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SUMMARY

The organization of synaptic connectivity within a
neuronal circuit is a prime determinant of circuit
function. We performed a comprehensive fine-scale
circuit mapping of hippocampal regions (CA3-CA1)
using the newly developed synapse labelingmethod,
mGRASP. This mapping revealed spatially nonuni-
form and clustered synaptic connectivity patterns.
Furthermore, synaptic clustering was enhanced
between groups of neurons that shared a similar
developmental/migration time window, suggesting
a mechanism for establishing the spatial structure
of synaptic connectivity. Such connectivity patterns
are thought to effectively engage active dendritic
processing and storagemechanisms, thereby poten-
tially enhancing neuronal feature selectivity.

INTRODUCTION

The active properties of dendrites allow neurons to respond

selectively to specific spatiotemporal patterns of synaptic input

(Branco et al., 2010; Gasparini and Magee, 2006; Poirazi et al.,

2003; Polsky et al., 2004; Spruston, 2008). Spatially nonuniform

input, where individual dendritic branches receive dispropor-

tionate synaptic input, is particularly effective at engaging den-

dritic boosting and plasticity mechanisms (Harvey and Svoboda,

2007; Losonczy et al., 2008). This active dendritic processing is

thought to enhance the ability of neural circuits to detect higher-

order features that could be embedded within the structure of

the synaptic input (Lavzin et al., 2012; Legenstein and Maass,

2011; Poirazi et al., 2003; Polsky et al., 2004; Ujfalussy and Len-

gyel, 2011).

Despite its potential functional importance there remains a

good deal of uncertainty about the level of structure in the

subcellular connectivity patterns within many neural circuits. It

is, however, increasingly evident that connectivity patterns

among some pre- and postsynaptic neurons are not random.

On a macroscopic scale it is clear that at a minimum the proba-

bility of connection is dependent on neuronal identity (Brown and

Hestrin, 2009; Deguchi et al., 2011; Li et al., 2012; Yu et al., 2009)

and, on a finer scale, functionally similar inputs appear to cluster

together onto specific dendritic branches (Kleindienst et al.,

2011; Makino and Malinow, 2011; McBride et al., 2008; Takaha-

shi et al., 2012). Nonetheless, the spatial connectivity patterns

between central neurons remain only loosely characterized and

some data have been interpreted to indicate that input patterns

onto principal neurons in several neocortical areas are poorly

structured or even random (Jia et al., 2010; Varga et al., 2011).

To directly determine the degree and nature of spatial struc-

ture within a given synaptic input path, we used mammalian

GFP reconstitution across synaptic partners (mGRASP) with an

improved computational analysis to precisely map the spatial

profile of the main excitatory synaptic CA3 input to hippocampal

CA1 pyramidal neurons (Feng et al., 2012; Kim et al., 2012). We

found that the density of synapses on different dendritic

branches within single CA1 neurons was highly variable and

strongly deviated from that expected from a spatially uniform

input. In addition, we detected an overabundance of small inter-

synapse distances between consecutive synapses on a given

dendritic branch. Such synaptic clustering was more prevalent

between groups of neurons that had developed at the same

time, suggesting a potential mechanism for establishing this

subcellular spatial structure.

RESULTS

Variable Synaptic Connectivity at the Cellular Level
We first examined synaptic contacts between broad populations

of presynaptic CA3 neurons and individual postsynaptic CA1

pyramidal neurons to generally characterize the connectivity

(n = 32 neurons, 5 mice). The morphologies of sparsely labeled

postsynaptic CA1 neurons and their synapses with broadly

labeled presynaptic CA3 neurons were then determined through

neuTube-assisted tracing and mGRASP image analysis

techniques as previously described (see Experimental Proce-

dures, Figures 1A and 1B, and Movies S1, S2, and S3)

(Feng et al., 2012; Kim et al., 2012). Finally, we analyzed the

distribution of synapses, testing for different forms of statistically

significant structure within those distributions (Figure S1A, avail-

able online).

Synapses were evident throughout the CA1 basal and apical

dendrites except for the apical tuft dendrites, which are known

to lack inputs from CA3 (Figure S2). The number of synapses
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per neuron was highly variable (Figure 1C). This variability was

not due to diversity in neuron morphology since the dendritic

surface area in our sample varied considerably less than the

synaptic density (Figure 1C). We also found moderate differ-

ences in synaptic density along the anterior-posterior axis (ante-

rior increased density, p < 0.03 Wilcoxon rank-sum test) and the

medial-lateral axis (lateral increased density, p < 0.04), consis-

tent with the previously reported large-scale axonal projection

patterns in rats (Figure 1D) (Ishizuka et al., 1990; Li et al.,

1994). However, these topographical differences were too small

to fully explain the cell-to-cell variability in synaptic density. Be-

tween-animal differences in synapses also could not fully explain

the variation in density since synaptic density varied more than

5-fold within individual animals. In fact, even nearest-neighbor

neurons in the same animal varied considerably in synaptic

density (Figure 1E), ruling out both topographical and animal-

to-animal differences as sole sources of variability. The variability

in synaptic distribution was also observed at the level of branch

subclasses (Figure S2). In sum, we found that the CA3 presynap-

tic population does not uniformly innervate the CA1 pyramidal

postsynaptic population.

