발행일 2017. 09. 25 **발행처** 융합연구정책센터 2017 SEPTEMBER vol.89

Technology Industry Policy

정보통신과 전력망의 융합, 스마트그리드

김보림 | 융합연구정책센터

융합

2017 SEPTEMBER Vol. 89

WeeklyTIP

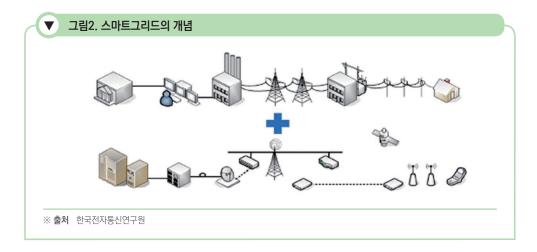
정보통신과 전력망의 융합, 스마트그리드

김보림 | 융합연구정책센터

N 1

선정 배경

- 2015년 파리기후변화협약 이후 전 세계적으로 지구온난화의 주요 원인인 온실가스 배출을 감축하려는 노력 진행 우리나라는 2030년 배출전망치(BAU; 8억 5,060만 tCO₂) 대비 37%인 약 3억 1,500만 tCO₂의 감축목표 수립
- 지구온난화가 심각해지면서 급격한 온도 변화로 인한 전력 수급과 관리의 어려움 심화
 - 녹색성장의 일환으로 태양열, 수력 등 신재생에너지 기술개발과 동시에 에너지 효율을 높일 수 있는 기술에 대한 고민 증가
- 온실가스 감축을 위한 다양한 방법들이 진행되면서, 에너지 이용 효율 향상에 따른 에너지 절감과 더불어 온실가스 감축 효과를 기대할 수 있는 스마트그리드 산업 활성화
- 🌘 이에, 스마트그리드에 대해 알아보고, 스마트그리드 산업 및 정책 동향에 대해 살펴보고자 함



 $\langle \rangle \rangle$

02

개요

(정의) 지능형(Smart) + 전력망(Grid)의 뜻이 합쳐진 융복합 기술로, 기존 전력망에 정보·통신기술을 접목하여, 개인 에너지 소비 관리 및 전력의 수요관리를 통해 국가에너지 관리를 원활하게 하는 차세대 전력인프라 시스템

- (특징) 기존 전력망이 중앙집중식으로 수요에 따라 단방향으로 전력을 공급한 반면, 스마트그리드는 지역별 분산전원들이 네트워크로 연결되어 생산된 전력을 사용, 양방향으로 정보 전달 과정이 자동으로 이루어짐
 - 신재생에너지를 통한 전력생산에도 기여하여, 소비자의 역할과 생산자의 역할을 동시에 수행할 수 있는 에너지 프로슈머(prosumer)로 모든 사람들이 에너지 생산과 소비 담당
 - 전력생산 및 소비되는 정보를 공급자와 수요자 간 양방향으로 실시간 정보를 교환함으로써 지능형 수요관리, 신재생에너지 연계, 전기차 충전 등을 가능케 함

전력망 = Grid	정보통신	! = Smart		스마트그리드	
공급지중심 일방항성	실시긴	정보교환		수요자중심 양빙항성	
기존 전력망				지능형전력망	
아날로그 / 전기기계적		디지털 / 지능형		디지털 / 지능형	
중앙 집중 체계		분산체계			
방사상 구조		네트워크 구조			
수동복구	자동 복구				
고정요금	실시간요금				
단방향정보흐름	양빙향 정보교류				
소비자 선택권 없음	다양한 소비자 선택권				

