발행일 2017. 02. 13 **발행처** 융합연구정책센터

2017 FEBRUARY vol.58

TIP

Technology · Industry · Policy

유전체 기반 정밀의료 연구동향

박순영 | 융합연구정책센터

융합

2017 FEBRUARY Vol. 58

WeeklyTIP

유전체 기반 정밀의료 연구동향

박순영 | 융합연구정책센터

● 인구고령화, 정보통신기술의 발달로 보건의료의 패러다임의 변화*로 의료공급자·치료 중심에서 의료소비자·개인화된 맞춤형 의료로 변화

* 1.0(전염병예방), 2.0(질병치료로 기대수명 연장), 현재 3.0(예방과 관리를 통한 건강수명 연장)으로 변화

선정배경


- DNA와 단백질 분석 기술의 발전과 유전정보와 질병 관계에 대한 생물학·의학정보가 증가함에 따라 유전자 수준에서 질병 재진단 및 치료 가능성 증가
- 질병에 대한 정확한 진단, 적합한 치료방법 선별을 통한 맞춤형 치료뿐만 아니라, 질병의 조기 발견, 나아가 예방까지 가능하다는 점에서 유전체 기반 정밀·맞춤치료에 대한 사회·경제적 수요 증가

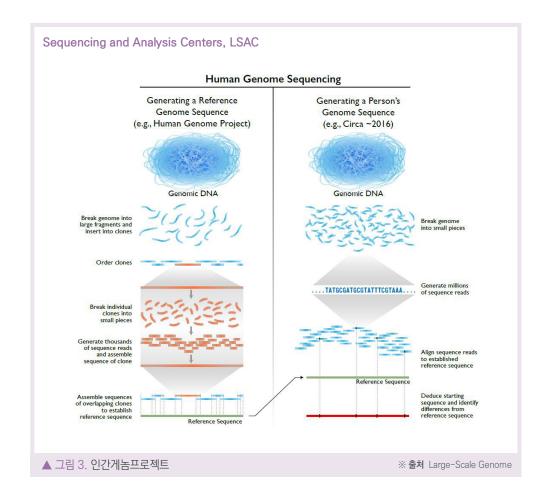
0 2 개요

01 개념정의

- 《정밀의료, Precision Medicine》 환자마다 다른 유전적, 환경적 요인과 질병 경력, 생활 습관 등을 사전에 인지해 환자에게 적정한 약과 용량으로 알맞은 시기에 사용하여 환자별 최적화된 치료법을 제공하는 의료 서비스
 - 정밀의료와 맞춤의료를 혼용하여 사용하는데 본질적으로 비슷한 의미를 지니고 있지만, 맞춤 의학이 특정한 개인을 위해 개발된 예방 및 치료법이란 오해의 소지가 있어 정밀의료 사용을 권장*

* 미 국립연구회의(National Research Council), ('16)

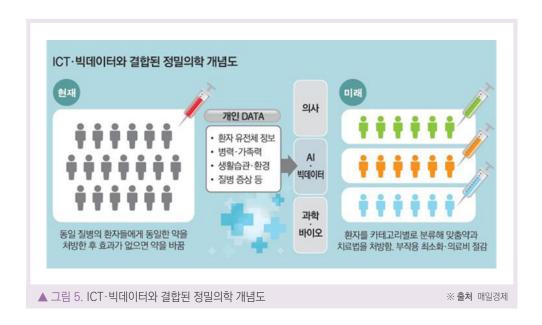
02 정밀의료 실현을 위한 필수 요소


유전체 의학	인구집단 코호트*, 진료정보(의료기관), 유전체정보 기반 맞춤의료 기술
모바일 헬스케어	보건의료 빅데이터(공공기관), 모바일 헬스케어 기술 기반 건강관리 서비스
공통기술	빅데이터 분석·보안 기술