Structured Synapse Distribution at the Branch Level
We next examined the spatial structure of synaptic connections

among the different dendrites of single neurons (Figure S1B)

and found substantial variability in the synaptic densities of

individual branches of a given neuron (Figure 2A). To relate

the actual, measured branch-level variability to that expected

by chance we compared our observations to those generated

by the control, spatially random hypothesis, i.e., a Poisson

process predicting numbers of synapses for a given dendritic

area. The degree of deviation between measured and chance

ranged from large (Figure 2A) to small (Figure 2B) differences

among individual basal branches. On the population level, we

found significant variations in synaptic density in individual

basal branches of most neurons (22 significant out of 28

Figure 1. Variable Synaptic Connectivity at the Cellular Level

(A) Strategy for mGRASP expression to study hippocampal CA3-CA1 synaptic connectivity pattern. Broad presynaptic CA3 and sparse postsynaptic CA1

labeling: the plasmid containing iCre recombinase was transfected into CA1 progenitor cells of the right ventricle via in utero electroporation on embryonic day

15.5 (E15.5). Cre-independent pre-mGRASP and Cre-dependent ‘‘switch on’’ post-mGRASP rAAV were injected into left CA3 and right CA1, respectively, on

postnatal day 60�75. Example fluorescent images show dense axonal projection of CA3 neurons expressing pre-mGRASP (left) and sparse CA1 neurons

expressing post-mGRASP in white along with dense CA3 axonal projections in blue (right).

(B) Example dendrite showing a number of reconstituted mGRASP signals (green) in sites where dense CA3 axons (blue) intersect with a CA1 dendrite (red) (left)

and its neuTube-reconstruction with detected mGRASP puncta (right).

(C) Sorted bar plot shows highly variable number of synapses per neuron across population (828 ± 1,065 [mean ± STD], per neuron, range 83–4,701). Overlaid red

graph indicates synaptic density and inset shows surface area of each neuron (surface area: 12,365 ± 2,767 mm2, range 7,371–18,792; synaptic density: 0.061 ±

0.06 synapse/mm2, range 0.007–0.25).

(D) Spatial location of postsynaptic CA1 neurons among 3D hippocampal landmarks (top left) and scatter plot of synaptic density versus spatial location. Different

colors and markers indicate different animals. Anterior-posterior ranged �2.0��2.8 mm from bregma (binned from 100-mm-thick slices), medial-lateral ranged

1�2.25 mm, and depth ranged 1�1.27 mm from dura. AP: anterior-posterior, ML: medial-lateral.

(E) Comparison of synaptic density of nearest-neighbor pairs in a single animal shows variable number of synapses per neuronwithin a single animal. The synaptic

density of the first (blue) and second (red) neuron of the pair is shown, sorted by the density of the first pair member. Inset shows two neuTube-reconstructed

neurons marked by 1, 2. See also Figure S1, Figure S2, and Movies S1, S2, and S3.
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neurons considered, 4 neurons were excluded from the 32 for

this analysis due to low synapse number, Figures 2C and

2D). Radial oblique and basal dendrite arbors were considered

separately and similar levels of variation in the synaptic density

of individual dendritic branches were found for both arbor re-

gions (Figures 2E–2H). In addition, nonrandom distributions

were also observed when branches were defined according

to electrical signal path of a branch, which concatenates all

Figure 2. Random versus Structured Synapse Distribution at the Branch Level

(A) Example of structured synaptic distribution on CA1 basal dendrites. Synapses detected by mGRASP are presented as green dots on neuTube-traced

branches (left). Bar plot shows the number of synapses on each basal branch, while overlaid red line indicates the surface area of each branch (right y axis) and

number of synapses expected in a control Poisson distribution (left y axis); gray lines indicate ± 1 SD of synapse number. Branches are sorted according to their

surface area (middle). Relation between actual number of synapses and expected number of synapses in control model is shown in scatter plot (right).

(B) Example of nearly random synaptic distribution on basal dendrites is shown as in (A).

(C) Histogram of maximal deviation from random Poisson distribution of basal branches for each neuron indicates variability in degree of structured synaptic

distribution on basal branches. Deviation is determined by Z score distance from the expected number of synapses. Average threshold of significance indicated

by dashed line.

(D) Histogram of fraction of basal branches with significant deviations from chance.

(E–H) Structured and random synaptic distribution on apical oblique dendrites is presented as in (A)–(D). Main trunk branches, shown in gray, were excluded from

this analysis. See also Figure S1.
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Figure 3. Structured Synapse Distribution of Different Branch Types

(A) Scheme of subclassification of basal dendrites considering electric signal path from branch tips to the soma.

(B) Example of structured synaptic distribution on CA1 basal signal path branches (spb). Bar plot shows the number of synapses on each basal signal path

branch, while overlaid red line indicates the surface area of each branch (right y axis) and expected number of synapses in control Poisson distribution (left y axis),

and gray lines indicate ± 1 SD of synapse number. Branches are sorted according to their surface area. Relation between actual number of synapses and

expected number of synapses in control model is shown in scatter plot (right). Synapses detected by mGRASP are presented as green dots on neuTube-traced

branches (right inset).

(C) Example of nearly random synaptic distribution on basal signal path branches shown in the same format as in (B).

(D) Histogram of maximal deviation from expected number of synapses. Deviation is determined by Z score distance from the expected number of synapses.

Average threshold of significance indicated by dashed line.

