보도자료
-
19
뇌 기능 조절 물질의 이동 통로 찾았다
뇌 기능 조절 물질의 이동 통로 찾았다 - 뇌기능과 관련된 포타슘 이온의 농도를 스펀지처럼 조절하는 통로 발견 - 2개의 단백질 간의 화합결합으로 만들어진 새로운 통로임을 밝혀 - 발견된 통로는 뇌 기능의 핵심인 신호전달 물질의 통로로 밝혀져 뇌가 정상적으로 활동하기 위해서는 뇌에 존재하는 칼슘이나 포타슘(K⁺, 칼륨) 등 다양한 이온들의 농도가 일정하게 유지되어야 한다. 우리에게는 칼륨이라고 알려져 있는 포타슘 이온은 농도가 갑자기 증가하게 되면 심한 경우 발작이나 경련 등이 일어나고, 반대로 농도가 낮아지면 우울증이나 불안장애가 일어난다. 이처럼 이온의 농도가 미치는 영향은 이미 많은 연구로 밝혀진 반면, 이 이온들이 어떤 통로를 통해 이동하는지는 그동안 오랜 숙제로 남아 있었다. 국내 연구진이 스펀지가 물질을 흡수하듯, 포타슘 이온 농도를 조절하는 통로를 발견했다. 발견된 통로는 뇌의 핵심 기능인 신호전달 물질이 통과하는 통로라는 사실도 추가로 밝혀졌다. 한국과학기술연구원(KIST) 기능커넥토믹스 연구단 황은미 박사팀, 이창준 박사팀과 경상대학교 의과대학 박재용 교수팀이 공동으로 수행한 이번 연구는 미래창조과학부가 추진하는 세계적인 연구센터 개발사업 (WCI)과 선도연구센터지원사업 (MRC)의 일환으로 수행되었으며, 네이처 출판 그룹 (Nature Publishing Group; NPG)이 출판하는 세계적 국제학술지인 ‘Nature Communications’온라인 판 2월 5일자에 게재되었다. (논문명 : A disulphide-linked heterodimer of TWIK-1 and TREK-1 mediates passive conductance in astrocytes) 뇌를 구성하는 대표적 세포는 신경세포와 성상교세포이다. 신호 전달이 이루어지는 신경세포가 활성화되기 위해서는 주변의 성상교세포가 스펀지처럼 포타슘 이온을 흡수해야 한다. 포타슘 스펀지 역할은 성상교세포에서만 발견되는 유일한 현상으로, 신경세포 외부의 포타슘이온 농도를 일정하게 유지될 수 있도록 도와주는 역할을 한다. 문제는 포타슘 이온이 어떤 통로를 통해 이동하는지를 알 수가 없다는 점이다. * 포타슘(K⁺) : 보통 칼륨이라고도 불리는 은백색의 금속원소. 신경활성을 조절하는 중요한 이온으로, 뇌척수액에서는 2.6~3.0 mmol/L 농도로 유지됨. * 성상교세포 : 신경세포에 영양분이나 신경전달물질 등을 운반하는 비신경 세포의 일종. 신경세포의 위치를 고정하거나 혈액 뇌관문을 형성하는 등 뇌 활동에 중요한 역할을 담당함. 이온이 이동하는 통로를 밝히기 위해 연구팀은 갓 태어난 생쥐의 뇌에서 성상교세포를 분석하였고, 트윅(TWIK-1)과 트렉(TREK-1) 2개의 이온통로만이 존재함을 알 수 있었다. 이에 연구진은 2개의 이온 통로가 포타슘 스펀지 역할의 핵심이라 생각했다. 유전자 조합 및 바이러스를 활용하여 각각의 이온통로의 활동을 조절한 결과, 2개의 이온통로들은 개별적으로 작용할 때는 기능을 할 수 없다는 것을 확인했다. 이온통로들이 화학적 결합을 통해 새로운 단백질로 합성되어야 이러한 기능이 나타나는 것이다. * 트윅(TWIK-1) : 최초로 발견된 K2P 이온통로 (두 개의 이온통로구를 가진 포타슘 이온통로) 로서 독립적으로 발현시키면 포유동물의 세포막에 거의 존재하지 못하기 때문에 기능이 없는 채널로 알려짐. * 트렉(TREK-1) : 두 번째로 발견된 K2P 이온통로로서 다양한 자극에 반응 하여 포타슘을 통과시키며, 세포막 전위를 결정하는 데 관여함. 그동안 트윅과 트렉은 1996년 이후 차례로 밝혀진 이온통로들이지만, 이 중 트윅은 기능이 없다고 알려져 왔다. 새로운 포타슘 이온통로의 발견은 하나의 이온통로가 하나의 특성을 가진다는 공식을 깨고 다른 종류의 단백질이 결합하여 다양한 다른 역할을 수행할 수 있다는 가능성을 보여준 좋은 예라고 할 수 있다. 한편, 연구팀은 이번에 발견한 이온통로가 글루타메이트가 배출되는 통로라는 사실을 추가로 발견했다. 글루타메이트는 주로 신경세포 말단의 시냅스에서 배출되며, 세포간에 신호를 전달하는 뇌의 핵심적인 요소이다. 최근 연구로 글루타메이트는 성상교세포에서도 배출된다는 사실이 확인되었는데, 이 배출되는 통로 역시 이번에 발견한 이온통로로 밝혀진 것이다. 글루타메이트의 농도가 높으면 신호전달이 잘 된다고 볼 수 있기 때문에, 이동 통로의 발견은 뇌기능 핵심인 신호전달 체계를 규명하는데에도 활용될 것으로 보인다. 논문 제 1 저자인 KIST 황은미 박사는 “이번 연구를 통하여 오랫동안 궁금해 해왔던 포타슘 스펀지 역할의 이온통로를 확인하였으며, 포타슘이온 농도의 조절 실패로 인한 뇌전증, 우울증, 불안장애 등의 신경계 질환에 대한 새로운 치료 가능성을 제시할 수 있을 것”이라고 밝혔다. ○ 그림자료 <그림 1> 성상교세포의 포타슘이온 농도 조절과 뇌기능에 관한 모식도 새로이 규명된 성성교세포의 트랙-트윅 이종결합 이온통로가 정상적으로 기능을 수행할 경우, 세포 외부의 포타슘이 성상교세포로 흡수되어 외부 포타슘이온 농도가 낮은 농도로 유지됨으로써 정상적인 뇌기능이 유지된다. 그러나 트랙-트윅 이종결합 이온통로의 기능에 문제가 생기면, 성상교세포가 세포 외부의 포타슘을 흡수할 수 없어 외부 포타슘이온이 과도하게 많아지게 되며 이로 인해 신경세포가 지나치게 흥분하는 뇌전증이 유발되게 된다. <그림 2> 대표적인 실험 결과 : 트윅, 트렉 이온통로의 결핍이 성상교세포의 포타슘 스펀지 능력에 미치는 영향 재조합 렌티바이러스를 이용하여 성상교세포의 트윅 또는 트렉 이온통로의 발현을 억제한 후, 동일한 세포에서 전기생리학적 실험 방법으로 포타슘 스펀지 기능을 측정하였다. 그 결과, 트윅, 트렉 이온통로가 성상교세포의 포타슘 스펀지 기능을 수행하고 있음을 확인하였다. 본 연구를 통하여 지난 20여년 동안 베일에 싸여있던 포타슘 스펀지 기능을 수행하는 이온통로의 분자적 실체를 규명하는 성과를 거두었다. <그림 3> 트윅, 트렉 이온통로의 모식도 새로이 규명된 성성교세포의 트랙-트윅 이종결합 이온통로가 정상적으로 기능을 수행할 경우, 세포 외부의 포타슘이 성상교세포로 흡수되어 외부 포타슘이온 농도가 낮은 농도로 유지됨으로써 정상적인 뇌기능이 유지된다. 그러나 트랙-트윅 이종결합 이온통로의 기능에 문제가 생기면, 성상교세포가 세포 외부의 포타슘을 흡수할 수 없어 외부 포타슘이온이 과도하게 많아지게 되며 이로 인해 신경세포가 지나치게 흥분하는 뇌전증이 유발되게 된다.
