flexible Devices’ - (제1저자) 한국과학기술연구원 김지영 학생연구원(석사 과정) - (교신저자) 한국과학기술연구원 손해정 박사(책임연구원) <그림설명> <그림 1> Adv. Energy. Mater. Inside Cover 이미지 <그림 2> 플라스틱 기반 유연 유기태양전지 소자 특성 및 제작된 소자(좌) 및 플라스틱 기반 유연 유기태양전지 모듈 (우)
저온 프린팅 공정이 가능한 고분자 신소재 개발, 플라스틱 기반의 고효율 플렉시블 태양전지 만든다
- 고분자 신소재를 광활성층으로 사용, 고효율 유연 유기태양전지 구현 - 향후, 필름 형태의 건물일체형 태양광 모듈(BIPV)에 적용 기대 미래의 핵심 친환경 에너지원으로 자리 잡을 태양전지는 가볍고 유연한 태양전지 소자 기술을 개발하는 것이 하나의 핵심이며, 이를 위해서는 플라스틱 기판 위에 저온 프린팅 공정을 이용한 태양전지 제작이 차세대 태양전지를 선도해나갈 주요기술로 주목을 받고 있다. 최근 국내연구진이 저온 프린팅 공정용 고분자를 이용한 플라스틱 기판 위에 고효율 플렉시블 유기 태양전지를 개발했다고 밝혔다. 한국과학기술연구원(KIST, 원장 이병권) 광전하이브리드연구센터 손해정 박사(책임연구원)팀은 저온 프린팅 공정이 가능한 고성능 고분자 신소재를 개발하였고, 이를 태양전지의 광활성층* 소재로 사용하여 플라스틱(PET) 기판 위에 고효율의 유연한 유기태양전지를 구현하는데 성공하였다고 밝혔다. *광활성층(photoactive layer) : 외부로부터 태양빛이 태양전지의 내부로 흡수되면 빛 에너지에 의해 태양전지 내부에서 전자(electron)와 정공(hole)의 쌍이 생성됨으로써 전력을 생산하는 부분 유기태양전지는 프린팅 방식을 이용한 태양전지들 중 가장 대표적인 기술이다. 또한 고분자 소재의 특성은 가볍고 유연한 태양전지 구현에 가장 적합한 기술 방식이라고 할 수 있다. 플라스틱 기판 위에 유기태양전지를 제작하기 위한 조건으로 100 oC 근처 혹은 그 이하의 상대적인 저온에서 모든 공정이 이루어져야 한다. 하지만 실제로 태양전지에 광활성층이 높은 전기적 특성과 광전 변환 특성을 확보하기 위해서는 고분자 소재의 높은 결정 특성과 고온의 열처리가 필요하다는 단점이 있었다. KIST 손해정 박사팀은 기존 고분자 소재를 대체할 수 있는 신규 전도성 고분자를 개발하여 태양전지 광활성층 소재로 이용하였다. 이 고분자는 기존 고결정성 고분자에 비해 결정성은 낮지만 오히려 광활성층 내 전하의 생성과 운반에 유리한 특성을 지닌다. 그렇기 때문에 기존 고분자가 고결정성을 갖기 위해 160 oC 이상의 높은 온도에서 열처리 공정이 필요한 반면, 신규 고분자의 경우 이러한 열처리 공정을 거치지않아도 높은 특성을 보이는 것으로 나타났다. KIST 연구진은 고결정성 고분자에서 화학구조의 규칙성을 낮춰 새롭게 합성했다. 이 고분자 신소재는 고분자가 광활성층 내 소재(n-형)와 잘 섞이게 되고, 이는 고분자가 우수한 전기적 특성을 가지게 하는 것으로 나타났다. 연구진은 두 경우의 플라스틱 기판 위에 태양전지를 제작했을 때, 기존 고분자의 경우 태양전지 효율 저하를 보였으나, 신규 고분자의 경우 열처리가 필요 없으며 상대적으로 유리 기판에 위에 제작된 소자와 비슷한 효율을 유지하였다. 연구진이 개발한 신규 고분자를 이용한 플라스틱 기반 유연 유기태양전지는 기존 고분자를 이용한 소자에 비해서 40% 가량의 효율 향상을 보였으며, 최고 10.02%까지의 높은 광전변환효율을 기록하였다. 이러한 성능은 플라스틱 기반 유연 유기태양전지 소자 중 최고 수준의 결과이다. KIST 손해정 박사는 “이번 연구를 통해 개발한 유기태양전지 고분자 소재는 태양전지 공정 과정을 획기적으로 개선하여 플라스틱 기반의 고효율 유연 태양전지 구현에 중요한 기여를 한 연구”라고 말하며, “향후 유기태양전지의 상용화를 위한 소재 개발에 가이드라인을 제시할 수 있을 것으로 기대한다.”고 밝혔다. 또한 손해정 박사팀은 최근 개발된 신규 고분자의 후속 연구로 프린팅 공정을 이용한 유연 유기태양전지 모듈을 제작하고 있으며, 향후 건물 창호나 아웃도어 제품에 적용이 가능할 것이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민) 지원으로 KIST 기관고유사업과 KIST ‘Young Fellow’ 프로그램의 지원으로 수행되었으며, 연구결과는 에너지 분야의 국제학술지 ‘Advanced Energy Materials’(IF : 21.950, JCR 분야 상위 1.712%) 최신호에 게재되었으며, 표지 논문(Inside cover)으로 선정, 발행될 예정이다. * (논문명) ‘Low-Temperature Processable High Performance D-A Type Random Copolymers for Nonfullerene Polymer Solar Cells and Application to Flexible Devices’ - (제1저자) 한국과학기술연구원 김지영 학생연구원(석사 과정) - (교신저자) 한국과학기술연구원 손해정 박사(책임연구원) <그림설명> <그림 1> Adv. Energy. Mater. Inside Cover 이미지 <그림 2> 플라스틱 기반 유연 유기태양전지 소자 특성 및 제작된 소자(좌) 및 플라스틱 기반 유연 유기태양전지 모듈 (우)