(legend continued on next page)
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the branches along the path from a specific terminal branch

toward the soma (Losonczy and Magee, 2006) (Figures 3A–

3E). Indeed, neurons whose synaptic distributions showed

stronger deviations from randomness in the basal dendrites

were also more likely to have stronger deviations in oblique

dendrites (Figures 3F–3I). Finally, no obvious relationship

between topographic location and degree of structure was

found (Figure 3J). These results clearly demonstrated branch-

level structure of synaptic connectivity, i.e., that many branches

were either more or less heavily innervated than would be

expected by chance.

Validation of mGRASP for Branch-Level Synapse
Distribution
We performed a number of controls to ensure the validity of

our finding of branch-level structure of synaptic distribution.

First, we considered the possibility that the branch-level struc-

ture we found above in mGRASP-labeled synapse distribution

is due to variability in the total number of all synapses upon

each branch, and not due to spatially nonuniform connectivity

as we suggested above. We found that the total putative

synapse density, determined by counting the number of spines

present on a given branch, was comparable on terminal

branches with both high and low densities of mGRASP-labeled

synapses (Figures 4A–4C). Unlike the number of mGRASP-

labeled synapses, the total number of spines on a branch was

very well described by the branch length and the nonrandom

structured synapse distribution at the branch level held true

when spine density was analyzed instead of branch length (Fig-

ures 4C and 4D). These observations are consistent with other

reports that synapse density among the different dendritic

branches of CA1 pyramidal neurons is relatively constant (Ban-

nister and Larkman, 1995; Megı́as et al., 2001; Nicholson et al.,

2006).

We next addressed a second concern, that the variability in

synapse number is driven by variability in postsynaptic expres-

sion of mGRASP component. Although our analysis is not overly

sensitive to low levels of variability in the translocation of the

postsynaptic mGRASP component from branch to branch or

synapse to synapse (see Experimental Procedures) we used

immunostaining techniques to quantify that postsynaptic

mGRASP was indeed uniformly present at all dendritic

branches and in most (approximately 97%) synapses (Figure 5

and Movie S4). This analysis demonstrates that the broadly

labeled population of CA3 pyramidal neurons does not uni-

formly innervate the different dendrite branches of most CA1

pyramidal neurons.

Branch-Level Variability Is Not Explained by Axonal
Variability
We next tested whether the branch-level variability in synapse

density is explained by the variability of available presynaptic

axonal density. Specifically, we started by considering the

hypothesis that the number of synapses on a branch is propor-

tional to the product of the postsynaptic dendritic surface area

and the presynaptic axonal density, a widely accepted hypothe-

sis known as Peters’s rule (Peters and Feldman, 1976). Reana-

lyzing our data by applying this rule rather than by relying on

dendritic surface area alone did not improve the match of

measured to predicted synapse number (Figure 6A). Directly

testing the hypothesis we found no significant linear correlation

between axonal and synaptic density in any of the 28 neurons

on both single-neuron and population levels (Figures 6A, 6B,

and S3). We next tested the correspondence between axonal

and synaptic density more generally than the simple linear prod-

uct relationship (Figures 6C–6F). Allowing for different linear rela-

tionships between axonal and synaptic density among basal or

apical branches only modestly increased the explained variance

(3%, Figure S3) with only a small fraction of neurons (2 of 28)

showing a significant correlation. We did, however, find sig-

nificant corresponding changes in axonal density for those

branches that had lower-than-expected synapse numbers (Fig-

ure 6E) and this relation was most reliable between branches

with extremely low synapse density and very little to no sur-

rounding axonal density (<5% of max, Figure 6F). Branches

with greater-than-expected synaptic densities had somewhat

higher mean axonal density compared to branches with ex-

pected synaptic density, but the difference did not reach signif-

icance. In summary, these results show that simple relationships

between synaptic and axonal density, as suggested for instance

by Peters’s rule, explains little of the branch-to-branch variability

we observed in synaptic density (Mishchenko et al., 2010). Taken

together, all the data presented in the sections above suggest

that there exists a high degree of biasing in the branch-level

innervation pattern of the presynaptic population of CA3

neurons, with some branches preferentially contacted at the

expense of other branches.

Clustered Synaptic Connectivity
Recent reports describe locally synchronous synaptic activity

(Makino and Malinow, 2011; Takahashi et al., 2012), suggesting

a sub-branch-level structure in the connectivity. Accordingly,

we next examined intrabranch specificity or ‘‘synaptic clus-

tering’’ (Figures 7 and S1C). Given a hypothesis of spatially

random Poisson distribution of synapses across a branch, the

(E) Histogram of fraction of signal path branches that show significant deviations from control model demonstrates both random and selective neurons, similarly

to subclass branch analysis.

(F–I) Relation between selectivity and branch type. (F) Branch-level synaptic selectivity index (s.i.) was determined as the degree of variability of synaptic density

on branches. Each bar corresponds to the selectivity index of a single neuron. Synaptic selectivity index was calculated for apical oblique branches only (top) and

neurons were sorted by the full neuron selectivity index (inset). Scatter plot of selectivity between apical oblique branches against all branches (bottom). (G) Same

analysis as (E) but for basal branches only. (H) Synaptic selectivity index of apical branches (top) sorted by the basal branch selectivity index (inset). Scatter plot of

selectivity between basal branches against apical oblique branches shows weaker correspondence than in (F) and (G) (bottom). (I) Synaptic selectivity index of

basal signal path branches (top) sorted by the technical branch selectivity index (inset of H). Scatter plot of selectivity between technical branches against signal

path branches shows midstrength correspondence between technical and signal path branch selectivity (bottom).