- 18
- 작성자뇌과학연구소 기능커넥토믹스연구단 이창준, 황은미 박사팀
- 작성일2014.02.06
- 조회수35955
-
17
꿈의 그래핀, 플라스틱으로 더 쉽게 만들 수 있다
꿈의 그래핀, 플라스틱으로 더 쉽게 만들 수 있다 - 고분자 용액의 코팅과 열처리만으로 그래핀의 특성을 가진 물질 제조 - 태양 전지, 반도체칩 등 전자소자 대량 생산 가능성 열려 전도성, 유연성, 내구성 등이 다른 물질보다 탁월한 그래핀은 꿈의 신소재로 불릴만큼 각광을 받고 있다. 그러나 생산 공정이 복잡하고 대량생산이 어려워 실생활에 활용하기 어렵다는 단점이 있다. 국내 연구진이 그래핀을 만드는 과정에서 발생하는 인공적 결함은 개선하고, 특성은 그대로인 탄소물질을 개발했다. 개발된 물질은 태양전지, 반도체 칩 등 그래핀이 쓰이는 곳에 사용할 수 있고, 이미 상용화된 공정으로 개발되어 상업화에 한층 가까워졌다. 관련 연구는 연구의 참신성을 인정받아 나노분야의 권위지인 Nanoscale의 표지 논문을 장식했다. 한국과학기술연구원(KIST) 전북분원(분원장 홍경태) 복합소재기술연구소 탄소융합소재연구센터 조한익 박사팀은 전북대 유연인쇄전자공학과 나석인 교수와 한국화학연구원 김병각 박사팀과 함께 면적이 큰 CVD 그래핀이 가진 문제를 해결하고자 플라스틱의 원료인 고분자를 이용하여 그래핀과 유사한 구조와 특성을 가지면서, 투명한 탄소나노시트를 개발했다. 이번 연구 성과는 나노기술 분야의 권위지인 영국왕립화학회지의 나노스케일(Nanoscale)에 "One-step synthesis of carbon nanosheets converted from a polycylic compound and their direct use as transparent electrodes of ITO-free organic solar cells"의 제목으로 게재되었으며, 연구의 우수성 및 참신함을 인정받아 1월 21일자 권두 표지논문으로 선정되었다. <그림 1> 품질이 좋고 면적이 수 십 인치에 달하는 대(大)면적의 그래핀 제작에는 화학적 기상 증착법*이 많이 이용된다. 그러나 이 방법은 금속을 촉매로 사용해야 하기 때문에, 그래핀 제작 후에는 사용한 금속을 제거해야하고, 제작한 그래핀을 태양전지 등 다른 기판으로 옮기는 후공정(전사공정)이 반드시 필요하다. 이 때문에 주름(wrinkle) 및 균열(crack) 등의 결함(defect)이 생겨 품질이 저하된다는 단점이 있다. * 화학적 기상 증착법 (CVD, chemical vapor deposition): 촉매 작용을 하는 금속필름의 기판위에 그래핀을 만드는 기법. ‘소스 가스’(source gas)라 불리는 가스를 기판위에 불어넣어 제작한다. 제작 후 금속을 제거해야하고, 다른 기판위에 그래핀을 이동시켜야 한다. 공동 연구팀은 기판 위에 고분자 용액을 코팅시켜 열처리를 가하는 2단계 공정으로 ‘탄소나노시트’를 개발했다. 기존 그래핀 제작 공정이 8단계였던것을 감안하면 크게 단순해진 것이다. 게다가 별도의 후처리공정 없이 태양전지 등으로 바로 사용이 가능하다<그림 2> 연구팀은 탄소 분자 내에 사다리 구조의 고분자인 PIM-1(Polymer of intrinsic microporosity-1)을 합성해, 고분자 용액을 만들었다. 엷은 초록색을 띈 고분자 용액을 기판인 석영(quarts)위에 회전시켜 골고루 뿌려 코팅한 후, 섭씨 1200도로 열처리를 하면 투명한 탄소나노시트가 만들어진다. 개발된 ‘탄소나노시트’는 단순한 제작공정으로 대량 생산이 가능할 뿐 아니라, 금속 기판을 제거하고, 생성된 그래핀을 다시 이동하는 등 기존 그래핀에서 결함을 유발하는 작업이 제거되어 품질 면에서도 우수한 것으로 나타났다. 효율성 측면에도 그래핀에 뒤지지 않는다. KIST 조한익 박사는 “개발된 공정은 이미 상용화된 탄소섬유의 제조공정을 이차원 탄소소재 합성에 응용한 것으로, 이미 공정이 구축된 방법인 만큼 투명하고 전도성을 갖는 이차원 탄소소재의 상업화에 쉽게 이용될 수 있을 것으로 보인다”고 말했다. 이번 연구는 본 연구팀에 의해 최근에 게재된 폴리아크릴로니트릴을 이용한 탄소나노시트 (2013년 Carbon 55호 및 Applied Physics Letters 102호 게재)에 관한 후속 연구로, 탄소나노시트의 성장 메커니즘을 이해하고 더욱 간단한 제조 공정을 제시했다는 데 의의가 있다. 이번 연구는 KIST의 기관고유연구사업 및 한국연구재단의 연구비 지원으로 수행되었다. ○ 연구진 ○ 그림자료 <그림1> 'Nanoscale'의 2014년 1월 21일자 권두 표지논문이미지, 초록색 고분자 용액이 회전하면서 코팅되는 모습, 이러한 탄소나노시트는 검은 부분으로 표현된 그래핀이 결함은 최소화하고 유사한 특성을 가진 물질이다. <그림 2> PIM-1 고분자를 이용한 투명하고 전도성을 가진 탄소나노시트의 제작방법 및 특성. (a)는 사다리(ladder) 형태의 구조를 가지는 PIM-1 고분자 용액을 투명한 석영(quarts) 기판 위에 코팅한 다음, 고온의 열처리를 통해 탄소나노시트를 제조하고 이 위에 별도의 추가 공정 없이 유기태양전지(OSC, orgarnic solar cell)를 구성하면 태양전지 제작이 가능한다. (b), (c), (d)는 PIM-1 고분자 농도에 기인한 탄소나노시트의 두께, 표면저항 및 투명도를 나타내는 그래프로써, 고분자 용액의 농도 제어를 통해 형성되는 탄소나노시트의 전기적, 광학적 특성들을 손쉽게 제어 가능함을 보여준다. 고분자 용액의 농도((b),(c) x축))가 높아지면 (b)그림에서 보듯 두께는 두꺼워지지만 (c)그림에서 보듯 저항이 줄어들어 전류는 더 잘 흐르게 된다. <그림 3> 개발된 투명 탄소나노시트의 이미지 (15mm)
- 16
- 작성자전북분원 탄소융합소재연구센터 조한익 박사팀
- 작성일2014.01.20
- 조회수24892
-
15
기억력 좋은 사람, 태어날 때부터 일부 결정
기억력 좋은 사람, 태어날 때부터 일부 결정 - 해마의 상세한 신경망 분석을 통해 신천적으로 같은 시기에 발생한 자매 세포간의 긴밀한 네트워킹 확인 - 3차원 영상 분석기술 "엠그래스프"를 통해 살아있는 상태의 쥐의 뇌를 시냅스 수준에서 분석 해마는 뇌에서 기억과 공간개념을 관장하는 중요한 부분이다. 해마를 구성하는 신경세포들의 접합부인 시냅스는 서로 끊임없이 신호를 주고 받음으로써 이러한 능력을 발휘한다. 국내 연구진이 뇌를 시냅스 차원에서 분석하여 특정 세포간의 연결이 더 밀접하다는 사실을 발견했다. 연구진은 또한 그러한 신호 패턴을 보이는 특정세포들이 선천적으로 같은 시기에 발현된 자매세포(sister cells)임을 밝혔다. 한국과학기술연구원(KIST) 기능커넥토믹스연구단 김진현 박사팀이 국내유치 해외연구원 린칭팽(Linqing Feng, 제 1저자) 박사와 수행한 이번 연구는 미래창조과학부와 한국연구재단이 추진하는 세계수준의 연구센터(WCI) 사업의 일환으로 수행되었으며, 신경과학 분야의 권위있는 학술지인 ‘Neuron’ 온라인판에 1월 9일 게재되었다. (논문명 : Structured synaptic connectivity between hippocampal regions) 연구팀은 최근 개발한 mGRASP 기술(엠그래스프, 2012년 Nature methods지에 게재)에 3차원 영상 분석 소프트웨어 (2012년도 Bioinformatics 지 게재)를 접목하여 해마에서 기억과 학습에 밀접하게 관련이 있다고 알려진 부위의 신경연결망을 3차원으로 시각화하였다. CA3에서 CA1 영역의 신경세포들은 해마에서 기억과 학습영역에 밀접하게 관련이 있는 부위로 알려져 있다. 