저온 프린팅 공정이 가능한 고분자 신소재 개발, 플라스틱 기반의 고효율 플렉시블 태양전지 만든다
- 고분자 신소재를 광활성층으로 사용, 고효율 유연 유기태양전지 구현 - 향후, 필름 형태의 건물일체형 태양광 모듈(BIPV)에 적용 기대 미래의 핵심 친환경 에너지원으로 자리 잡을 태양전지는 가볍고 유연한 태양전지 소자 기술을 개발하는 것이 하나의 핵심이며, 이를 위해서는 플라스틱 기판 위에 저온 프린팅 공정을 이용한 태양전지 제작이 차세대 태양전지를 선도해나갈 주요기술로 주목을 받고 있다. 최근 국내연구진이 저온 프린팅 공정용 고분자를 이용한 플라스틱 기판 위에 고효율 플렉시블 유기 태양전지를 개발했다고 밝혔다. 한국과학기술연구원(KIST, 원장 이병권) 광전하이브리드연구센터 손해정 박사(책임연구원)팀은 저온 프린팅 공정이 가능한 고성능 고분자 신소재를 개발하였고, 이를 태양전지의 광활성층* 소재로 사용하여 플라스틱(PET) 기판 위에 고효율의 유연한 유기태양전지를 구현하는데 성공하였다고 밝혔다. *광활성층(photoactive layer) : 외부로부터 태양빛이 태양전지의 내부로 흡수되면 빛 에너지에 의해 태양전지 내부에서 전자(electron)와 정공(hole)의 쌍이 생성됨으로써 전력을 생산하는 부분 유기태양전지는 프린팅 방식을 이용한 태양전지들 중 가장 대표적인 기술이다. 또한 고분자 소재의 특성은 가볍고 유연한 태양전지 구현에 가장 적합한 기술 방식이라고 할 수 있다. 플라스틱 기판 위에 유기태양전지를 제작하기 위한 조건으로 100 oC 근처 혹은 그 이하의 상대적인 저온에서 모든 공정이 이루어져야 한다. 하지만 실제로 태양전지에 광활성층이 높은 전기적 특성과 광전 변환 특성을 확보하기 위해서는 고분자 소재의 높은 결정 특성과 고온의 열처리가 필요하다는 단점이 있었다. KIST 손해정 박사팀은 기존 고분자 소재를 대체할 수 있는 신규 전도성 고분자를 개발하여 태양전지 광활성층 소재로 이용하였다. 이 고분자는 기존 고결정성 고분자에 비해 결정성은 낮지만 오히려 광활성층 내 전하의 생성과 운반에 유리한 특성을 지닌다. 그렇기 때문에 기존 고분자가 고결정성을 갖기 위해 160 oC 이상의 높은 온도에서 열처리 공정이 필요한 반면, 신규 고분자의 경우 이러한 열처리 공정을 거치지않아도 높은 특성을 보이는 것으로 나타났다. KIST 연구진은 고결정성 고분자에서 화학구조의 규칙성을 낮춰 새롭게 합성했다. 이 고분자 신소재는 고분자가 광활성층 내 소재(n-형)와 잘 섞이게 되고, 이는 고분자가 우수한 전기적 특성을 가지게 하는 것으로 나타났다. 연구진은 두 경우의 플라스틱 기판 위에 태양전지를 제작했을 때, 기존 고분자의 경우 태양전지 효율 저하를 보였으나, 신규 고분자의 경우 열처리가 필요 없으며 상대적으로 유리 기판에 위에 제작된 소자와 비슷한 효율을 유지하였다. 연구진이 개발한 신규 고분자를 이용한 플라스틱 기반 유연 유기태양전지는 기존 고분자를 이용한 소자에 비해서 40% 가량의 효율 향상을 보였으며, 최고 10.02%까지의 높은 광전변환효율을 기록하였다. 이러한 성능은 플라스틱 기반 유연 유기태양전지 소자 중 최고 수준의 결과이다. KIST 손해정 박사는 “이번 연구를 통해 개발한 유기태양전지 고분자 소재는 태양전지 공정 과정을 획기적으로 개선하여 플라스틱 기반의 고효율 유연 태양전지 구현에 중요한 기여를 한 연구”라고 말하며, “향후 유기태양전지의 상용화를 위한 소재 개발에 가이드라인을 제시할 수 있을 것으로 기대한다.”고 밝혔다. 또한 손해정 박사팀은 최근 개발된 신규 고분자의 후속 연구로 프린팅 공정을 이용한 유연 유기태양전지 모듈을 제작하고 있으며, 향후 건물 창호나 아웃도어 제품에 적용이 가능할 것이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민) 지원으로 KIST 기관고유사업과 KIST ‘Young Fellow’ 프로그램의 지원으로 수행되었으며, 연구결과는 에너지 분야의 국제학술지 ‘Advanced Energy Materials’(IF : 21.950, JCR 분야 상위 1.712%) 최신호에 게재되었으며, 표지 논문(Inside cover)으로 선정, 발행될 예정이다. * (논문명) ‘Low-Temperature Processable High Performance D-A Type Random Copolymers for Nonfullerene Polymer Solar Cells and Application to Flexible Devices’ - (제1저자) 한국과학기술연구원 김지영 학생연구원(석사 과정) - (교신저자) 한국과학기술연구원 손해정 박사(책임연구원) <그림설명> <그림 1> Adv. Energy. Mater. Inside Cover 이미지 <그림 2> 플라스틱 기반 유연 유기태양전지 소자 특성 및 제작된 소자(좌) 및 플라스틱 기반 유연 유기태양전지 모듈 (우)
저온 프린팅 공정이 가능한 고분자 신소재 개발, 플라스틱 기반의 고효율 플렉시블 태양전지 만든다