(J) No clear pattern of degree of synaptic structure in topographic location. Neurons were divided into three groups based on selectivity index of total branches,

i.e., a highly structured (red), a midstructured (blue), and a nearly random neuron (black), and shown in plots of their total synaptic density and spatial location.
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distances between consecutive synapse locations along the

branch should follow an exponential distribution. We found

that many neurons (17 of 27, 5 neurons were excluded because

they had too few synapses) had branches with significant

deviations from the expected distribution (see Experimental

Procedures). The most pronounced difference was an over-

abundance of small intersynapse distances, consistent with

clustering (Figure 7A). To complement this analysis we gener-

ated multiple control random synaptic placements and

compared them to the real synaptic locations. Consistent with

the results above, we found that the distribution of nearest

neighbor synapse distances was shifted to shorter distances

than expected by chance, though the distributions partially

overlapped (Figure 7B). We next operationally defined a cluster

as a pair of synapses separated by less than 1.5 mm and found

that neurons had more clusters than expected by chance (Fig-

ure 7C) with the fraction of significantly clustered branches

varying from neuron to neuron (Figure 7D). Similar patterns

were found when apical and basal arbors were considered

separately (Figure S4). These results point to an unexpected

degree of synaptic clustering.

A cluster can result either from multiple, different axons

creating synapses in close proximity or from multiple synapses

formed by the same, single axon. The limitations of light micro-

scopy prevent us from tracing single axons with the necessary

confidence; thus, we cannot distinguish between these two

possible sources of synapse clustering. However, by estimating

the number of axons given the distribution of single-axon multi-

ple contacts reported (Sorra and Harris, 1993), we extrapolate

that single-axon multiple contacts may account for up to half

Figure 4. Analysis of Putative Synapse and mGRASP-Positive Synapse Density

(A) Overview of spiny apical dendrites of a CA1 neuron expressing post-mGRASP and dTomato.

(B) High-magnification images of example dendrites indicated by dashed boxes 1–4 in (A) show that the putative synapse density is consistent in dendrites, while

mGRASP-positive synapse density varies even in sister branches (1 and 2). Putative synapse number was determined by counting only spines that appeared on

the lateral sides of branches since the low z resolution of LM hindered accurate counting of spines at other orientations since they become superimposed on

dendrites.

(C) The strong linear relation between the dendritic length and the spine number of oblique terminal branches (right, n = 36, p = 6.63 10�22) and the weak relation

betweenmGRASP-positive synapse and spine density (left, p = 0.38) are shown in scatter plots. Average of the spine density of these branches is 1.03 ± 0.02/mm,

approximately one-third of the EM-determined spine density (Bannister and Larkman, 1995; Megı́as et al., 2001; Nicholson et al., 2006) since only laterally

appearing spines, not ones superimposed upon branches, were counted because of the low z resolution of LM.

(D) Bar plots show the number of mGRASP-postive synapses on each apical terminal branch of (A), while overlaid red line indicates expected number of synapses

in control Poisson distribution. Branches were sorted according to their spine number and length (inset).
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of the difference between expected and actual number of clus-

ters (566/1095, see Experimental Procedures).

Enhanced Structure of Synaptic Connectivity between
Temporally Matched Neurons
Our analysis thus far revealed multiple levels of structured input

patterns. A natural hypothesis is that these structured connectiv-

ity patterns may be linked to variations in the population of

labeled neurons. Indeed, specific connectivity has been previ-

ously observed among principal neurons that share a particular

neurogenesis and synaptogenesis time window. These ‘‘tempo-

rally matched neurons’’ form distinct subpopulations and show

elevated probabilities of synaptic connectivity (Deguchi et al.,

2011; Yu et al., 2009). To investigate this possibility we collected

a second set of data consisting of temporally matched hippo-

campal pre- and postsynaptic neuronal subpopulations (Figures

8A and 8B and Movie S5). By in utero transduction of rAAV ex-

pressing Cre recombinase to CA3 and CA1 progenitor cells in

both ventricles (E15.5) and sequential stereotaxic injection of

Cre-dependent ‘‘switch-on’’ pre- and post-mGRASP rAAV into

left CA3 and right CA1 (P60�75), respectively, we labeled synap-

ses between specific temporally matched subpopulations of

CA3 and CA1 cells. Although we observed fewer synapses per

neuron in this temporally matched set (average 25.7 ± 20.4,

range: 7–88, n = 20 neurons, 3 animals), we found significantly

more connections between temporally matched neurons than

expected by chance (Deguchi et al., 2011): (temporally matched

labeling: 0.2 synapses per presynaptic cell, presynaptic cell

number range 103–193, Figure 8C; broad labeling: average

synapses per presynaptic cell 0.035 based on estimate of

25,000 presynaptic CA3 neurons, comparison to temporally

Figure 5. No Branch- or Synapse-Specific

Expression of Post-mGRASP Component

(A) Spatial distribution of post-mGRASP com-

ponent visualized by anti-GFP immunolabeling

followed by anti-DsRed staining is nearly ubiqui-

tous along dendrites. No or little signals in alveus

(arrow) where axons of CA1 neurons pass indicate

postsynaptic expression of designed post-

mGRASP component.