연구팀은 mGRASP기술을 통해 상세한 신경신호가 시냅스에서 어떻게 전달되는지를 밝힐 수 있었다. * 해마는 크게 DG, CA3, CA1 으로 불리는 세부 부위로 나누어진다. 주된 신호 전달 방향은DG→CA3→CA1 으로 이루어진다. 본 연구에서는 CA3와 CA1 영역의 신경세포들을 사용하였다. 그동안 뇌의 해마부위를 구성하는 신경세포들에서 신호가 어떻게 전달되는지, 연결 구조를 밝히는데 어려움이 있었다. 따라서 1:1의 단순한 구조나 균등한 연결망을 이룬다는 가설이 지배적이었다. 연구팀은 CA3, CA1 영역의 세포들의 시냅스에서 이 가설을 분석한 결과, 실제로는 특정 세포간의 연결성이 더 강하다는 사실을 발견했다. 연구팀은 더 나아가 이러한 연결패턴은 같은 발생시기에 태어난 “자매세포 (sister cells)”간에 두드러지게 나타난다는 것을 발견했다. 자매세포 간에는 시냅스의 신호전달이 더 활발하게 일어난다는 뜻이다. * 자매세포 : 발생중 한 세포의 분열에 의하여 생긴 한쌍의 세포들, 자매세포는 배아 상태에서 결정되어 각각의 뇌 특정부위로 이동하여 출생후에도 분자생물학적 공통성을 내재하고 있다. 연구진은 시냅스에서 신호전달 패턴이 고도로 조직화된 패턴으로 이루어지고, 자매세포라는 선천적 특성이 이러한 정보 처리 과정에 연관이 있다는 것을 밝혔다. 이는 자매세포라는 프레임이 구조적으로 잘 구축된 사람이 그렇지 않은 사람보다 기억력이 좋을 수 있는 가능성을 보여준다. (그림 3 참고) 김진현 박사는 “mGRASP라는 신경망 지도를 그릴 수 있는 새로운 기법을 활용하여 기존보다 정확하고 빠른 신경망회로 분석이 가능했고, 이를 통해 학습기억 습득에 선천적인 영향이 있음을 밝힐 수 있었다”며, “향후 이와 같은 연구가 뇌의 특정 부위에 특화된 약물 타겟팅 및 뇌질환 진단에 이용될 수 있을 것으로 예상된다.”고 밝혔다. ○ 그림설명 <그림 1> 20nm 간격의 시냅스를 광학현미경으로 살아있는 시냅스에서 획기적 쉽게 찾아낼 수 있는 mGRASP(mammalian GFP Reconstitution Across Synaptic Partners) 기술을 보여주는 모식도 <그림 2> mGRASP기술을 이용한 해마의 신경세포 CA3에서 CA1 연결망, CA3에서 보낸 신호가 CA1으로 연결된다. 엠그래스프 기술을 활용하면 시각화가 가능하다 <그림 3> 세포수준(A)과 수상돌기수준(B)에서 신경망회로 연결성 패턴을 알기 위해 설정한 가설들, 왼쪽은 1:1로 연결되는 모습, 오른쪽은 특정 연결패턴으로 신호가 전달되는 모습. 연구 결과 오른쪽 가설이 옳다는 것을 증명되었다 <그림 4> mGRASP기술과 분석 소프트웨어를 이용한 해마의 CA3에서 CA1 연결망을 3차원으로 가시화한 이미지
- 14
- 작성자뇌과학연구소 기능커넥토믹스연구단 김진현 박사
- 작성일2014.01.10
- 조회수30851
-
13
형형색색 눈에 보이는 뇌, 슈퍼 단백질에 빛을 쏘여라
형형색색 눈에 보이는 뇌, 슈퍼 단백질에 빛을 쏘여라 - 뇌 회로의 작동을 눈으로 보여주는 센서, 슈퍼클로멜레온 개발 - 슈퍼클로멜레온 개발을 위한 자동화 로봇 개발 - 낭포성 섬유종 및 뇌 질환 기전 연구 실마리 제공 뇌 세포 간의 연결과 작동원리는 20세기 초부터 꾸준히 연구되어 왔지만 수천 개에서 수백억 개의 신경세포가 복잡하게 얽혀있는 뇌를 연구하기는 쉽지 않다. 이런 복잡한 뇌의 연결구조를 빛을 이용하여 눈으로 볼 수 있게 만든 연구가 국내 유치 해외 연구진에 의해 개발되었다. 한국과학기술연구원(KIST, 원장 문길주) 기능커넥토믹스연구단 조지어거스틴(George Augustine) 박사팀이 수행한 이번 연구는 미래창조과학부와 한국연구재단이 추진하는 세계수준의 연구센터(WCI) 사업의 일환으로 수행되었으며, 신경과학 분야의 권위있는 학술지인 ‘Journal of Neuroscience’ 10월호에 게재되었다.(논문명 : Visualization of Synaptic Inhibition with an Optogenetic Sensor Developed by Cell-Free Protein Engineering Automation) 뇌가 제 기능을 수행하는데 가장 기본이 되는 시냅스. 시냅스는 흥분성 시냅스와 억제성 시냅스로 구분되는데 두 개의 시냅스가 균형을 이룰 때 신경회로는 정상적인 기능을 할 수 있다. 시냅스간의 소통은 +와 - 성질을 가진 이온의 교환을 통해 이루어지는데, 억제성 시냅스가 활성화 되는지 여부는 세포 내의 염소 이온(Cl-)의 농도 변화에 의해 조절된다. 따라서 신경세포 내의 염소 이온의 농도 측정은 억제성 신경망 연구에 매우 중요하다. ※ 흥분성/억제성 시냅스 : 하나의 신경세포가 다른 신경세포를 흥분시키느냐 억제시키느냐에 따라서 흥분성 시냅스와 억제성 시냅스로 분류된다 연구진은 이온 농도 측정을 위해 빛을 이용했다. 빛은 파장에 따라 다른 색깔이 나타나는 특징이 있는데, 단백질 중 빛에 반응하는 형광단백질을 뇌 기능 연구를 위해 활용한 것이다. 형광 단백질은 특정 파장의 빛에 각각 반응하여, 자기만의 고유한 파장의 빛을 내는 성질이 있다. 서로 다른 두 가지 형광단백질이 서로 충분히 가까운 거리 내에 적절한 방향으로 존재하면, FRET 반응이 일어나는데, 두 형광단백질 중 빛을 받는 단백질은 염소 이온과 결합이 가능하다. ※ FRET (fluorescence resonance energy transfer)반응 : 두 형광단백질에 빛을 쬐었을 때, 처음 반응이 일어난 하나의 형광단백질(공여자; donor)에서 발산된 파장의 빛에 의해 옆에 위치한 형광단백질(수용자; accepter)이 활성화되어 자신의 파장의 빛을 발산하는 현상 이러한 두 가지 형광단백질을 연결하면, 염소 이온의 존재 여부에 따라 발산하는 빛의 파장이 달라지는 센서로서 역할을 할 수 있다. 이러한 원리에 의해 고안된 센서단백질이 클로멜레온(Clomeleon)이다. 그러나 기존의 클로멜레온은 1) 신호 대 잡음비가 낮아 염소 이온 농도 측정에 많은 오차를 유발 할 수 있는 점, 2) 염소 이온 농도에 따른 FRET 비율의 변화 폭이 좁다는 점, 3) 기존의 기법으로는 클로멜레온을 만드는데 막대한 시간이 소요된다는 점에서 한계를 가지고 있었다. 어거스틴 박사는 Duke 대학교 Hellinga 박사 연구팀과 공동으로 단시간 내에 최적의 클로멜레온을 제작하는 단백질 제작 자동화로봇 시스템을 개발 하였고, 이를 이용하여 그 특성이 훨씬 향상된 새로운 염소 이온 센서 단백질, 슈퍼클로멜레온(SuperClomeleon)을 만들게 된 것이다. 슈퍼클로멜레온은 기존 클로멜레온에 여러 가지 돌연변이를 도입하여 다양하게 변형된 후보 단백질을 만들었다. 그 후, 여러 단계의 스크리닝 및 특성을 확인하는 시험 과정을 통해 기능을 확인하였다. 그 결과 기존의 전통적인 분자생물학적, 생화학적 방법으로는 한 번에 한 가지 돌연변이 단백질 밖에 만들 수 없었던데 비해, 새로운 자동화로봇시스템을 도입하여 384개의 돌연변이 후보 단백질을 단 한 번의 작동으로 만들 수 있게 되었다. 