- 고분자 신소재를 광활성층으로 사용, 고효율 유연 유기태양전지 구현 - 향후, 필름 형태의 건물일체형 태양광 모듈(BIPV)에 적용 기대 미래의 핵심 친환경 에너지원으로 자리 잡을 태양전지는 가볍고 유연한 태양전지 소자 기술을 개발하는 것이 하나의 핵심이며, 이를 위해서는 플라스틱 기판 위에 저온 프린팅 공정을 이용한 태양전지 제작이 차세대 태양전지를 선도해나갈 주요기술로 주목을 받고 있다. 최근 국내연구진이 저온 프린팅 공정용 고분자를 이용한 플라스틱 기판 위에 고효율 플렉시블 유기 태양전지를 개발했다고 밝혔다. 한국과학기술연구원(KIST, 원장 이병권) 광전하이브리드연구센터 손해정 박사(책임연구원)팀은 저온 프린팅 공정이 가능한 고성능 고분자 신소재를 개발하였고, 이를 태양전지의 광활성층* 소재로 사용하여 플라스틱(PET) 기판 위에 고효율의 유연한 유기태양전지를 구현하는데 성공하였다고 밝혔다. *광활성층(photoactive layer) : 외부로부터 태양빛이 태양전지의 내부로 흡수되면 빛 에너지에 의해 태양전지 내부에서 전자(electron)와 정공(hole)의 쌍이 생성됨으로써 전력을 생산하는 부분 유기태양전지는 프린팅 방식을 이용한 태양전지들 중 가장 대표적인 기술이다. 또한 고분자 소재의 특성은 가볍고 유연한 태양전지 구현에 가장 적합한 기술 방식이라고 할 수 있다. 플라스틱 기판 위에 유기태양전지를 제작하기 위한 조건으로 100 oC 근처 혹은 그 이하의 상대적인 저온에서 모든 공정이 이루어져야 한다. 하지만 실제로 태양전지에 광활성층이 높은 전기적 특성과 광전 변환 특성을 확보하기 위해서는 고분자 소재의 높은 결정 특성과 고온의 열처리가 필요하다는 단점이 있었다. KIST 손해정 박사팀은 기존 고분자 소재를 대체할 수 있는 신규 전도성 고분자를 개발하여 태양전지 광활성층 소재로 이용하였다. 이 고분자는 기존 고결정성 고분자에 비해 결정성은 낮지만 오히려 광활성층 내 전하의 생성과 운반에 유리한 특성을 지닌다. 그렇기 때문에 기존 고분자가 고결정성을 갖기 위해 160 oC 이상의 높은 온도에서 열처리 공정이 필요한 반면, 신규 고분자의 경우 이러한 열처리 공정을 거치지않아도 높은 특성을 보이는 것으로 나타났다. KIST 연구진은 고결정성 고분자에서 화학구조의 규칙성을 낮춰 새롭게 합성했다. 이 고분자 신소재는 고분자가 광활성층 내 소재(n-형)와 잘 섞이게 되고, 이는 고분자가 우수한 전기적 특성을 가지게 하는 것으로 나타났다. 연구진은 두 경우의 플라스틱 기판 위에 태양전지를 제작했을 때, 기존 고분자의 경우 태양전지 효율 저하를 보였으나, 신규 고분자의 경우 열처리가 필요 없으며 상대적으로 유리 기판에 위에 제작된 소자와 비슷한 효율을 유지하였다. 연구진이 개발한 신규 고분자를 이용한 플라스틱 기반 유연 유기태양전지는 기존 고분자를 이용한 소자에 비해서 40% 가량의 효율 향상을 보였으며, 최고 10.02%까지의 높은 광전변환효율을 기록하였다. 이러한 성능은 플라스틱 기반 유연 유기태양전지 소자 중 최고 수준의 결과이다. KIST 손해정 박사는 “이번 연구를 통해 개발한 유기태양전지 고분자 소재는 태양전지 공정 과정을 획기적으로 개선하여 플라스틱 기반의 고효율 유연 태양전지 구현에 중요한 기여를 한 연구”라고 말하며, “향후 유기태양전지의 상용화를 위한 소재 개발에 가이드라인을 제시할 수 있을 것으로 기대한다.”고 밝혔다. 또한 손해정 박사팀은 최근 개발된 신규 고분자의 후속 연구로 프린팅 공정을 이용한 유연 유기태양전지 모듈을 제작하고 있으며, 향후 건물 창호나 아웃도어 제품에 적용이 가능할 것이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민) 지원으로 KIST 기관고유사업과 KIST ‘Young Fellow’ 프로그램의 지원으로 수행되었으며, 연구결과는 에너지 분야의 국제학술지 ‘Advanced Energy Materials’(IF : 21.950, JCR 분야 상위 1.712%) 최신호에 게재되었으며, 표지 논문(Inside cover)으로 선정, 발행될 예정이다. * (논문명) ‘Low-Temperature Processable High Performance D-A Type Random Copolymers for Nonfullerene Polymer Solar Cells and Application to Flexible Devices’ - (제1저자) 한국과학기술연구원 김지영 학생연구원(석사 과정) - (교신저자) 한국과학기술연구원 손해정 박사(책임연구원) <그림설명> <그림 1> Adv. Energy. Mater. Inside Cover 이미지 <그림 2> 플라스틱 기반 유연 유기태양전지 소자 특성 및 제작된 소자(좌) 및 플라스틱 기반 유연 유기태양전지 모듈 (우)
저온 프린팅 공정이 가능한 고분자 신소재 개발, 플라스틱 기반의 고효율 플렉시블 태양전지 만든다