(B) Color map of intensity of post-mGRASP

component (left, reconstructed neurons 1 and 2

from A and strong correlation between the voxel

number of branches and post-mGRASP positive;

right, 385 branches from 5 neurons, Spearman’s

rho = 0.86, p < 0.0001) shows little variation in

expression of post-mGRASP component along

branch by branch.

(C) High-magnification image and its reconstruc-

tion show no synapse-specific expression of post-

mGRASP component. See also Movie S4.

matched data p < 1 3 10�5, Wilcoxon

rank sum test; 0.07 synapses per presyn-

aptic neuron based on 50,000 presynap-

tic neurons, comparison p < 1 3 10�6).

Furthermore, synaptic clustering was

highly pronounced in this data set (Fig-

ures 8D–8F). In one characteristic example neuron (Figures 8D

and 8F) we found three synaptic pairs among only ten synapses

on the entire tree, a distribution very unlikely to occur by chance

(p < 0.00001, Monte Carlo estimation). As a population, the

number of clusters was approximately ten times greater than

expected by chance and nearly five times greater than that found

in the set of broadly labeled neurons described earlier (compare

Figure 8F to Figure 7C). Significant clustering was observed in

most temporally matched neurons, most commonly as synaptic

pairs. Estimating the number of single-axon multiple contacts

as above, we find that they can account for up to �30% of the

unexpected synapses (15/52). Even if one assumes that all the

extra clusters in the dense data set were from axons making

multiple synaptic contacts (yielding an estimate twice as high

as that reported [Sorra and Harris, 1993], 9.8%), the sparse

data set would still have 20 unexpected clusters. To fully account

for all the unexpected clusters in the sparse data set, the fraction

of multiple synaptic contacts would need to be set nearly five

times as high (19.5%) as that reported (Sorra and Harris,

1993). All in all, we find that structured connectivity, asmeasured

by synaptic density and clustering, is enhanced among tempo-

rally matched hippocampal neurons.

DISCUSSION

We found that the synaptic connectivity profile between hippo-

campal CA3 and CA1 pyramidal neurons strongly deviated

from randomness at all three levels of our analysis: neuron,

branch, and subbranch. Because these results demonstrate

that a linear relationship between synaptic and axonal density

explains little of the variance in synaptic density between
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branches, they call into question Peters’s rule. Together, our

data indicate that there is a high degree of spatial structure or

selectivity present within the Schaffer collateral inputs to CA1

pyramidal neurons that may at least partially result from special

connectivity patterns among subpopulations of principal

neurons that developed together. These new data from CA1

are congruent with previous reports that indicate the presence

of clustered types of input patterns in other brain regions (Klein-

dienst et al., 2011; Makino and Malinow, 2011; McBride et al.,

2008; Takahashi et al., 2012) but contrast with those reported

for several cortical principal neurons (Jia et al., 2010; Varga

et al., 2011). These differences may be the result of the different

technical approaches employed in these studies or from actual

dissimilarities in the various circuits. Indeed, it is not expected

that all neuronal microcircuits will use the same information-

processing strategies. For instance, dentate granule cells, which

are only two stages before CA1, do not appear to possess the

intrinsic capability to respond to structured input patterns,

Figure 6. Weak Correlation between Synaptic Density and Available Axon Density

(A) Relation of Peters’s rule prediction to number of synapses in single neuron. Bar plot shows the number of synapses on each basal branch for the neuron shown

in Figure 2A, while overlaid red line indicates the expected number of synapses in control Poisson distribution (left y axis); gray lines indicate ± 1 SD of synapse

number. Branches are sorted according to their Peters’s rule value, i.e., the product of axon density and branch surface area (left). Relation between actual

number of synapses and expected number of synapses in control model is shown in scatter plot (right).

(B). Population level relation of Peters’s rule prediction to synapse number. Color plot shows each branch as a dot with a color corresponding to the number of

synapses at an x axis location corresponding to branch’s surface area and y axis location corresponding to the axonal density for real data (left), and control

model where synapse numberwas generated according to Peters’s rule (right). Number of synapses was normalized to the synapse density of the neuron of origin

to allow population aggregation despite differences in synaptic density between neurons.

(C) Synaptic density of dendrites with respect to control Poisson model where branches in blue and red show significantly less and more synaptic density than

chance, respectively, while those in black are not significantly different from chance (left). Heat-map of axonal density surrounding the branches (right).

(D) Relation of axonal density to difference between actual synapse number and expected synapse number for the neuron shown in (C). Each dot represents a

branch and overlaid red line indicates local average values of difference of synapse (left). The scattered nonmonotonic average values indicate deviation from

Peter’s rule, contrasted with the linear relation in an artificial synapse placement model which follows Peter’s rule (right).

(E) Averaged axonal density of three branch groups sorted from 32 neurons, grouped and color coded as in (A), demonstrates that synaptic density more strongly

correlates with axonal availability at the branch level in the case of low synaptic density (p < 0.01 Wilcoxon rank sum test). Error bars indicate SEM.