이러한 제작 공정의 획기적인 이점 외에도, 슈퍼 클로멜레온은 기존 클레멜레온에 비해 염소 이온 변화에 따른 FRET 비율의 변화폭이 2배이상 증가하였고, 높은 신호 대 잡음비를 얻을 수 있어 오차를 줄 일 수 있었다. 따라서 슈퍼클로멜레온을 이용하면, 훨씬 선명한 이미지를 통해 염소 이온의 농도 측정할 수 있고, 이를 통하여 높은 해상도의 억제성 신경회로망 규명이 가능하다. <신경 세포 내에서 슈퍼클로멜레온(붉은 막대)은 기존의 클로멜레온(검은 막대)에 비해 향상된 높은 신호 대 잡음비를 보인다(최대 약 6 배).> 이처럼 특정 파장의 빛으로 활성이 조절되거나 혹은 특정한 이온, 막전위 등에 반응하여 빛을 내는 단백질을 신경세포 내로 도입하여, 뇌 회로를 연구하는 것이 광유전학(Optogenetics)기술이다. 본 연구는 센서단백질을 신경세포에 도입 및 발현시켜 신경세포 활성 여부를 광학 현미경을 통해 관찰했다. 이를 통해 얻어진 이미지를 분석함으로써 살아있는 쥐에서 특정부분의 뇌가 어떻게 작용하는지 효율적으로 파악할 수 있는 방법을 제시하였다. 본 연구는 복잡한 신경회로가 어떻게 기능하는지를 분석하는데 토대를 마련하고 특정 뇌질환 및 유전병의 원인 규명이 가능할 것으로 기대된다. 한 예로 뇌의 염소이온농도에 이상이 생길 경우, 체내에 점액이 과다 생산되는 낭포성 섬유증 같은 질환의 연구에 기술이 이용될 수 있다. 또한 각종 뇌 질환을 치료하는 약물 스크리닝 등에 폭넓게 활용할 수 있을 것이다. KIST 조지어거스틴 박사는“이번 연구를 통해 최적의 단백질을 단시간 내에 제조하는 기술 개발에 성공하였고, 이를 광유전학 기술과 결합하여 뇌 활동을 이미지화하는 획기적인 신경기능 회로 연구의 토대를 마련했다”고 전하며, “국내 단백질 공학 수준을 한 단계 끌어올리는 계기를 마련했다”고 연구의의를 밝혔다. ○ 그림설명 <그림1> 슈퍼클로멜레온(SuperClomeleon)이 주입된 생쥐 신경세포에서 각각 다른 양의 염소이온 양이 측정되는 것을 시각적으로 보여준다. 염소 농도가 진해질수록 청색이 더 진해지는 것을 볼 수 있다. <그림2> 화학적 시냅스의 작동원리. 전시냅스 세포 (presyanptic neuron)의 말단에서 분비된 신경전달물질 (neurotransmitter)는 후시냅스 세포 (postsynaptic neruon)의 수용체 (neurotransmitter receptor)에 결합하여 수용체를 활성화 시킨다. 활성화 된 수용체에서는 이온 통로가 개방되고, 이를 통해 이온에 이동하여 후시냅스 세포의 활성을 조절한다. 억제성 시냅스의 경우, GABA라는 신경전달물질이 분비되며, GABA 수용체가 활성화되면 염소 이온이 개방된 염소 이온 통로를 통해 신경 세포 내부로 이동하여 후시냅스 세포의 활성을 억제한다. <그림3> 클로멜레온의 작동원리. 클로멜레온은 염소 이온에 결합하지 않는 공여자 형광단백질인 CFP와 결합할 수 있는 수용자 형광단백질 YPF로 구성되어 있고 이 두 형광단백질 간에는 FRET 현상이 일어날 수 있다. 염소 이온이 결합하지 않은 경우 클로멜레온은 YFP 파장의 빛이 주로 발산되고, 염소 이온이 결합한 경우에는 CFP 파장의 빛이 주로 발산된다. 두 가지 파장의 빛의 강도를 현미경을 통해 측정할 수 있고, 그 비율을 계산함으로써 신경 세포 내의 염소 이온의 농도를 알 수 있다. <그림4> 슈퍼클로멜레온 자동화 장치 모습
- 12
- 작성자뇌과학연구소 기능커넥토믹스연구단 조지 어거스틴 박사팀
- 작성일2013.11.26
- 조회수34866
-
11
플렉서블 메모리 최초 개발, 입는 컴퓨터 개발 박차
플렉서블 메모리 최초 개발, 입는 컴퓨터 개발 박차 - KIST, 자유롭게 구부러지는 유기물 탄소나노복합체 기반 64bit 메모리 개발 - 전류 방향을 제한하여 데이터 성능 개선 휘어진 스마트폰 출시로 구부러지는 전자제품에 대한관심이 고조되고 있다. 휘어지는 디스플레이 기술은 최신 전자소재소자기술의 집약체라 할 수 있다. 그러나 이러한 제품이 개발되기 위해서는, 디스플레이 외에도 메모리 등 다른 부품들 역시 휘어지는 상황에서 완벽히 동작할 수 있는 있어야 한다. 한국과학기술연구원(KIST, 원장 문길주) 전북분원(분원장 홍경태) 복합소재기술연구소 소프트혁신소재연구센터 김태욱 박사팀은 광주과학기술원 지용성 박사과정 학생(지도교수, 고흥조 교수)과 함께 정확한 데이터 저장 및 삭제가 가능한 휘어지고 비틀어지는 탄소나노소재와 유기고분자복합체를 활용한 64 bit 메모리 어레이 소자 구현에 성공했다고 밝혔다. 이번 연구 성과는 세계적 권위지인 네이쳐 커뮤니케이션스(Nature Communications) “Flexible and twistable non-volatile memory cell array with all- organic one diode-one resistor architecture”Digital Object Identifier (DOI) 10.1038/ncomms3707 11월 1일(금)자 논문으로 게재된다. 현재 주로 사용되고 있는 메모리는 실리콘(Si)을 기반으로 한 딱딱한 무기물 소재로 휘는 성질을 가지기 위해서는 탄소(C)를 기반으로 한 유기복합체로 메모리를 만들어야한다. 개발된 메모리는 이런 유기소재를 상온에서 일렬구조로 쌓고, 기판 위 원하는 장소에 소재를 위치시킬 수 있는 기술을 사용했다. 이러한 기술은 메모리 소자의 저장 용량을 크게 하기 위한 핵심기술이지만 현재까지 구현된 적이 없고 특히 휘어지는 기판 위에 실현하기에 기술적 난이도가 매우 높아 구현되기 힘들었다. 연구팀은 이러한 특성을 가지면서, 휘어지는 상황에서도 데이터 구동이 정확하게 이루어질 수 있도록 한쪽 방향으로 전류를 흐르게 할 수 있는 기술을 개발했다. 한편 과거에는 개별 메모리소자를 격자구조로 제작하여 용량을 늘리는 과정에서 인접한 소자(Cell)들간의 간섭으로 인해 데이터가 정확한 위치에서 저장 및 삭제가 되지 않아 상용화가 어려웠다. 때문에 메모리를 단순히 휘어지게 제작하는 것 이외에 이러한 간섭을 해결하여 정확하게 구동할수 있는 방법에 대한 연구가 꾸준히 진행되었다. 본 연구에서는 탄소나노복합체를 기반으로 한 유기 메모리 소자(Resistor)와 전류방향을 제어할 수 있는 유기 다이오드(Diode)를 층층이 쌓았다. 전류방향을 제어하여 전류가 한 방향으로 흐르게 되면, 데이터 재생 및 삭제 능력을 조절할 수 있어 인접한 소자로부터의 간섭현상을 제어할 수 있다. 이러한 구조의 소자는 1D-1R(1 Diode + 1 Resistor) 형태*로, 자유자재로 접혔다 펴지는 성질을 가지면서 정확한 데이터 처리 능력을 가지게 된다. * 1 D-1R(1 Diode + 1 Resistor) 형태 : 1개의 다이오드 위에 1개의 메모리 소자인 레지스터가 쌓이는 구조로 다이오드가 전류방향을 제어하는 역할을 한다. 기존 유기 메모리 소자는 대표적인 용액 공정인 스핀코팅(spin-coating) 방법으로 제작되어진다. 이러한 방법은 위와 같은 연속적인 공정에서 유기 다이오드 층(1D)과 유기메모리 층(1R)이 손상되는 문제점이 있다. 