- 고분자 신소재를 광활성층으로 사용, 고효율 유연 유기태양전지 구현 - 향후, 필름 형태의 건물일체형 태양광 모듈(BIPV)에 적용 기대 미래의 핵심 친환경 에너지원으로 자리 잡을 태양전지는 가볍고 유연한 태양전지 소자 기술을 개발하는 것이 하나의 핵심이며, 이를 위해서는 플라스틱 기판 위에 저온 프린팅 공정을 이용한 태양전지 제작이 차세대 태양전지를 선도해나갈 주요기술로 주목을 받고 있다. 최근 국내연구진이 저온 프린팅 공정용 고분자를 이용한 플라스틱 기판 위에 고효율 플렉시블 유기 태양전지를 개발했다고 밝혔다. 한국과학기술연구원(KIST, 원장 이병권) 광전하이브리드연구센터 손해정 박사(책임연구원)팀은 저온 프린팅 공정이 가능한 고성능 고분자 신소재를 개발하였고, 이를 태양전지의 광활성층* 소재로 사용하여 플라스틱(PET) 기판 위에 고효율의 유연한 유기태양전지를 구현하는데 성공하였다고 밝혔다. *광활성층(photoactive layer) : 외부로부터 태양빛이 태양전지의 내부로 흡수되면 빛 에너지에 의해 태양전지 내부에서 전자(electron)와 정공(hole)의 쌍이 생성됨으로써 전력을 생산하는 부분 유기태양전지는 프린팅 방식을 이용한 태양전지들 중 가장 대표적인 기술이다. 또한 고분자 소재의 특성은 가볍고 유연한 태양전지 구현에 가장 적합한 기술 방식이라고 할 수 있다. 플라스틱 기판 위에 유기태양전지를 제작하기 위한 조건으로 100 oC 근처 혹은 그 이하의 상대적인 저온에서 모든 공정이 이루어져야 한다. 하지만 실제로 태양전지에 광활성층이 높은 전기적 특성과 광전 변환 특성을 확보하기 위해서는 고분자 소재의 높은 결정 특성과 고온의 열처리가 필요하다는 단점이 있었다. KIST 손해정 박사팀은 기존 고분자 소재를 대체할 수 있는 신규 전도성 고분자를 개발하여 태양전지 광활성층 소재로 이용하였다. 이 고분자는 기존 고결정성 고분자에 비해 결정성은 낮지만 오히려 광활성층 내 전하의 생성과 운반에 유리한 특성을 지닌다. 그렇기 때문에 기존 고분자가 고결정성을 갖기 위해 160 oC 이상의 높은 온도에서 열처리 공정이 필요한 반면, 신규 고분자의 경우 이러한 열처리 공정을 거치지않아도 높은 특성을 보이는 것으로 나타났다. KIST 연구진은 고결정성 고분자에서 화학구조의 규칙성을 낮춰 새롭게 합성했다. 이 고분자 신소재는 고분자가 광활성층 내 소재(n-형)와 잘 섞이게 되고, 이는 고분자가 우수한 전기적 특성을 가지게 하는 것으로 나타났다. 연구진은 두 경우의 플라스틱 기판 위에 태양전지를 제작했을 때, 기존 고분자의 경우 태양전지 효율 저하를 보였으나, 신규 고분자의 경우 열처리가 필요 없으며 상대적으로 유리 기판에 위에 제작된 소자와 비슷한 효율을 유지하였다. 연구진이 개발한 신규 고분자를 이용한 플라스틱 기반 유연 유기태양전지는 기존 고분자를 이용한 소자에 비해서 40% 가량의 효율 향상을 보였으며, 최고 10.02%까지의 높은 광전변환효율을 기록하였다. 이러한 성능은 플라스틱 기반 유연 유기태양전지 소자 중 최고 수준의 결과이다. KIST 손해정 박사는 “이번 연구를 통해 개발한 유기태양전지 고분자 소재는 태양전지 공정 과정을 획기적으로 개선하여 플라스틱 기반의 고효율 유연 태양전지 구현에 중요한 기여를 한 연구”라고 말하며, “향후 유기태양전지의 상용화를 위한 소재 개발에 가이드라인을 제시할 수 있을 것으로 기대한다.”고 밝혔다. 또한 손해정 박사팀은 최근 개발된 신규 고분자의 후속 연구로 프린팅 공정을 이용한 유연 유기태양전지 모듈을 제작하고 있으며, 향후 건물 창호나 아웃도어 제품에 적용이 가능할 것이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민) 지원으로 KIST 기관고유사업과 KIST ‘Young Fellow’ 프로그램의 지원으로 수행되었으며, 연구결과는 에너지 분야의 국제학술지 ‘Advanced Energy Materials’(IF : 21.950, JCR 분야 상위 1.712%) 최신호에 게재되었으며, 표지 논문(Inside cover)으로 선정, 발행될 예정이다. * (논문명) ‘Low-Temperature Processable High Performance D-A Type Random Copolymers for Nonfullerene Polymer Solar Cells and Application to Flexible Devices’ - (제1저자) 한국과학기술연구원 김지영 학생연구원(석사 과정) - (교신저자) 한국과학기술연구원 손해정 박사(책임연구원) <그림설명> <그림 1> Adv. Energy. Mater. Inside Cover 이미지 <그림 2> 플라스틱 기반 유연 유기태양전지 소자 특성 및 제작된 소자(좌) 및 플라스틱 기반 유연 유기태양전지 모듈 (우)
저온 프린팅 공정이 가능한 고분자 신소재 개발, 플라스틱 기반의 고효율 플렉시블 태양전지 만든다
- 고분자 신소재를 광활성층으로 사용, 고효율 유연 유기태양전지 구현 - 향후, 필름 형태의 건물일체형 태양광 모듈(BIPV)에 적용 기대 미래의 핵심 친환경 에너지원으로 자리 잡을 태양전지는 가볍고 유연한 태양전지 소자 기술을 개발하는 것이 하나의 핵심이며, 이를 위해서는 플라스틱 기판 위에 저온 프린팅 공정을 이용한 태양전지 제작이 차세대 태양전지를 선도해나갈 주요기술로 주목을 받고 있다. 최근 국내연구진이 저온 프린팅 공정용 고분자를 이용한 플라스틱 기판 위에 고효율 플렉시블 유기 태양전지를 개발했다고 밝혔다. 한국과학기술연구원(KIST, 원장 이병권) 광전하이브리드연구센터 손해정 박사(책임연구원)팀은 저온 프린팅 공정이 가능한 고성능 고분자 신소재를 개발하였고, 이를 태양전지의 광활성층* 소재로 사용하여 플라스틱(PET) 기판 위에 고효율의 유연한 유기태양전지를 구현하는데 성공하였다고 밝혔다. *광활성층(photoactive layer) : 외부로부터 태양빛이 태양전지의 내부로 흡수되면 빛 에너지에 의해 태양전지 내부에서 전자(electron)와 정공(hole)의 쌍이 생성됨으로써 전력을 생산하는 부분 유기태양전지는 프린팅 방식을 이용한 태양전지들 중 가장 대표적인 기술이다. 