(F) Consistent with (E), receiver operating characteristic (ROC) analysis, predicting whether a branch has significantly fewer synapses than chance given axonal

density, shows that prediction of low synaptic density from axonal density is accurate with few false positives. Arrow indicates point of high reliability. See also

Figure S3.
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suggesting that they might not receive such patterns (Krueppel

et al., 2011). It remains an interesting open question as to

whether there is a direct link between the processing capabilities

of various principal neurons, the level of structured connectivity

present within their input pathways, and the computations per-

formed by the circuits.

The mGRASP synapse labeling technique employed here is a

newmethodology andwe have therefore expended a substantial

amount of effort to determine whether any experimental artifact

has biased our analysis. While the false-positive rate associated

with mGRASP is very low (approximately 0.4%), there exists, as

with all LM approaches, the presence of false negatives (Yook

et al., 2013). Yet the presence of false negatives should not

impact our present analysis as long as the rate does not substan-

tially vary in a systematic manner from branch to branch or

synapse to synapse. In support of this we found no appreciable

level of branch- or synapse-specific variability in mGRASP

expression in either the pre- or the postsynaptic components.

Additionally we found no depth-dependent systematic variation

in synapse number through z stack imaging. Thus, the control

data presented here as well as in two previous reports (Feng

et al., 2012; Kim et al., 2012) lend credence to our interpretation

that a high degree of spatial structure exists in the synaptic con-

nections between CA3 and CA1 pyramidal neurons.

The structured connectivity patterns we report here have been

suggested to underlie synaptic activity patterns and post-

synaptic membrane potential signals observed in vivo (Lavzin

et al., 2012; Lee et al., 2012;Makino andMalinow, 2011;McBride

et al., 2008; Smith et al., 2013; Takahashi et al., 2012). While

more work is needed to determine whether temporally matched

neurons in the hippocampus also share common feature selec-

tivity such a feature selectivity bias has already been observed

within the visual cortex (Li et al., 2012). It will also be important

to further explore the hypothesis that migration timing and

gene expression patterns produce preferential targeting of syn-

apse formation that could be subsequently enhanced through

synaptic and dendritic plasticity (Thompson et al., 2008). These

mechanisms could produce structured connectivity patterns

that would fully engage the active properties of neuronal

dendrites, allowing neurons to operate as spatiotemporal input

pattern detectors, thus enhancing the ability of the postsynaptic

neurons to extract features embedded within their input. While

this enhanced sensitivity to the particular combinations of inputs

that compose biased branches may seem to reduce the flexi-

bility of the network computation, such biases are likely to be

dynamically shaped over time and even with strong structural

biases the total number of patterns that a network can potentially

respond to remains astronomical. Therefore, neuronal circuits

could use biased connectivity patterns to enhance their ability

to extract information while maintaining a full representational

richness. Moreover, the presence of partially preconfigured

neuronal ensembles might underlie some aspects of hippocam-

pal network dynamics (Dragoi and Tonegawa, 2013; McNaugh-

ton et al., 2006).

EXPERIMENTAL PROCEDURES

mGRASP Labeling and Detection

(1) For broad presynaptic labeling, as previously described (Kim et al., 2012),

Cre-independent pre-mGRASP (aavCAG-pre-mGRASP-mCerulean, available

in Addgene) and Cre-dependent ‘‘switch on’’ post-mGRASP AAV (aavCAG-

Jx-rev-post-mGRASP-2A-dTomato, available in Addgene) (�2 3 1012 pfu/ml)

were injected to left CA3 and right CA1 (P60�75), respectively, after in utero

electroporation of paavCAG-iCre (2 mg/ml) into hippocampal CA1 progenitor

cells in the right lateral ventricle (E15.5). To obtain clearly separate expression

of pre- and postsynaptic mGRASP components we used the commissural

projections from CA3 to CA1 that have been shown to roughly follow the

same topographic organization and functional connectivity of ipsilateral pro-

jections (Finnerty and Jefferys, 1993). (2) To label specific temporally matched

subpopulations, CA3 and CA1 progenitor cells of both ventricles were both

transduced with rAAV expressing Cre recombinase (aavCAG-iCre, �2 3

1012 pfu/ml) in utero (E15.5). Both Cre-dependent ‘‘switch-on’’ pre-

(aavCAG-Jx-rev-pre-mGRASP-mCerulean) and post-mGRASP AAV

(aavCAG-Jx-rev-post-mGRASP-2A-dTomato) were stereotaxically injected

into left CA3 and right CA1 (P60�75), respectively. Stereotaxic coordinates

of CA1 were anteroposterior (AP) –2.0 mm relative to bregma, mediolateral

Figure 7. Clustered Input Connectivity from Broad Labeled Presynaptic CA3

(A) Histogramof intersynapse distance along branch for clustered branches. Overlaid red line indicates control exponential distribution. Result shows greater than

expected number of small intersynapse distances (marked by black arrow) and a corresponding decrease inmediumdistance intersynapse distances (marked by

blue arrow). Inset: magnified view of clustered and nonclustered branches.

(B) Distribution of nearest neighbor synapse distances for measured results (blue) showsmore synaptic clusters than the expected distribution in random control

model (black).

(C) Scatter plot of the expected number of clusters separated by less than 1.5 mm, in control model against the actual number of clusters in the data shows more

clusters than expected by chance (p < 0.00001 Monte Carlo estimation). Each dot represents a neuron.