이러한 문제점을 해결하기 위하여 김태욱 박사는 저온공정에서 패턴을 만들 수 있는 특별한 크로스링커(crosslinker)* 제작방법을 이용했다. 크로스링커 방법은 연속적인 층을 만드는 공정에서 유기메모리 층과 유기다이오드 층이 서로 손상을 입히지 않는 방법이다. 이를 통해 대부분의 구부러지는 성질을 가진 플라스틱 기판에 적용할 수 있는 유기물 구조를 가지면서 64bit의 저장능력과 전원이 차단되어도 저장능력이 사라지지 않는 비휘발성 메모리 소자를 개발에 성공할 수 있었다. * 크로스링커 방법 : 자외선을 유기물소재에 쬐어 원하는 영역만을 빛으로 굳히는 방법으로 저온공정이 가능할 뿐만 아니라 제작 후 유기물소재의 특성을 유지하면서 화학적으로 안정화시킬 수 있는 방법 연구팀은 위에 언급한 인접 소자들로부터의 간섭이 해결된 것을 확인하기 위해 소자가 휘어진 상태에서 “KIST” 글자를 저장하여 구현하는데 성공하였다. 이러한 결과물은 유기 메모리 소자가 기존의 전자소자뿐 아니라 휘어지는 전자제품의 부품으로 적용될 수 있는 가능성을 보여주고 있다. KIST 김태욱 박사는 "이번 연구는 기존 구조의 유기 메모리 소자 연구의 최대 난제를 해결할 수 있는 연구 방향을 제시한 것으로, 향후 휘어지는 전자소자 및 부품 연구에 광범위하게 기여할수 것으로 기대된다" 고 말했다. 이번 연구는 KIST의 기관고유연구사업 및 전라북도의 연구비 지원으로 수행되었다. ○ 연구진 <kist?김태욱 박사=""></kist?김태욱> ○ 그림설명 <그림 1> 유기물 탄소나노복합체 기반 64bit 메모리 (a) 유연한 기판위에 제작되어진 유기물 탄소나노복합체 기반 64bit 메모리 (b) 실제사진 (c) 소자 모식도 : 1D-1R 구조의 유기 메모리 (d) 소자에 사용되어진 다이오드 물질의 화학구조 (e) 소자에 사용되어진 메모리 물질의 화학구조 <그림 2> 제작된 메모리 소자에 데이터의 쓰기 및 읽기 테스트 (a)는 기존의 유기저항변화형 메모리 소자로 (b)에서와 같이 인접 소자의 간섭으로 인해 (c)의 왼쪽 막대 분포에서와 같이 '0'의 전류 값을 읽지 못하고 모두 '1'의 전류 값으로 잘못 읽는 현상을 보여주고 있다. (d)는 이번에 개발된 유기물로만 이루어진 1D-1R 구조로 다이오드로 인해 인접 소자의 간섭 없이 (c)의 오른쪽 막대 분포에서와 같이 '0'의 전류 값과 '1'의 전류 값을 정확히 읽는 현상을 보여주고 있다. (f)는 이러한 전류 값의 '0'과 '1'의 분포를 기반으로 ASCII 코드를 이용하여 한국과학기술연구원의 약자인 'KIST' 글자를 구현한 것을 보여주고 있다.
- 10
- 작성자복합소재기술연구소 소프트혁신소재연구센터 김태욱 박사팀
- 작성일2013.11.01
- 조회수18954
-
9
잘린 신체부위 재생되는 원리 규명, 중추신경 재생 연구 실마리 제공
잘린 신체부위 재생되는 원리규명, 중추신경 재생 연구 실마리 제공 - KIST, 포유류 말초신경 재생 원리 규명 - 중추신경 재생과 연관성 밝혀 응급사고로 손가락이 잘리고, 허벅지에 큰 상처가 나서 다리가 마비되었다. 회복될 수 있을까? 정답은 ‘가능하다’이다. 우리 몸의 감각과 운동자극을 받아들이는 말초신경은 손상 정도와 부위에 따라 회복이 가능하다 . 신경이 다시 재생된다는 뜻이다. 그러나 이러한 신경 재생은 뇌와 척수로 구성된 중추신경에서는 일어나지 않는다. 몸이 두동강이 나도 살아나는 하등동물과 달리, 포유류의 경우 중추신경은 손상이 되면 재생이 불가능하다고 알려져 있다. 슈퍼맨으로 유명한 ‘크리스토퍼 리브’는 중추신경이 손상된 후 끝내 회복하지 못하고 생을 마감하였다. 한국과학기술연구원(KIST, 원장 문길주) 뇌과학연구소 허은미 박사, 미국 존스홉킨스 의과대학 Fengquan Zhou 연구팀이 포유류에서 말초신경계의 재생을 유도하는 기전을 밝혔다. 연구결과는 10월 28일 Nature Communications “PI3K-GSK3 signaling regulates mammalian axon regeneration by inducing the expression of Smad1” 제목으로 게재되었다. 공동 연구팀은 말초신경이 손상되면 PI3K 인산화 단백질과 GSK3 인산화 단백질의 활성이 변하고, 이러한 과정을 통해 신경재생을 최종적으로 유발하는 Smad1 유전자가 발현됨으로써 신경이 재생된다는 사실을 발견했다. 이는 말초신경을 재생하는 인자들이 일련의 신호전달과정을 통해 서로 연결되어 있으며 어느 한 인자라도 조절이 제대로 되지 않으면 신경 재생에 치명적인 영향을 초래할 수 있다는 의미이다. <그림 1 참고> * PI3K (phosphoinositide 3-kinase): 세포 내 신호전달 과정을 조절하는 효소로, 세포 성장, 증식 및 분화, 이동, 생존 등 여러 기능을 조절함 * GSK3 (glycogen synthase kinase 3): 글루코스 대사를 조절하는 효소로 밝혀졌으나 신경계에서도 신경세포의 발달 및 분화, 세포 사멸 조절 등 여러 가지 중요한 역할을 하는 것으로 밝혀지고 있고, 각종 신경성 질환과도 밀접한 관련이 있음 * Smad 1 : 외부 신호를 인식하여 여러 종류의 유전자 발현을 조절함으로써 세포 성장, 분화, 모양 변화, 생존 등의 과정에서 중요한 역할을 하는 전사조절 인자 본 연구에서 발견한 말초신경 재생과 관련한 3개의 인자 PI3K 인산화 단백질, GSK3 인산화 단백질, Smad1 전사조절인자는 우연히도 그동안의 연구를 통해, 중추 신경 재생과 연관이 있다고 개별적으로 밝혀진 몇 안되는 타겟 인자들이다. 타겟 인자의 발견은 수많은 신호전달 과정에 관련된 유전자 및 단백질을 각각 스크리닝 하는 방법을 통해 알게된 것으로, 신경재생과정에서 이들간의 상관관계는 밝혀진 바가 없다. 이들 인자가 일치한다는 것은, 말초 신경 재생과 중추신경 재생이 서로 관련이 있음을 시사한다. KIST 허은미 박사는 “중추신경 재생은 여전히 힘들고 현재까지는 거의 불가능한 것이 사실이지만, 말초신경계에서 일어나는 신경 재생의 기전을 이해함으로써 중추신경 재생에 접근할 수 있을 것으로 보인다. 관련 기전을 밝힘으로써, 재생을 조절하는 새로운 방법을 제안할 수 있다는데 연구의 의의가 있다”고 말했다. 이번 연구는 같은 연구팀에 의해 최근에 개발된 신경재생 모델 (2011년 Nature Communications 제 2권 543호 게제)을 활용한 후속 연구로, 포유류의 신경계 손상과 재생 기전을 이해하는데 한 발 더 다가섰다고 판단된다. ○ 연구진 KIST 허은미 박사 ○ 그림설명 <그림 1> 말초 신경 재생 기작 말초 신경이 손상되면 PI3K 활성화, GSK3 비활성화, Smad1 발현 순서로 재생이 일어난다. 이 과정에서 한 단계가 누락되면 재생은 일어나지 않는다. <그림 2> PI3K-GSK3-Smad1 신호전달 과정이 신경재생에 미치는 영향 가. 생체 내 신경재생 조절 기전을 규명하기 위해 도입한 마우스 모델. 성체 쥐의 신경에 유전자 발현을 조절할 수 있는 물질을 직접 주입한 후 말초신경에 손상을 주어 유도한 유전자의 변화가 신경재생에 미치는 영향을 추적하는 시스템. 나. PI3K와 Smad1이 신경 재생에 체내에서 미치는 영향, 녹색으로 보이는 부분이 재생한 신경세포의 축삭이다. 대조군 신경이 길게 재생이 된 반면, 신호를 저해한 신경은 재생이 상당히 저해되었다.