또한 고분자 소재의 특성은 가볍고 유연한 태양전지 구현에 가장 적합한 기술 방식이라고 할 수 있다. 플라스틱 기판 위에 유기태양전지를 제작하기 위한 조건으로 100 oC 근처 혹은 그 이하의 상대적인 저온에서 모든 공정이 이루어져야 한다. 하지만 실제로 태양전지에 광활성층이 높은 전기적 특성과 광전 변환 특성을 확보하기 위해서는 고분자 소재의 높은 결정 특성과 고온의 열처리가 필요하다는 단점이 있었다. KIST 손해정 박사팀은 기존 고분자 소재를 대체할 수 있는 신규 전도성 고분자를 개발하여 태양전지 광활성층 소재로 이용하였다. 이 고분자는 기존 고결정성 고분자에 비해 결정성은 낮지만 오히려 광활성층 내 전하의 생성과 운반에 유리한 특성을 지닌다. 그렇기 때문에 기존 고분자가 고결정성을 갖기 위해 160 oC 이상의 높은 온도에서 열처리 공정이 필요한 반면, 신규 고분자의 경우 이러한 열처리 공정을 거치지않아도 높은 특성을 보이는 것으로 나타났다. KIST 연구진은 고결정성 고분자에서 화학구조의 규칙성을 낮춰 새롭게 합성했다. 이 고분자 신소재는 고분자가 광활성층 내 소재(n-형)와 잘 섞이게 되고, 이는 고분자가 우수한 전기적 특성을 가지게 하는 것으로 나타났다. 연구진은 두 경우의 플라스틱 기판 위에 태양전지를 제작했을 때, 기존 고분자의 경우 태양전지 효율 저하를 보였으나, 신규 고분자의 경우 열처리가 필요 없으며 상대적으로 유리 기판에 위에 제작된 소자와 비슷한 효율을 유지하였다. 연구진이 개발한 신규 고분자를 이용한 플라스틱 기반 유연 유기태양전지는 기존 고분자를 이용한 소자에 비해서 40% 가량의 효율 향상을 보였으며, 최고 10.02%까지의 높은 광전변환효율을 기록하였다. 이러한 성능은 플라스틱 기반 유연 유기태양전지 소자 중 최고 수준의 결과이다. KIST 손해정 박사는 “이번 연구를 통해 개발한 유기태양전지 고분자 소재는 태양전지 공정 과정을 획기적으로 개선하여 플라스틱 기반의 고효율 유연 태양전지 구현에 중요한 기여를 한 연구”라고 말하며, “향후 유기태양전지의 상용화를 위한 소재 개발에 가이드라인을 제시할 수 있을 것으로 기대한다.”고 밝혔다. 또한 손해정 박사팀은 최근 개발된 신규 고분자의 후속 연구로 프린팅 공정을 이용한 유연 유기태양전지 모듈을 제작하고 있으며, 향후 건물 창호나 아웃도어 제품에 적용이 가능할 것이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민) 지원으로 KIST 기관고유사업과 KIST ‘Young Fellow’ 프로그램의 지원으로 수행되었으며, 연구결과는 에너지 분야의 국제학술지 ‘Advanced Energy Materials’(IF : 21.950, JCR 분야 상위 1.712%) 최신호에 게재되었으며, 표지 논문(Inside cover)으로 선정, 발행될 예정이다. * (논문명) ‘Low-Temperature Processable High Performance D-A Type Random Copolymers for Nonfullerene Polymer Solar Cells and Application to Flexible Devices’ - (제1저자) 한국과학기술연구원 김지영 학생연구원(석사 과정) - (교신저자) 한국과학기술연구원 손해정 박사(책임연구원) <그림설명> <그림 1> Adv. Energy. Mater. Inside Cover 이미지 <그림 2> 플라스틱 기반 유연 유기태양전지 소자 특성 및 제작된 소자(좌) 및 플라스틱 기반 유연 유기태양전지 모듈 (우)
저온탈질촉매, 세계시장 주도 기대
KIST 개발 저온탈질촉매, 세계시장 주도 기대 - 출연연 물질 특허 개발, 중소기업-대기업 상용화 협력의 본보기 - 원가 절감, 친환경 탈질촉매로 가격·성능·내구성 3가지 경쟁력 확보 대기오염의 주범인 질소산화물. 이 질소산화물 처리를 위해서는 제철소 배연가스 소결로에 촉매를 장착하여 유해물질을 제거하는 기술이 필요하다. 가격을 획기적으로 낮추면서도 효율과 내구성을 높인 촉매기술이 국내 연구진에 의해 개발되어 외국제품에 의존했던 촉매의 국산화에 성공했다. 한국과학기술연구원(KIST, 원장 문길주) 다원물질융합연구소 하헌필 박사팀은 고가의 텅스텐 등 희소금속을 사용하지 않는 대신 가격이 싼 비전이(非轉移)금속 조촉매를 사용하여 친환경적인 탈질촉매(질소산화물 환원촉매)를 개발했다고 밝혔다. * 비전이 금속계 : 주기율표상 15, 16족에 분포하는 금속군으로 일반금속과는 다른 전자구조를 가지는 물질 질소산화물은 연료의 연소과정에서 필연적으로 생성되어 산성비, 온실가스형성 등 대기오염의 주범으로 지목되고 있다. 최근에는 질소산화물의 배출규제가 엄격해지고 배출가스의 처리환경이 까다로워져 탈질촉매 기술 개발이 활발히 이루어지고 있다. 현재 세계적으로 탈질촉매는 주로 타이타니아 위에 바나듐을 첨가하여 활성물질로 사용한다. 철 제조 공정 중 가장 오염물질 배출이 많은 소결로*는 촉매의 작동온도가 250정도의 저온이므로 촉매의 내구성이 쉽게 저하된다. 이러한 환경에서 촉매 내구성 증진을 위해 현재까지는 값비싼 텅스텐이나 몰리브덴과 같은 희소금속을 다량 첨가한 외국산 촉매를 사용하여왔다. 