- (구성요소) 에너지저장시스템(ESS), 지능형원격검침인프라(AMI), 에너지관리시스템(EMS), 전기차 및 충전소, 분산전원, 신재생에너지, 양방향 정보통신기술, 지능형 송·배전시스템 등으로 구성
 - (Energy Storage System, ESS) 전력 인프라를 구성하는 가장 핵심이 되는 기술로, 에너지를 컨테이너 모양의 대형 배터리에 저장하여 수요와 공급을 적절히 조절해 버려지는 에너지 최소화 ※ 전세계 ESS 시장 규모는 2017년 26억 달러이며, 이후 연평균 20%씩 늘어나 2021년 55억 달러로 확대될 전망
 - (Advanced Metering Infrastructure, AMI) 스마트미터 에서 측정한 데이터를 원격 검침기를 통해 측정해 전력 사용 현황을 자동 분석하는 기술로, 이를 통해 소비자에게 실시간 요금 단가와 정보 및 에너지 사용패턴 등을 분석한 정보 제공 가능
 - * 각 가정에서 사용하는 전력 사용량을 자동으로 검침하고, 그 정보를 통신망을 통해 전달하는 지능화된 전력량계

- (Energy Management System, EMS) 에너지효율 향상 목표를 설정하고 이를 달성하기 위해 관리체제를 체계적이고 지속적으로 추진하는 전사적 에너지 관리 시스템으로 공장, 가정 등에서 에너지 사용을 최적화하도록 IT소프트웨어로 관리

03

해외스마트그리드

산업 및 정책 동향

- ② 2014년 이후 국제적으로 저유가 상황이 지속되고 있음에도 불구하고 전 세계 스마트그리드 시장은 꾸준히 성장 베게 스마트그리드 시장은 꾸준히 성장
 - 세계 스마트그리드 시장은 2011년 289억 달러에서 2017년 1,252억 달러로 연평균 28% 성장, 2030년 8,700억 달러에 이를 것으로 전망(출처: 한국스마트그리드사업단)
- 주요 선진국에서는 전통적인 전력 인프라 제조업을 탈피해 고부가가치 통합 플랫폼을 제공하는 방향으로 산업이 변화됨에 따라 스마트그리드 산업 활성화
 - 현재 스마트그리드 시장을 선도하고 있는 국가는 미국·캐나다·일본으로, 특히 일본의 경우 2011년 동일본 대지진 이후 스마트그리드가 가장 빠르게 확산된 모범 사례로 꼽힘
 - 대부분의 국가에서 스마트그리드 정책은 초기 스마트그리드 인프라 구축을 위해 AMI 보급을 중심으로 이루어지고 있으며, 전력수요 안정을 위한 ESS, 신재생에너지 도입 등에 관한 정책 지원 추진
 - ※ AMI 시장은 전 세계적으로 빠르게 성장하고 있는 추세로, 유럽은 EU 가입국들을 대상으로 2020년까지 전체 설치 미터의 80%를 AMI로 구축해야 하는 의무화 정책 실시

▼ 표1. 해외 주요국의 스마트그리드 정책 동향

표기, 에서 구표적에 그리르고에는 6억 06				
국가	정책내용			
미국	 주로 민간이 중심이 되어 기술개발에 앞장서고 있으며, 2001년 EPRI(Electric Power Research Institute)를 중심으로 IntelliGrid를 비롯하여 Modern Grid Initiative 등 다양한 R&D 사업 진행 에너지 자립과 노후된 전력망의 현대화를 통한 경기 부양을 목표로 2030년 'Grid 2030'이라는 국가 비전 발표, 45억 달러 투자 결정 - 전력망 현대화, 스마트 계량기 보급 추진 미 국방부(DOD)는 에너지안보 강화 목적 하에 스마트그리드 적극적 추진 			
	- 2050년까지 자체 전력에너지 수요의 25%를 재생에너지를 통해 생산 조달, 스스로 제어 가능한 마이크로 그리드 구축 목표 설정			
	• 회원국들의 다양한 특징을 하나의 스마트그리드 정책으로 묶기 위해 EU Frame Work Project를 통해 스마트그리드 정책 추진			
EU	• 신재생에너지 보급 확대와 온실가스 감축을 위해 2006년 'Smart Grids Vision & Strategy'선포			
	• '20-20-20목표' 달성을 위해 스마트그리드 적극 추진, 2020년까지 스마트미터 보급에 연간 95억 달러 투자 예정 * 2020년까지 온실가스 배출량 20% 감축(1990년 배출량 대비), 재생에너지의 에너지 부담률 20% 증대, 에너지효율성 20% 향상)			
	• 2030년 태양광 발전량을 100GW까지 늘이는 로드맵 수립 - 스마트그리드 분야 표준화 추진			
일본	• 2013년에 수립한 재생에너지전략에 따르면, 2024년까지 모든 가구에 스마트미터 보급 예정			
	• 국가차원의 신재생에너지 자원을 수용할 수 있는 마이크로그리드 개념의 신전력 인프라 개발 및 시범단지를 구축, 개발 기술의 상용화 촉진			
	• 미국 다음으로 스마트그리드에 많은 투자를 하는 국가로 전력자원의 최적배분, 송전계통 강화 측면에서 스마트그리드 사업을 추진			
중국	• 전체 전력망 지능화 완성을 위해 2020년까지 총 1조 7천억 위안화 투자 계획 발표			
	• 2016~2020년 스마트그리드 투자는 총 450억 달러에 달할 것으로 전망			