- 8
- 작성자뇌과학연구소 신경과학연구단 허은미 박사
- 작성일2013.10.30
- 조회수36652
-
7
저온탈질촉매, 세계시장 주도 기대
KIST 개발 저온탈질촉매, 세계시장 주도 기대 - 출연연 물질 특허 개발, 중소기업-대기업 상용화 협력의 본보기 - 원가 절감, 친환경 탈질촉매로 가격·성능·내구성 3가지 경쟁력 확보 대기오염의 주범인 질소산화물. 이 질소산화물 처리를 위해서는 제철소 배연가스 소결로에 촉매를 장착하여 유해물질을 제거하는 기술이 필요하다. 가격을 획기적으로 낮추면서도 효율과 내구성을 높인 촉매기술이 국내 연구진에 의해 개발되어 외국제품에 의존했던 촉매의 국산화에 성공했다. 한국과학기술연구원(KIST, 원장 문길주) 다원물질융합연구소 하헌필 박사팀은 고가의 텅스텐 등 희소금속을 사용하지 않는 대신 가격이 싼 비전이(非轉移)금속 조촉매를 사용하여 친환경적인 탈질촉매(질소산화물 환원촉매)를 개발했다고 밝혔다. * 비전이 금속계 : 주기율표상 15, 16족에 분포하는 금속군으로 일반금속과는 다른 전자구조를 가지는 물질 질소산화물은 연료의 연소과정에서 필연적으로 생성되어 산성비, 온실가스형성 등 대기오염의 주범으로 지목되고 있다. 최근에는 질소산화물의 배출규제가 엄격해지고 배출가스의 처리환경이 까다로워져 탈질촉매 기술 개발이 활발히 이루어지고 있다. 현재 세계적으로 탈질촉매는 주로 타이타니아 위에 바나듐을 첨가하여 활성물질로 사용한다. 철 제조 공정 중 가장 오염물질 배출이 많은 소결로*는 촉매의 작동온도가 250정도의 저온이므로 촉매의 내구성이 쉽게 저하된다. 이러한 환경에서 촉매 내구성 증진을 위해 현재까지는 값비싼 텅스텐이나 몰리브덴과 같은 희소금속을 다량 첨가한 외국산 촉매를 사용하여왔다. 개발된 촉매는 비전이 금속 조촉매를 소량 첨가하고, 가격이 희소금속에 비하여 저렴하여, 최종 촉매가격이 기존 촉매보다 30%이상 원가가 저렴하다. 또한 낮은 온도영역에서 높은 촉매활성이 입증되어 외국의 촉매보다 가격·성능·내구성 면에서 모두 높은 경쟁력을 가진 세계시장을 주도하는 제품이 될 것으로 기대된다. * 제철소 소결로 : 철 제조를 위해서 철광석을 용광로에 주입하기 전에 전처리 (소결) 시켜주는 공정 하헌필 박사팀은 촉매의 작동과정을 모델링하고 물질 구성의 기본 요소인 전자와 원자핵의 양자적 상호작용을 계산하여 물질을 설계하는 양자화학 계산을 통하여 기존에 사용하지 않던 저가의 비전이 금속계에서 저온 촉매성능을 높일 수 있는 조촉매 물질을 발견하고, 물질특허를 획득하였다. 개발된 촉매는 비전이 금속 조촉매를 소량만 첨가하여도 모든 촉매특성이 기존 상용되는 촉매에 비하여 우수하다는 것을 확인하였다. KIST는 이 기술을 강릉산업과학단지 소재 탈질촉매 전문제조회사인 ㈜대영씨엔이(사장 노세윤)에 이전하였고, ㈜대영씨엔이는 이전된 물질특허를 기반으로 POSCO와 함께 중소기업청 구매조건부사업을 통하여 POSCO 소결로 배연가스 처리용 탈질촉매모듈 개발을 목표로 상용화연구를 수행하였다. 상용화한 촉매모듈을 기존 촉매 중 가장 우수한 성능의 상용 촉매모듈과 함께 POSCO의 소결로 배연가스 처리장치내에 장착하여 비교 시험하였고, 개발된 촉매가 6개월간의 가동후에도 저온영역에서 95%이상의 활성을 지속적으로 유지할 뿐만 아니라 내구성이 우수함을 확인하였다. 본 촉매는 POSCO 소결로에 장착하여 올해 말부터 사용할 예정이다. 하헌필 박사는 “이번 촉매개발은 출연연에서 물질특허를 확보하여 중소기업에 이전하고 중소기업은 이를 기반으로 부품소재로의 상용화기술을 개발하여 대기업에서 이를 채택 사용한 사례로, 고가의 외국산 촉매를 대체한다는 데 의미가 크다. 또한 출연연-중소기업-대기업이 선순환 구조를 통하여 상생 협력하여 결과를 낸 좋은 본보기가 되었다”고 말했다. 또한, “본 물질의 설계과정에서 축적된 노하우를 바탕으로 극저온 및 고온영역에서도 작동할 수 있는 환경촉매개발이 진행 중인데 이는 수조원 이상의 시장이 기대되는 이 분야 연구에서 세계적 선도 역할을 할 수 있게 되었다”고 말했다. 이번 연구성과는 KIST 기관고유사업 및 중소기업청 구매조건부사업을 통해 수행되었으며, 한국, 중국, 유럽에 특허 등록 및 출원되었다. ○ 연구진 <(주) 대영씨엔이 노세윤 사장> ○ 그림설명 <그림1> 촉매의 작동과정 유해물질인 질소산화물이 환원제와 함께 촉매가 코팅된 모듈을 통과하면 인체에 무해한 질소 및 물로 변환된다. <그림2> (주) 대영씨엔이에서 제조한 촉매모듈 및 POSCO 광양 소결로 배연장치내
- 6
- 작성자미래융합기술연구본부 물질구조제어연구단 하헌필 박사팀
- 작성일2013.10.16
- 조회수28029
-
5
바이오 연료를 위한 기름/알코올 분리! 불소가 해결
바이오 연료를 위한 기름/알코올 분리! 불소가 해결 - 상온에서 쉽게 만드는 초발수성 탄소나노입자 기반 스펀지 구조체 개발 - 불소 도핑으로 물, 알코올 등 특정 액체에서 기름만 분리, 바이오 연료 개발 활용 젖지 않는 옷, 물속에서 작동하는 스마트폰, 스스로 청소하는 창문 등 물을 싫어하거나 밀어내는 성질인 발수 특성은 현대 생활 속에서 광범위하게 활용되고 있다. 이러한 물질은 물은 밀어내지만 기름은 빨아들여 물에서 기름을 흡착하는 용도로 쓰인다. 그러나 기름과 알코올은 분리하지 못해 추가적 용도로 사용에는 한계가 있었다. 이와 같은 초발수성 물질은 제작 공정이 복잡하고, 기능유지가 쉽지 않았다. 표면에 복잡한 고온 공정을 통해 구조를 형성하고 그 위에 테프론(Teflon)이나 왁스(wax)와 같은 물질을 코팅하는 2단계 공정을 거쳐야만 초발수성 물질을 얻을 수 있고, 이렇게 제조된 물질은 시간이 지나면 초발수성이 약해지거나, 해수 담수화 필터, 기름 흡착포와 같이 구조체 내부로 유체를 흡수시켜야 하는 3차원 구조체로의 적용은 어려웠다. 한국과학기술연구원(KIST, 원장 문길주) 다원물질융합연구소 문명운 박사 연구팀은 ‘상온 상태에서 쉽게 만들 수 있으면서도, 기존 제품보다 더 강한 초발수성을 가진 탄소 입자 스펀지 구조체를 만들고, 이 구조체에 불소를 도핑하여 물이나 알코올 등 특정성분을 기름에서 분리하는 기능을 추가로 개발’했다고 밝혔다. 문박사팀은 초발수성을 가지면서, 기공의 크기와 표면 에너지의 제어가 가능한 3차원 탄소 구조체를 상온에서 플라즈마 증착 방법*을 이용하여 탄소 나노입자를 차곡차곡 쌓는 형식으로 구현하였다. 이 구조체는 물을 강하게 밀어내는 성질을 가진 탄소 나노입자가 3차원 구조체를 이루고 있어서 표면 뿐만 아니라 구조체 내부까지 초발수성 특성을 가지게 된다. (그림 1 참조) 한편 본 구조체는 물에 비해서 표면에너지가 낮은 기름 등은 쉽게 흡수하는 특성을 동시에 가지기 때문에 물에서 기름을 흡수하여 분리하는데 효과적이라는 장점을 가지고 있다. 이렇게 형성된 탄소나노입자 구조체를 모아서 스펀지를 만들었을 때, 다양한 물-기름 혼합액에서 구조체 무게 대비 500% 이상의 기름을 분리할 수 있음을 밝혀냈다. 