개발된 촉매는 비전이 금속 조촉매를 소량 첨가하고, 가격이 희소금속에 비하여 저렴하여, 최종 촉매가격이 기존 촉매보다 30%이상 원가가 저렴하다. 또한 낮은 온도영역에서 높은 촉매활성이 입증되어 외국의 촉매보다 가격·성능·내구성 면에서 모두 높은 경쟁력을 가진 세계시장을 주도하는 제품이 될 것으로 기대된다. * 제철소 소결로 : 철 제조를 위해서 철광석을 용광로에 주입하기 전에 전처리 (소결) 시켜주는 공정 하헌필 박사팀은 촉매의 작동과정을 모델링하고 물질 구성의 기본 요소인 전자와 원자핵의 양자적 상호작용을 계산하여 물질을 설계하는 양자화학 계산을 통하여 기존에 사용하지 않던 저가의 비전이 금속계에서 저온 촉매성능을 높일 수 있는 조촉매 물질을 발견하고, 물질특허를 획득하였다. 개발된 촉매는 비전이 금속 조촉매를 소량만 첨가하여도 모든 촉매특성이 기존 상용되는 촉매에 비하여 우수하다는 것을 확인하였다. KIST는 이 기술을 강릉산업과학단지 소재 탈질촉매 전문제조회사인 ㈜대영씨엔이(사장 노세윤)에 이전하였고, ㈜대영씨엔이는 이전된 물질특허를 기반으로 POSCO와 함께 중소기업청 구매조건부사업을 통하여 POSCO 소결로 배연가스 처리용 탈질촉매모듈 개발을 목표로 상용화연구를 수행하였다. 상용화한 촉매모듈을 기존 촉매 중 가장 우수한 성능의 상용 촉매모듈과 함께 POSCO의 소결로 배연가스 처리장치내에 장착하여 비교 시험하였고, 개발된 촉매가 6개월간의 가동후에도 저온영역에서 95%이상의 활성을 지속적으로 유지할 뿐만 아니라 내구성이 우수함을 확인하였다. 본 촉매는 POSCO 소결로에 장착하여 올해 말부터 사용할 예정이다. 하헌필 박사는 “이번 촉매개발은 출연연에서 물질특허를 확보하여 중소기업에 이전하고 중소기업은 이를 기반으로 부품소재로의 상용화기술을 개발하여 대기업에서 이를 채택 사용한 사례로, 고가의 외국산 촉매를 대체한다는 데 의미가 크다. 또한 출연연-중소기업-대기업이 선순환 구조를 통하여 상생 협력하여 결과를 낸 좋은 본보기가 되었다”고 말했다. 또한, “본 물질의 설계과정에서 축적된 노하우를 바탕으로 극저온 및 고온영역에서도 작동할 수 있는 환경촉매개발이 진행 중인데 이는 수조원 이상의 시장이 기대되는 이 분야 연구에서 세계적 선도 역할을 할 수 있게 되었다”고 말했다. 이번 연구성과는 KIST 기관고유사업 및 중소기업청 구매조건부사업을 통해 수행되었으며, 한국, 중국, 유럽에 특허 등록 및 출원되었다. ○ 연구진 <(주) 대영씨엔이 노세윤 사장> ○ 그림설명 <그림1> 촉매의 작동과정 유해물질인 질소산화물이 환원제와 함께 촉매가 코팅된 모듈을 통과하면 인체에 무해한 질소 및 물로 변환된다. <그림2> (주) 대영씨엔이에서 제조한 촉매모듈 및 POSCO 광양 소결로 배연장치내
저온탈질촉매, 세계시장 주도 기대
KIST 개발 저온탈질촉매, 세계시장 주도 기대 - 출연연 물질 특허 개발, 중소기업-대기업 상용화 협력의 본보기 - 원가 절감, 친환경 탈질촉매로 가격·성능·내구성 3가지 경쟁력 확보 대기오염의 주범인 질소산화물. 이 질소산화물 처리를 위해서는 제철소 배연가스 소결로에 촉매를 장착하여 유해물질을 제거하는 기술이 필요하다. 가격을 획기적으로 낮추면서도 효율과 내구성을 높인 촉매기술이 국내 연구진에 의해 개발되어 외국제품에 의존했던 촉매의 국산화에 성공했다. 한국과학기술연구원(KIST, 원장 문길주) 다원물질융합연구소 하헌필 박사팀은 고가의 텅스텐 등 희소금속을 사용하지 않는 대신 가격이 싼 비전이(非轉移)금속 조촉매를 사용하여 친환경적인 탈질촉매(질소산화물 환원촉매)를 개발했다고 밝혔다. * 비전이 금속계 : 주기율표상 15, 16족에 분포하는 금속군으로 일반금속과는 다른 전자구조를 가지는 물질 질소산화물은 연료의 연소과정에서 필연적으로 생성되어 산성비, 온실가스형성 등 대기오염의 주범으로 지목되고 있다. 최근에는 질소산화물의 배출규제가 엄격해지고 배출가스의 처리환경이 까다로워져 탈질촉매 기술 개발이 활발히 이루어지고 있다. 현재 세계적으로 탈질촉매는 주로 타이타니아 위에 바나듐을 첨가하여 활성물질로 사용한다. 철 제조 공정 중 가장 오염물질 배출이 많은 소결로*는 촉매의 작동온도가 250정도의 저온이므로 촉매의 내구성이 쉽게 저하된다. 이러한 환경에서 촉매 내구성 증진을 위해 현재까지는 값비싼 텅스텐이나 몰리브덴과 같은 희소금속을 다량 첨가한 외국산 촉매를 사용하여왔다. 개발된 촉매는 비전이 금속 조촉매를 소량 첨가하고, 가격이 희소금속에 비하여 저렴하여, 최종 촉매가격이 기존 촉매보다 30%이상 원가가 저렴하다. 또한 낮은 온도영역에서 높은 촉매활성이 입증되어 외국의 촉매보다 가격·성능·내구성 면에서 모두 높은 경쟁력을 가진 세계시장을 주도하는 제품이 될 것으로 기대된다. * 제철소 소결로 : 철 제조를 위해서 철광석을 용광로에 주입하기 전에 전처리 (소결) 시켜주는 공정 하헌필 박사팀은 촉매의 작동과정을 모델링하고 물질 구성의 기본 요소인 전자와 원자핵의 양자적 상호작용을 계산하여 물질을 설계하는 양자화학 계산을 통하여 기존에 사용하지 않던 저가의 비전이 금속계에서 저온 촉매성능을 높일 수 있는 조촉매 물질을 발견하고, 물질특허를 획득하였다. 