국내 스마트그리드 산업 및 정책 동향

- 우리나라의 스마트그리드 관련 산업은 전반적으로 국내 기업의 제품 경쟁력은 좋은 평가를 받고 있지만, 핵심소재와 통합 솔루션 기술은 부족한 것으로 분석
 - 지능형원격검침인프라(AMI)의 경우 해외 수출이 가능한 제품과 기술력을 보유하고 있지만 아직까지 정밀도를 요하는 고가의 핵심부품은 상당 부분 수입
 - 에너지저장시스템(ESS)의 경우 배터리와 전력변환장치(PCS) 등의 제조 기술은 우수하지만 ESS를 최적으로 운용하기 위한 소프트웨어 기술은 부족한 것으로 평가
- 스마트그리드 실험을 위한 사업으로 한전에서 지난 2010년 시범사업을 시작으로 200만~250만 가구에 AMI를 보급할 계획 수립하였으나 기술력 부족 및 특허권 문제 등으로 지연, 2016년에 사업이 다시 재개되어 올해 안에 450만 가구에 AMI 구축 계획 발표
- 한국스마트그리드사업단은 2016년부터 15개 광역 지자체에서 8개 컨소시엄이 3722억 원(국비 660억 원)을 투자해 가정, 공장, 빌딩 등을 대상으로 AMI 기반 전력서비스, 지능형 전력 공급·소비 효율화 서비스를 제공하는 스마트그리드 확산사업을 추진
 - 2017년 8월 기준 AMI 7만 5,000호, 에너지관리시스템(EMS) 180개소, 분산전원 40MW를 구축, 연말까지 AMI 12만호, EMS 400개소 등이 보급될 전망
 - 구축된 인프라를 기반으로 상용화 모델을 개발하고, 확산사업의 사업모델을 통합·관리하기 위한 통합관리 센터(IMC) 구축 예정

2 정책동향

- ② 2004년부터 전력IT 종합대책을 수립하였으며, 2005년부터 발전, 송배전, 사용자 등 전력네트워크 지능화를 위해 10대 국책과제를 선정하고 기술개발 진행
- ② 2009년 본격적으로 스마트그리드 개념 도입 및 정책 수립이 진행되어 녹색성장위원회 1차 보고에서 '세계 최초 국가단위 지능형전력망 구축'에 대한 국가 비전 발표*
 - * 에너지, 환경문제 대응, 차세대 성장동력화, 저탄소 생활화를 주요 과제로 선정하고 국제적인 차원에서 공동으로 수행할 수 있는 상세 로드맵 수립
 - 2009년 7월 G8 확대정상회의에서 우리나라가 '지능형 전력망 선도국'으로 지정, 같은 해 12월 세계 최대 규모인 제주도 실증단지 구축사업 시작하여 2013년 5월 종료
 - ※ 이를 통해 153개 관련 기술 검증 및 광범위한 9개의 비즈니스 모델 발굴 성과 창출