(D) Histogram of the number of neurons with a given fraction of significantly clustered branches (p < 0.00001 Monte-Carlo estimation) shows variability of

clustering. Red bar at zero indicates the number of neurons with no significantly clustered branches. See also Figures S1 and S4.
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(ML) +1.6 mm and ventral (V) 1.05–1.15 mm and those of CA3 were AP

–2.06 mm, ML –2.4 and –2.625 mm, and V 1.95–2.15 mm ventral. We injected

40–50 nl of viral suspension (titer, 2�7 3 1012 pfu/ml). All animal procedures

were conducted in accordance with protocols approved by the Institutional

Animal Care and Use Committee (IACUC) at the Janelia Farm Research

Campus, HHMI, and the Korea Institute of Science and Technology. Brain

slices were prepared and imaged with LSM 780, 710 microscopes (Zeiss),

as previously described (Kim et al., 2012). Synaptic contacts were detected

using the advanced neuTube and Matlab (MathWorks)-based mGRASP

detection software (Feng et al., 2012; Kim et al., 2012).

Immunostaining and Quantification

Brains were fixed and sliced on P50�60 after in utero electroporation (E15.5) of

paavCAG-post-mGRASP-2A-dTomato (2 mg/ml). Fixed 50 mm slices were

permeabilized with 0.4% Triton-X in Tris-buffered saline (TBS) for 30 min at

room temperature (RT). After preblocking with TBS containing 5% normal

goat serum (NGS) and 0.4% Triton-X for 30 min at RT, slices were incubated

with antibodies in TBS containing 2% NGS and 0.4% Triton-X overnight at

4�C and followed by incubation with Alexa-conjugated secondary antibodies

for 2 hr at RT. dTomato signals were amplified by sequential staining. Anti-

bodies were as follows: anti-GFP (Invitrogen, 1:1,000 and abcam, 1:500),

anti-DsRed (Clontech, 1:200), and Alexa 488, 555, 647-conjugated secondary

antibodies (Invitrogen, 1:300�500). The post-mGRASP distribution was

analyzed on three different levels: branch, segment, and spine. In the branch

level, the correlation between the number of branch voxels and the number

of post-mGRASP-positive voxels was calculated. In the segment level,

average intensity of post-mGRASP signals of each segment was shown as co-

lor maps. In the spine level, spines and post-mGRASP components of

branches from the top of slice were manually marked; approximately 97% of

spines were post-mGRASP positive.

Synapse Data Analysis

Reconstructed branches in neuTube were approximated as a series of joined

small tubes with fixed radii, allowing the length and surface area of each

branch to be estimated. For each neuron we calculated the total surface

area and the total number of synaptic contacts; dividing the number of

contacts by the area gave the average density of synaptic contacts. All data

analysis was performed in custom software written in Matlab. Sections below

describe specific analyses.

1. Subclassification of Branches

The classic definition of a pyramidal cell divides the branches into two cate-

gories, apical dendrites and basal dendrites, which are located on opposite

sides of the soma. For more detailed analysis, we further categorized the

branches into the following subclasses. Main trunk: any apical thickest branch

connecting tuft branches and the soma. Apical tuft branch: any distal apical

branch in stratum lacunosum-moleculare bifurcating from the main trunk. Api-

cal/basal terminal branch: other than apical tuft branch, any apical/basal

branch terminated without connecting to anything else. Apical/basal interme-

diate branch: other than main trunks, any apical/basal branch connecting to

the soma or another branch at both ends.

2. Branch-Level Analysis

For each neuron we calculated the total surface area of the relevant dendritic

arbor and the total number of synaptic contacts. Dividing the number of con-

tacts by the area gave the average density of synaptic contacts, the one free

Figure 8. Enhanced Structure of Synaptic Connectivity between Temporally Matched CA3-CA1 Connection

(A) Labeling of temporally matched (t.m.) subpopulations of CA3-CA1 neurons: rAAV expressing Cre recombinase was in utero injected into CA3 and CA1

progenitor cells of both ventricles on E15.5. Both Cre-dependent ‘‘switch on’’ pre- and post-mGRASP were injected into left CA3 and right CA1, respectively, on

postnatal day 60�75. Example fluorescent images show sparse CA3 temporally matched neurons expressing pre-mGRASP indicated by yellow arrowheads (left)

and sparse CA1 temporally matched neurons expressing post-mGRASP (right).

(B) Example dendrite showing sparse reconstituted mGRASP signals in temporally matched CA3-CA1 connection.

(C) Bar graph represents spatial distribution of temporally matched presynaptic CA3 cells from three animals, each plotted with a different color.

(D) Bar plot of synapse number per branch; overlaid red line indicates the surface area of each branch (right y axis) and expected number of synapses in control

Poisson distribution (left y axis); gray line indicates 1 SD of expected synapse number. Synapse locations on a neuTube-traced CA1 cell are shown in inset.

(E) Distribution of intersynapse distances for measured results (blue) shows more clusters than the expected distribution in random control model (green). Inset

shows example dendrites exhibiting multiple synaptic contacts detected by mGRASP signals (green) in temporally matched CA3 (blue)-CA1 (red) connection.

(F) Scatter plot of the expected number of clusters in control model against the actual measured number of clusters shows notably more synaptic clusters

between temporally matched subpopulations of CA3-CA1 neurons than in the broad CA3-CA1 condition as well as control model. Each dot represents a neuron.