개발된 촉매는 비전이 금속 조촉매를 소량만 첨가하여도 모든 촉매특성이 기존 상용되는 촉매에 비하여 우수하다는 것을 확인하였다. KIST는 이 기술을 강릉산업과학단지 소재 탈질촉매 전문제조회사인 ㈜대영씨엔이(사장 노세윤)에 이전하였고, ㈜대영씨엔이는 이전된 물질특허를 기반으로 POSCO와 함께 중소기업청 구매조건부사업을 통하여 POSCO 소결로 배연가스 처리용 탈질촉매모듈 개발을 목표로 상용화연구를 수행하였다. 상용화한 촉매모듈을 기존 촉매 중 가장 우수한 성능의 상용 촉매모듈과 함께 POSCO의 소결로 배연가스 처리장치내에 장착하여 비교 시험하였고, 개발된 촉매가 6개월간의 가동후에도 저온영역에서 95%이상의 활성을 지속적으로 유지할 뿐만 아니라 내구성이 우수함을 확인하였다. 본 촉매는 POSCO 소결로에 장착하여 올해 말부터 사용할 예정이다. 하헌필 박사는 “이번 촉매개발은 출연연에서 물질특허를 확보하여 중소기업에 이전하고 중소기업은 이를 기반으로 부품소재로의 상용화기술을 개발하여 대기업에서 이를 채택 사용한 사례로, 고가의 외국산 촉매를 대체한다는 데 의미가 크다. 또한 출연연-중소기업-대기업이 선순환 구조를 통하여 상생 협력하여 결과를 낸 좋은 본보기가 되었다”고 말했다. 또한, “본 물질의 설계과정에서 축적된 노하우를 바탕으로 극저온 및 고온영역에서도 작동할 수 있는 환경촉매개발이 진행 중인데 이는 수조원 이상의 시장이 기대되는 이 분야 연구에서 세계적 선도 역할을 할 수 있게 되었다”고 말했다. 이번 연구성과는 KIST 기관고유사업 및 중소기업청 구매조건부사업을 통해 수행되었으며, 한국, 중국, 유럽에 특허 등록 및 출원되었다. ○ 연구진 <(주) 대영씨엔이 노세윤 사장> ○ 그림설명 <그림1> 촉매의 작동과정 유해물질인 질소산화물이 환원제와 함께 촉매가 코팅된 모듈을 통과하면 인체에 무해한 질소 및 물로 변환된다. <그림2> (주) 대영씨엔이에서 제조한 촉매모듈 및 POSCO 광양 소결로 배연장치내
저온탈질촉매, 세계시장 주도 기대
KIST 개발 저온탈질촉매, 세계시장 주도 기대 - 출연연 물질 특허 개발, 중소기업-대기업 상용화 협력의 본보기 - 원가 절감, 친환경 탈질촉매로 가격·성능·내구성 3가지 경쟁력 확보 대기오염의 주범인 질소산화물. 이 질소산화물 처리를 위해서는 제철소 배연가스 소결로에 촉매를 장착하여 유해물질을 제거하는 기술이 필요하다. 가격을 획기적으로 낮추면서도 효율과 내구성을 높인 촉매기술이 국내 연구진에 의해 개발되어 외국제품에 의존했던 촉매의 국산화에 성공했다. 한국과학기술연구원(KIST, 원장 문길주) 다원물질융합연구소 하헌필 박사팀은 고가의 텅스텐 등 희소금속을 사용하지 않는 대신 가격이 싼 비전이(非轉移)금속 조촉매를 사용하여 친환경적인 탈질촉매(질소산화물 환원촉매)를 개발했다고 밝혔다. * 비전이 금속계 : 주기율표상 15, 16족에 분포하는 금속군으로 일반금속과는 다른 전자구조를 가지는 물질 질소산화물은 연료의 연소과정에서 필연적으로 생성되어 산성비, 온실가스형성 등 대기오염의 주범으로 지목되고 있다. 최근에는 질소산화물의 배출규제가 엄격해지고 배출가스의 처리환경이 까다로워져 탈질촉매 기술 개발이 활발히 이루어지고 있다. 현재 세계적으로 탈질촉매는 주로 타이타니아 위에 바나듐을 첨가하여 활성물질로 사용한다. 철 제조 공정 중 가장 오염물질 배출이 많은 소결로*는 촉매의 작동온도가 250정도의 저온이므로 촉매의 내구성이 쉽게 저하된다. 이러한 환경에서 촉매 내구성 증진을 위해 현재까지는 값비싼 텅스텐이나 몰리브덴과 같은 희소금속을 다량 첨가한 외국산 촉매를 사용하여왔다. 개발된 촉매는 비전이 금속 조촉매를 소량 첨가하고, 가격이 희소금속에 비하여 저렴하여, 최종 촉매가격이 기존 촉매보다 30%이상 원가가 저렴하다. 또한 낮은 온도영역에서 높은 촉매활성이 입증되어 외국의 촉매보다 가격·성능·내구성 면에서 모두 높은 경쟁력을 가진 세계시장을 주도하는 제품이 될 것으로 기대된다. * 제철소 소결로 : 철 제조를 위해서 철광석을 용광로에 주입하기 전에 전처리 (소결) 시켜주는 공정 하헌필 박사팀은 촉매의 작동과정을 모델링하고 물질 구성의 기본 요소인 전자와 원자핵의 양자적 상호작용을 계산하여 물질을 설계하는 양자화학 계산을 통하여 기존에 사용하지 않던 저가의 비전이 금속계에서 저온 촉매성능을 높일 수 있는 조촉매 물질을 발견하고, 물질특허를 획득하였다. 개발된 촉매는 비전이 금속 조촉매를 소량만 첨가하여도 모든 촉매특성이 기존 상용되는 촉매에 비하여 우수하다는 것을 확인하였다. KIST는 이 기술을 강릉산업과학단지 소재 탈질촉매 전문제조회사인 ㈜대영씨엔이(사장 노세윤)에 이전하였고, ㈜대영씨엔이는 이전된 물질특허를 기반으로 POSCO와 함께 중소기업청 구매조건부사업을 통하여 POSCO 소결로 배연가스 처리용 탈질촉매모듈 개발을 목표로 상용화연구를 수행하였다. 상용화한 촉매모듈을 기존 촉매 중 가장 우수한 성능의 상용 촉매모듈과 함께 POSCO의 소결로 배연가스 처리장치내에 장착하여 비교 시험하였고, 개발된 촉매가 6개월간의 가동후에도 저온영역에서 95%이상의 활성을 지속적으로 유지할 뿐만 아니라 내구성이 우수함을 확인하였다. 본 촉매는 POSCO 소결로에 장착하여 올해 말부터 사용할 예정이다. 하헌필 박사는 “이번 촉매개발은 출연연에서 물질특허를 확보하여 중소기업에 이전하고 중소기업은 이를 기반으로 부품소재로의 상용화기술을 개발하여 대기업에서 이를 채택 사용한 사례로, 고가의 외국산 촉매를 대체한다는 데 의미가 크다. 