- ② 2009년 이후 정부는 스마트그리드 확산을 위한 법적 기반을 마련하고, 건물·공장 대상 계시별 요금제(TOU), 최대피크 요금제(CPP), ESS 요금제, 전기차 충전요금제를 도입하는 등 스마트그리드 확산을 위해 요금 체계를 개선
 - 이와 함께 수요자원 거래시장 개설, 비상발전기와 발전자원으로 ESS를 인정하는 등 다양한 규제완회를 추진하는 성과를 달성
- ② 2010년 1월 수립된 '스마트그리드 국가 로드맵'을 바탕으로 2030년까지 3단계에 걸쳐 5대 핵심 분야에 27.5조 원을 투입하여 지능형 전력망 구축에 대한 세부 계획을 수립
 - ※ 2030년까지 총 2억 3천만 톤의 온실가스 감축 효과가 발생할 것으로 추정

정책비전	스마트그리드 구축을 통한 저탄소 녹색성장 기반 조성								
			00000000000000000000000000000000000000						
단계별 목표	2030년, 세계 최초 '국가 단위' 스마트그리드 구축 2020년, 소비자 중심 '광역 단위' 스마트그리드 구축 2012년, 세계 최고 수준의 스마트그리드 '시범도시' 구축								
전략 방향	• [국가] 에너지 효율 향상 및 CO₂ 배출 저감 • [기업] 신성장동력 발굴 및 수출산업화 • [개인] 국민 삶의 질 향상								
	지능형 전력망	지능형 소비자	지능형 운 송	지능형 신재생	지능형 전력서비스				
5대 추진 분야	개방형 전력 플랫폼 구축 고장예측 및	지능형 계량 인프라 구축 에너지 관리	전국 단위 충전 인프라 구축	대규모 신재생에너지 발전 단지 조성	다양한 전기요금 제도 개발				
	자동복구 시스템 구축	자동화 시스템 구축	V2G 및 ICT 서비스 시스템 구축	에너지 자급자족 가정 및 빌딩 구현	지능형 전력거래 시스템 구축				

05

- 파리기후변화협약 이후 전 세계적으로 신재생에너지원의 확대와 전력의 안정적인 운영을 위해 스마트그리드는 선택이 아닌 필수가 됨에 따라 다양한 산업에서 적용이 확대될 것으로 예상
 - 스마트그리드의 확대가 전력, 통신, 건설, 자동차 등 타 산업의 패러다임을 변화시키고 있어 지속적인 관심과 개발이 요구됨
 - 녹색기술과의 접목·확장으로 산업 간 융·복합을 통한 新비즈니스 창출이 가능함
- 미국, 유럽, 일본 등 스마트그리드 선도국의 성공적인 사례를 바탕으로, 전략적인 관점에서 국내 스마트그리드 산업 생태계를 조성해나가기 위한 체계적인 정책적 대응 필요
 - 중장기적으로 스마트그리드 산업을 통해 국가의 효율적인 에너지 수급 계획 및 절감, 온실가스 배출 감축에 기여할 수 있는 전략적인 제도 수립 필요
 - 스마트그리드는 단일 시스템이 아닌 다양한 전력 계층별 시스템의 집합이므로, 다양한 시스템 및 서비스 간 연계가 가능한 생태계 조성 필요

이 참고자료

- \bigcirc
- 1. 박수환 외, 지능형 전력망(스마트그리드) 적용을 통한 에너지 절감 및 ${\rm CO_2}$ 감축 효과 분석, J. Korean Soc. Environ. Eng., 39(6), 2017
- 2. 백기훈, "에너지 패러다임 전환...스마트그리드 확산 적기", TECH m, 2017
- 3. 안준호, 스마트그리드 산업현황(Status on the Smart Grid Industry), 한국전기산업연구원, 2014
- 4. 양의석 외, 2015년 세계 스마트그리드 투자 실적 및 향후 전망, 세계 에너지시장 인사이트, 에너지경제연구원, 2016
- 5. 이미혜, 스마트그리드 시장 현황 및 전망, 산업리스크 분석보고서, 한국수출입은행, 2012
- 6. 이지영, [IT열쇳말] 스마트그리드, 2017
- 7. 한국스마트그리드사업단(KSGI) 홈페이지(https://www.smartgrid.or.kr/index.php)