See also Movie S5.
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parameter of the Poisson distribution. The expected synapse number and its

variability for each branch are given by this distribution, and deviations from

synapse number were analyzed. To determine the statistical significance of

these deviations, all branches were pooled together and the Benjamini and

Hochberg step-up procedure (Benjamini and Hochberg, 1995) was used to

correct for multiple comparisons. Branches found significantly different from

chance were then traced back to their neuron of origin, and the fraction of

branches significantly different from chance was calculated. R2 values were

calculated for the linear regression of synapse number from branch surface

area. The summary statistic reporting the selectivity of each neuron was the

maximal difference from themean, normalized by standard deviation (Z score).

We repeated all analyses with dendritic branch length instead of branch area

and found no qualitative difference in the results.

3. Peters’s Rule Analysis

To directly determine the accuracy of Peters’s rule analysis we tested for a

linear correlation between synaptic density and the product of dendritic

branch area and presynaptic axonal density on a cell-by-cell basis and with

all data aggregated together. A matching control model for each neuron was

generated by drawing the synapse number independently for each branch

from a Poisson distribution with a rate proportional to the Peters’s rule value

for each branch (i.e., the product of average branch axonal density and branch

number). In presenting the aggregate data (Figure 3B) we normalized the

synapse number to the average synaptic density for this neuron to control

for variability in synaptic density among different neurons. To address the

issue of nonuniformities of axonal density over scales smaller than that of

the average branch we repeated the analyses above while breaking each

branch into smaller units (values of 15, 30, 50 mm were used). No qualitative

differences were found in this ‘‘broken branch’’ analysis.

To further analyze Peters’s rule on the population level we divided branches

into three groups: those showing no significant deviations from chance; those

with significantly greater synaptic density; and those with significantly lower

synaptic density. To determine the available presynaptic axonal density we

measured mCerulean-tagged pre-mGRASP by finding the intensity of the

blue channel; this signal corresponds to axonal labeling in an extended

cylinder surrounding each segment of dendrite (radius of the traced tube

plus �2.5 mm). We then averaged the available presynaptic axonal density

value separately in each one of the three branch groups. To determine how

accurately the available presynaptic axonal density can be used to predict

whether the density of synaptic contacts will be greater or lesser than chance

we performed a receiver operating characteristic (ROC) analysis. Briefly, in

ROC analysis one changes continuously the value of a predictor from its lowest

possible value to its highest possible value and records the fraction (or

percentage) of true positives and false positives for the different predictor

values. At the lowest predictor value there are no positives at all and therefore

no true or false positives. At the highest predictor value, every example is

considered positive and therefore the fraction of both true and false positives

is 1. The ROC curve visualizes the tradeoffs between true and false positives.

To test Peters’s rule on the single neuron level we related the deviation in

number of synapses to the available presynaptic density and compared the

experimental data to a simple model where synaptic locations were randomly

generated according to Peters’s rule, i.e., the number of synapses was pro-

portional to the product of dendritic surface area and available presynaptic

density. We repeated all analyses with dendritic branch length instead of

branch area and found no qualitative difference in the results.

4. Clustering Analysis

To analyze whether synapses on a branch were clustered or distributed

randomly we performed two types of analysis. First, on a branch-by-branch

level, we examined the distances between pairs of (spatially consecutive)

synapses. If the synapses were distributed randomly, the distances between

the synapses should follow an exponential distribution. We compared the

actual distribution per branch to an exponential distribution via the Lilliefors

test (Lilliefors, 1969). Having corrected for multiple comparisons we

determined which branches significantly deviated from this distribution and

reported for each neuron the fraction of the branches that were identified

as significantly clustered. The deviations from the exponential distribution

we observed, mainly an overabundance of short inter-synapse intervals,

are consistent with clustering. Therefore, we define a cluster as a pair of

synapses with a given intersynapse-distance (1.5 mm) between them (or

lower).

This type of analysis can be performed on a single branch or by aggregating

branches that have similar synaptic densities. However, since branch synaptic

density varied considerably within a single neuron it cannot be applied to the

neuron as a whole. To analyze synaptic clustering on the neuron level (and

in a way complimentary to the previously described analysis) we calculated

the distances between each synapse and its nearest neighbor in space,

following a branch path. We then compare this distribution of nearest neighbor

distances to a randomized synapse location according to the control Poisson

distribution. For the data set of temporally matched neurons we didn’t identify

enough synapses to be able to reliably compare the intersynapse intervals on a

single branch to the exponential distribution; we therefore used only the whole

neuron analysis.

A cluster can result from either multiple, different axons creating synapses in

close proximity, or from multiple synapses formed by the same, single axon.

To look more closely at this issue, we estimated the probability of single axons

creating multiple synaptic contacts. Specifically, we first estimated the

number of relevant axons in the presynaptic population by measuring the

number of synapses and dividing that number by the average number of

synapses created by a single axon. We derived this number from a published

account of the average numbers of multiple synaptic contacts (Sorra and

Harris, 1993: 76% single contact, 4% multiple contacts on the same branch,

17% two contacts on two branches, 2% three contacts on three branches,

1% four contacts on four branches). To ensure we do not underestimate the

number of clusters created by single axons, we make the assumption that

all multiple contacts created on the same branch would occur at mutual

distances that we would count as a cluster by all our criteria. Accordingly,

we estimate the number of single-axon clusters expected by the 4% of multi-

ple contacts upon a single branch times the estimated number of axons.
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