또한 출연연-중소기업-대기업이 선순환 구조를 통하여 상생 협력하여 결과를 낸 좋은 본보기가 되었다”고 말했다. 또한, “본 물질의 설계과정에서 축적된 노하우를 바탕으로 극저온 및 고온영역에서도 작동할 수 있는 환경촉매개발이 진행 중인데 이는 수조원 이상의 시장이 기대되는 이 분야 연구에서 세계적 선도 역할을 할 수 있게 되었다”고 말했다. 이번 연구성과는 KIST 기관고유사업 및 중소기업청 구매조건부사업을 통해 수행되었으며, 한국, 중국, 유럽에 특허 등록 및 출원되었다. ○ 연구진 <(주) 대영씨엔이 노세윤 사장> ○ 그림설명 <그림1> 촉매의 작동과정 유해물질인 질소산화물이 환원제와 함께 촉매가 코팅된 모듈을 통과하면 인체에 무해한 질소 및 물로 변환된다. <그림2> (주) 대영씨엔이에서 제조한 촉매모듈 및 POSCO 광양 소결로 배연장치내
저온탈질촉매, 세계시장 주도 기대
KIST 개발 저온탈질촉매, 세계시장 주도 기대 - 출연연 물질 특허 개발, 중소기업-대기업 상용화 협력의 본보기 - 원가 절감, 친환경 탈질촉매로 가격·성능·내구성 3가지 경쟁력 확보 대기오염의 주범인 질소산화물. 이 질소산화물 처리를 위해서는 제철소 배연가스 소결로에 촉매를 장착하여 유해물질을 제거하는 기술이 필요하다. 가격을 획기적으로 낮추면서도 효율과 내구성을 높인 촉매기술이 국내 연구진에 의해 개발되어 외국제품에 의존했던 촉매의 국산화에 성공했다. 한국과학기술연구원(KIST, 원장 문길주) 다원물질융합연구소 하헌필 박사팀은 고가의 텅스텐 등 희소금속을 사용하지 않는 대신 가격이 싼 비전이(非轉移)금속 조촉매를 사용하여 친환경적인 탈질촉매(질소산화물 환원촉매)를 개발했다고 밝혔다. * 비전이 금속계 : 주기율표상 15, 16족에 분포하는 금속군으로 일반금속과는 다른 전자구조를 가지는 물질 질소산화물은 연료의 연소과정에서 필연적으로 생성되어 산성비, 온실가스형성 등 대기오염의 주범으로 지목되고 있다. 최근에는 질소산화물의 배출규제가 엄격해지고 배출가스의 처리환경이 까다로워져 탈질촉매 기술 개발이 활발히 이루어지고 있다. 현재 세계적으로 탈질촉매는 주로 타이타니아 위에 바나듐을 첨가하여 활성물질로 사용한다. 철 제조 공정 중 가장 오염물질 배출이 많은 소결로*는 촉매의 작동온도가 250정도의 저온이므로 촉매의 내구성이 쉽게 저하된다. 이러한 환경에서 촉매 내구성 증진을 위해 현재까지는 값비싼 텅스텐이나 몰리브덴과 같은 희소금속을 다량 첨가한 외국산 촉매를 사용하여왔다. 개발된 촉매는 비전이 금속 조촉매를 소량 첨가하고, 가격이 희소금속에 비하여 저렴하여, 최종 촉매가격이 기존 촉매보다 30%이상 원가가 저렴하다. 또한 낮은 온도영역에서 높은 촉매활성이 입증되어 외국의 촉매보다 가격·성능·내구성 면에서 모두 높은 경쟁력을 가진 세계시장을 주도하는 제품이 될 것으로 기대된다. * 제철소 소결로 : 철 제조를 위해서 철광석을 용광로에 주입하기 전에 전처리 (소결) 시켜주는 공정 하헌필 박사팀은 촉매의 작동과정을 모델링하고 물질 구성의 기본 요소인 전자와 원자핵의 양자적 상호작용을 계산하여 물질을 설계하는 양자화학 계산을 통하여 기존에 사용하지 않던 저가의 비전이 금속계에서 저온 촉매성능을 높일 수 있는 조촉매 물질을 발견하고, 물질특허를 획득하였다. 개발된 촉매는 비전이 금속 조촉매를 소량만 첨가하여도 모든 촉매특성이 기존 상용되는 촉매에 비하여 우수하다는 것을 확인하였다. KIST는 이 기술을 강릉산업과학단지 소재 탈질촉매 전문제조회사인 ㈜대영씨엔이(사장 노세윤)에 이전하였고, ㈜대영씨엔이는 이전된 물질특허를 기반으로 POSCO와 함께 중소기업청 구매조건부사업을 통하여 POSCO 소결로 배연가스 처리용 탈질촉매모듈 개발을 목표로 상용화연구를 수행하였다. 상용화한 촉매모듈을 기존 촉매 중 가장 우수한 성능의 상용 촉매모듈과 함께 POSCO의 소결로 배연가스 처리장치내에 장착하여 비교 시험하였고, 개발된 촉매가 6개월간의 가동후에도 저온영역에서 95%이상의 활성을 지속적으로 유지할 뿐만 아니라 내구성이 우수함을 확인하였다. 본 촉매는 POSCO 소결로에 장착하여 올해 말부터 사용할 예정이다. 하헌필 박사는 “이번 촉매개발은 출연연에서 물질특허를 확보하여 중소기업에 이전하고 중소기업은 이를 기반으로 부품소재로의 상용화기술을 개발하여 대기업에서 이를 채택 사용한 사례로, 고가의 외국산 촉매를 대체한다는 데 의미가 크다. 또한 출연연-중소기업-대기업이 선순환 구조를 통하여 상생 협력하여 결과를 낸 좋은 본보기가 되었다”고 말했다. 또한, “본 물질의 설계과정에서 축적된 노하우를 바탕으로 극저온 및 고온영역에서도 작동할 수 있는 환경촉매개발이 진행 중인데 이는 수조원 이상의 시장이 기대되는 이 분야 연구에서 세계적 선도 역할을 할 수 있게 되었다”고 말했다. 이번 연구성과는 KIST 기관고유사업 및 중소기업청 구매조건부사업을 통해 수행되었으며, 한국, 중국, 유럽에 특허 등록 및 출원되었다. ○ 연구진 <(주) 대영씨엔이 노세윤 사장> ○ 그림설명 <그림1> 촉매의 작동과정 유해물질인 질소산화물이 환원제와 함께 촉매가 코팅된 모듈을 통과하면 인체에 무해한 질소 및 물로 변환된다. <그림2> (주) 대영씨엔이에서 제조한 촉매모듈 및 POSCO 광양 소결로 배연장치내