문박사는 이 외에도 이러한 구조체를 형성하는 과정에서 불소 성분이 있는 탄화불소(CF4)를 표면 및 내부에 도핑하여, 물과 기름의 분리 뿐만 아니라, 에틸렌 글리콜과 같은 알코올을 실리콘 오일(기름)로부터 쉽게 분리할 수 있음을 알아내었다. 이러한 특성은 최근 중요한 에너지 자원으로 알려진 바이오 디젤을 만드는 과정에서 기름과 알코올을 분리하는 필수 공정에 적용할 수 있다.(그림 2 참고) 저온 공정으로 개발된 본 기술은 대량생산이 용이하며, 종이, 플라스틱, 금속 표면 등에 직접 코팅하여 에너지와 환경분야에 다양하게 응용될 수 있다. 본 연구성과는 온라인으로 발행하는 네이처 자매지인 사이언티픽 리포트 (Scientific Reports) 8월 29일자 논문으로 게재되었다. ○ 추가설명 * 플라즈마 증착 방식 : 탄소가 포함된 가스에다 전기를 통하게 되면 전자를 하나 잃어, 활성도가 높아져 반응성이 높아진다. 이 중 +를 가진 탄소이온을 사용하여 탄소를 증착하는 방식 ** 본 기술의 응용분야로 오염된 바다나 강에서 기름을 제거하는 기름띠 흡착포, 녹조 필터, 오염수 정화 필터 소재 및 바닷물 담수화용 필터 등에 사용할 수 있을 것으로 보인다. 이 외에도 다공성 탄소 나노입자의 기공의 크기 및 기능성 물질의 도핑을 통하여 에너지 분야의 이차 전지, 카페시터, 연료전지 등의 전극으로 활용 가능하며, 환경 분야에서 특성 물질을 탐지할 수 있는 촉매 및 촉매 지지체, CO나 암모니아 등의 유해가스의 포집 및 변환에 응용 될수 있는 등 그 관련 분야가 매우 다양하다. ○ 연구진 <문명운 박사> ○ 그림 설명 <그림1> 다공성 탄소나노입자 구조체를 형성후 한데 모은 후 찍은 이미지-병의 지름은 2cm (a), 눌러서 팬케이크 형태의 스폰지로 만든후 찍은 이미지 (b), 물(투명)과 실리콘 오일(파랑) 혼합용액에 담궈서 실리콘 오일만 선택적으로 흡수하는 과정을 찍은 이미지(c) 다공성 탄소나노입자 구조체는 증착 속도가 같은 조건의 2차원 박막 성장 대비 400배 이상 빠르기 때문에, 증착후 한데 모아서 특정한 모양으로 만들어서 혼합용액중에 기름이나 가스와 같은 특정 성분을 선택적으로 흡수할 수 있는 기능성 나노구조체 스폰지로 활용할 수 있음 <그림2> 불소 함유 다공성 탄소나노입자 구조체 적용 거름종이 일반 거름종이의 경우 물이나 기름 등을 모두 흡수하는 성질을 가지는데 반해, 본 기술이 적용된 거름종이의 경우 물/실리콘 오일 혼합용액에서는 물(빨간색)을 남기고 실리콘 오일을 흡수하고, 알코올(에틸렌글리콜)/실리콘 오일 혼합용액에서는 에틸렌글리콜(옅은 파랑) 성분을 남기고 실리콘 오일을 흡수함. <그림3> 다공성 탄소나노입자 구조체 형성 모식도 저진공, 고압 조건의 플라즈마 내에서 탄소나노입자가 스스로 뭉치기 시작하여 원하는 물질 표면에 탄소나노입자가 구조화되어 네트웍을 형성함. 기존 구조보다 기공이 많아 내부에서도 초발수성을 가진 물질을 만들 수 있으며, 불소 도핑도 가능하다.
- 4
- 작성자미래융합기술연구본부 계산과학연구단 문명운 박사팀
- 작성일2013.09.26
- 조회수27073
-
3
해수담수화, 나노기술로 한걸음 도약
해수담수화, 나노기술로 한걸음 도약 - 기존 해수담수화 분리막의 성능과 내구성을 획기적으로 개선 - 나노박막 구조를 자유롭게 제어·설계할 수 있는 분리막 제조기술을 이용한 해수 담수화 분자수준에서 물질을 조립하는 나노기술을 이용하여 기존 해수 담수화 분리막의 성능과 내구성을 획기적으로 개선한 신소재가 개발되었다. 지구상에 흔히 존재하는 물. 어디서나 쉽게 볼 수 있는 물이지만, 문제는 97%이상이 인간이 마시거나 사용할 수 없는 바닷물이라는 점이다. 따라서 바닷물을 담수로 분리하기 위한 기술은 인류 역사와 더불어 발전해왔다고 해도 과언이 아니다. 이러한 해수의 다양한 이용을 위해서는 해수로부터 담수를 분리하는 막(Membrane) 개발이 필요한데, 국내연구진이 나노수준에서 분자간 반응을 제어하여 나노두께의 초고밀도 분리막을 제조함으로써, 기존의 해수 담수화 분리막의 성능과 내구성을 획기적으로 개선하였다. 우리 원 물질구조제어연구단 이정현 박사와 고려대학교 방준하 교수는 미국국립표준과학연구원(NIST)와의 공동연구를 통해 벽돌을 쌓아올려 집을 짓듯이, 쉽고 다양하게, 분자들을 나노수준에서 조립하여 고성능 해수담수화 분리막을 제조할 수 있는 기술을 개발했다고 밝혔다. 이번 연구 성과는 ‘Molecular Layer-by-Layer Assembled Thin-Film Composite Membranes for Water Desalination’이라는 제목으로, 재료분야 세계적 권위의 과학전문지 ‘Advanced Materials' 온라인판 7월호에 게재되었다. 지난 40여년간, 해수담수화에 사용되어온 기존의 고분자 분리막 제조방법은 막의 내부구조를 조절하기 어려워 분리막의 성능(염분제거율, 수투과도: 물이 투과되는 정도) 및 내구성을 향상시키는데 한계가 있었다. 이러한 문제점으로 인해 학계에서는 분리막의 구조를 정밀 제어하여 기존의 분리막이 가지고 있던 한계를 극복하는 연구에 대한 필요성이 제기되어 왔다. 이에 공동연구팀은 분자간의 반응을 나노수준에서 제어하여 레고 블록과 같이 분자 하나 하나를 조립함으로써 균일하면서도 밀도가 높은 막의 구조를 설계할 수 있는 기술을 개발하였다. 이 기술을 이용하면 조립층 수와 분자의 종류를 조절하여 막의 두께, 구조 및 성능을 자유로이 제어할 수 있으며, 기존 해수담수화 분리막 대비 동등 이상의 염분 제거율과 함께, 수투과도를 약 82% 향상시킨 분리막을 제조할 수 있었다. 또한, 개발된 분리막은 표면이 거칠고 울퉁불퉁해 막이 쉽게 오염되었던 기존의 분리막과 달리, 편평한 표면구조를 구현하여 오염원이 쉽게 부착되지 않아 내오염성을 향상시킬 수 있었다. 나노 분리막 제조 기술은 분리막의 나노구조체를 체계적으로 제어하여 과거 규명해내지 못했던 해수담수화 분리막의 구조와 물성, 성능의 메커니즘을 규명하는데 활용되었다는 점에서 학술적 의의가 있다. 향후 이 기술을 이용하면 해수담수화의 고효율, 고성능화를 가능케함으로써 전세계 물부족 문제를 해결하는데 기여를 할 것으로 기대된다. 또한, 이 기술은 수자원 문제에만 국한되지 않고 신재생에너지 생산, 온실가스제어, 연료전지 등에 사용되는 기능성 막개발에도 활용이 가능하여 물, 환경, 에너지라는 글로벌 아젠다 해결에 광범위하게 적용될 수 있을 것으로 예상된다. 이정현 박사는 “기존 다소 엔지니어링 방식에 의존했던 분리막 연구분야에 첨단 나노기술을 도입하여 보다 과학적인 접근법으로 성능과 내구성을 획기적으로 향상시킬 수 있음을 확인하였다”며 “더 많은 나노기술 연구자들이 해수담수화 분리막 분야에 참여하여 우리나라 미래소재산업의 발전에 기여할 수 있기를 기대한다” 고 말했다. ○ 기술 참고자료 <그림1> 해수담수화 분리막의 기능을 표현하는 일러스트레이션 [기술 참고자료] 기존의 해수담수화 고분자 분리막은 섞이지 않는 용액 내에 녹아있는 2개의 유기단량체간의 계면에서의 무작위한 가교반응(IP)을 통해서 제조되어, 복잡한 구조의 분리막이 만들어졌을 뿐만 아니라, 막의 내부구조를 제어하기가 매우 어려웠다. <그림 1b 참조> 본 연구에서 개발된 기술은 2개의 유기단량체간의 가교반응을 분자수준에서 제어하고 교차로 반복조립(molecular Layer-by-Layer: mLbL)함으로써 구조제어가 용이한 초고밀도의 나노박막 분리막을 제조하는 기술이다. <그림 1a 참조> 이 기술은 조립층 수를 조절하여 기존 분리막 제조기술로는 불가능한 분리막의 두께 및 성능을 제어할 수 있을 뿐만 아니라, 빌딩블록으로 사용되는 유기단량체 분자의 종류와 조립위치를 자유로이 조절가능하여 다양한 물리화학적 구조를 갖는 나노박막 구조체를 설계할 수 있다. 이 기술을 이용하여 기존 해수담수화 분리막의 대비 염분 제거 성능을 동등 이상 유지하면서도 수투과도는 약 82% 이상 향상시킬 수 있었다. <그림 2 참조> 또한 개발된 분리막의 두께는 기존 분리막의 1/4 정도(약 25 nm)로 매우 얇으며, 표면이 거칠고 울퉁불퉁해 막이 쉽게 오염되었던 기존 분리막과는 달리, 편평한 표면구조를 구현하여 오염원이 쉽게 부착되지 않아 내오염성을 향상시킬 수 있었다. <그림 3 참조> ○ 그림설명 <그림1> (a)나노조립 분리막 제조기술(mLbL), (b)기존 분리막 제조기술(IP) 무작위 반응을 통하여 복잡한 구조체를 만드는 기존 기술에 비하여, 나노조립 분리제조기술은 균일한 분자구조를 가진 분리막을 만들 수 있다. <그림2> 나노조립기술(mLbL)의 조립층 수(x)에 따른 분리막의 수투과도(왼쪽 좌표), 염분 제거율(오른쪽 좌표). 표의 실선과 점선은 각각 기존 제조기술(IP)에 의한 분리막의 수투과도와 염분 제거율을 나타냄. 조립층 수가 15가 되면 수투과도 염분 제거율 모두 기존 분리막보다 성능이 뛰어나다. <그림3> (a), (c)기존 제조기술(IP)에 의한 분리막 표면과 단면이미지 (b),(d) 15 적층수의 나노조립기술(mLbL)로 제조된 분리막 표면과 단면 이미지. (기존 제조기술 분리막 대비 나노조립기술로 제조된 분리막 표면의 편평도가 매우 높으며, 분리막의 두께가 1/4 수준으로 초박막 설계가 가능함)
- 2
- 작성자미래융합기술 연구본부 물질구조제어연구단 이정현 박사
- 작성일2013.09.11
- 조회수27757
-
1
체내에서 녹는 뼈고정용 의료기기 임상시험 승인
체내에서 녹는 뼈고정용 의료기기 임상시험 승인 - KIST, 유앤아이(주) 등이 참여한 산학연 컨소시엄은 서울시 산학연협력사업 과제를 통해 체내에서 용해되는 정형/성형외과용 의료기기의 임상시험 승인 - 개발 제품은 손상 골조직의 복원 후 의료기기를 제거할 필요 없는 새로운 개념의 뼈고정용 의료기기로서 의료기술의 새로운 개념 제시 - 막대한 규모의 미래 의료기기 시장을 선도할 신기술로서 미래 고부가가치 먹거리 개발 기대 - 연구결과는 세계적 유명 학술지 Nature 자매지 Scientific Report 8월호 게재 서울시의 대표적인 중소기업 R&D지원 프로그램인 서울전략산업 지원사업의 집중적 지원에 힘입은 한국과학기술연구원(KIST) 컨소시엄은 체내 이식 후 분해되는 새로운 금속소재를 개발하고, 이를 이용하여 정형/성형외과용 뼈 고정 장치를 개발한 후 한국식약청으로부터 임상시험 승인을 받았다. 유앤아이(주), 서울아산병원, 서울대학교 등이 공동으로 참여하는 한국과학기술연구원 컨소시엄(컨소시엄 총괄책임자; KIST 의공학연구소 석현광 박사)은 2010년도에 서울시 서울전략산업 지원사업에 선정되어 현재 3차년도 개발 진행 중이다. 생분해성 금속은 체내 이식 후 일정 기간(6개월-2년)이 경과하면 분해되어 체내에서 소멸되는 소재로서, 이러한 소재를 이용하여 의료기기를 제조하면 손상된 인체조직이 복원된 후 이식된 의료기기를 제거하는 2차 시술을 생략할 수 있기 때문에 특히 골절치료 분야의 새로운 장을 열 것으로 기대된다. KIST 컨소시엄은 인체 무해한 원소로만 구성된 저분해속도/고강도 생분해성 금속을 개발하였다. 또한 정형/성형외과용 생체분해성 의료기기를 제조하여 환자를 대상으로 하는 임상시험 승인을 획득하고, 현재 아주대학교 병원에서 임상시험을 수행하고 있다. 본 연구개발의 핵심은 금속의 기지조직과 기지조직에 분포되어 있는 제 2 상 사이의 화학적 포텐셜을 일치시키는 방법을 통해 생분해성 금속소재가 갖는 치명적 한계인 과도한 분해속도 문제를 해결한 것이며, 이 원리를 적용하여 제 2, 3의 원소가 첨가된 합금(Alloy)이지만 순(pure)금속과 동일한 전기화학적인 특성을 갖는 새로운 개념의 신소재를 개발할 수 있었다. 컴퓨터 시뮬레이션 기술과의 접목을 통해 이룬 이번 쾌거는 국민대 전산모사팀(책임자 차필령 교수)의 참여로 이루어졌다. 이는 학문적인 관점에서도 매우 획기적인 발견으로 평가 되며, 연구 결과는 Nature 자매지인 Scientific Report 2013년 8월호에 게재되었다. 생체분해성 금속으로 제조된 생분해성 정형/성형외과용 뼈고정장치는 천문학적인 규모의 미래형 의료기기 시장을 형성할 수 있는 원천기술이다. 본 연구성과는 18,000개의 진공관으로 구성된 최초의 전자식 컴퓨터인 ENIAC(애니악)이 컴퓨터 역사에서 차지하는 의미와 비교할 수 있다. 즉, 생분해성 금속을 환자에게 적용가능하다는 것을 증명한 중요한 사건인 동시에 향후의 생분해성 금속의료기기에 대한 본격적 연구를 가능하게 하는 계기가 될 것이다. 서울전략산업 지원사업은 서울시의 대표적인 R&D 지원사업으로 서울의 전략산업인 IT융합과 Bio메디컬 분야의 산학연컨소시엄 과제를 최대 4년간 지원하며, 지금까지 학술논문, 특허출원, 인력양성, 해외진출 등의 성과를 이루었다. 서울전략산업 지원사업은 서울시가 전략적 과제를 지정한 후 기업들을 모집하는 방식으로 추진되었으며, IT나 BT 분야의 융복합 과제에 대해 4년간 과제당 40억원을 집중 지원하여, 2010년부터 현재까지 10개 과제를 통해 SCI논문 18건, 특허출원 55건, 특허등록 6건, 인력양성 395명, MOU체결을 통한 해외진출 등의 성과를 이루었다. ○ 연구진 <석현광 박사> ○ 그림설명 <그림1> 동물 뼈조직에 시술 한 후 시간이 경과하면서 체내에서 녹아 점차 소멸되고 있는 생체분해성 금속의 실제 단층촬영 이미지 <그림2> 동물 뼈 조직 내 시술 6개월 후 주변 뼈조직과 결합되어 있는 생체분해성 의료기기 실제 단층 촬영 이미지 <그림3> 개발된 생체분해성 뼈고정용 의료기기 예 <그림 4> 개발된 생체분해성 의료기기를 사용하여 골절된 손가락 뼈를 고정하는 시술 개념도 <그림5> 세계적 학술지인 Nature 자매지 Scientific Report지 게재 논문
- 0
- 작성자의공학연구소 생체재료연구단 석현광 박사
- 작성일2013.08.19
- 조회수39975