* 코호트(Cohort) : 조사연구와 인구학적 연구에서, 특별한 기간 내에 출생하거나 조사하는 주제와 관련된 특성을 공유하는 대상의 집단

03 유전체학의 발전

- (인간게놈프로젝트*, Human Genome Project) 인간 유전체 지도 (genetic map)를 구축하고 모든 염기 서열을 해석하는 프로젝트
 - * 1990년 시작되어 2003년에 완성, 효율적인 DNA 서열분석법 개발과 컴퓨터 기술의 발전 등으로 예정보다 2년 빠르게 완성
 - 프로젝트의 완성으로 유전자 돌연변이 연구의 토대 닦음
- (DNA 염기서열 분석법, DNA sequencing analysis) 생화학적 방법 이용 DNA의 염기서열을 결정하는
 과정
 - 인간게놈프로젝트에 생어시퀀싱*을 사용
 - * 프레드릭 생어(Frederick Sanger)에 의해 개발('77). 단편적인 분석방법으로 많은 시간이 소요
 - 기술발전으로 차세대 염기서열분석방법(NGS, Next Generation Sequencing)*을 통해 경제적이고 효율적인 DNA 분석가능
 - * Roche454, 일루미나(Illumina), 아이온 토렌트(Ion Torrent) 등



- (NGS 보급과 초기 환자 진단 사례) NGS 기술을 환자 진단, 치료용으로 사용하기 위해서는 환자의 유전체를 분석하여 병인이 되는 변이를 발견해야함
 - 2008년 급성 골수성 백혈병 환자의 혈액 샘플을 처음 분석한 것을 효시로 환자의 유전체 분석이 급속도로 증가
 - 2009년 바터 증후군(Bartter Syndrome)*으로 진단된 터키 환자의 DNA 염기서열 분석**한 결과,
 SLC26AC 유전자의 돌연변이 발견
 - * 신장의 세뇨관에 선천적인 결함으로 발생하는 유전적 병인과 환경적 요인의 다인자성 질환
 - ** 실제 단백질을 합성하는 부분인 엑솜(exome)만을 분석(whole exome sequencing, WES)한 결과로, 전체가 아닌 유전체의 1%인 엑솜만 타깃으로 분석하여 유전체 분석 비용이 매우 경제적

- (유전체학에 의거한 분자유전학적 환자 진단) 엑솜 시퀀싱(WES, Whole Exome Sequencing)의 성공적인적용 후, 기존의 유전질환의 유전자 기반 발병 원인을 밝혀내려는 시도 증가*
 - * 2015년 서울대학교 어린이병원에서 자가면역증세로 고통받던 환자에게 WES 방법을 이용한 유전자 분석을 시행한 결과, CTLA4 유전자 상의 돌연변이를 발견했으며 해당유전자 역할을 대신할 수 있는 아바타셉트라는 약제를 환자에게 투여하여 증세를 개선
 - 희귀질환의 유전적인 발병 원인에 대한 연구는 시작단계에 머물러 있으며, 특히 초희귀성 질환* (ultra-rare disease)에 대한 연구는 전무한 상태
 - * 유전자에 무작위적 돌연변이로 발생하는 질환으로 대부분 자가면역질환을 일컬음

- (빅데이터 활용한 유전자분석) 정밀의료와 사전관리를 위해 개인 유전체 분석 정보와 과거 병력·치료전력· 생활습관 등의 환자 유래 데이터의 수집과 분석이 필수
 - 정보통신기술(ICT)과 유전체 분석 기술을 융합하여 적극 활용하고 방대한 환자의 의료 정보를 빅데이터로 관리·연결함으로써 치료의 정확도를 높임

01 약물유전체 맞춤치료

개인의 유전적 요인에 따른 약물 반응의 다양성 및 차이 관찰과 약물유전체 검사를 통해 환자별 특정 유전자 유무에 따른 특정 치료제의 안전성, 유효성, 약물 용량을 결정하는 개인 맞춤형 치료

사례

효소 Cytochrome P450 2C9은 간에서 비스테로이드성 소염진통제, 항우울제, 항경련제, 항응고제 등 약 100종 이상의 의약품 대사 및 배설을 담당하고 있는데, 이 유전자의 변이가 있는 환자가 항응고제의 일종인 Warfarin을 복용할 경우, Warfarin의 대사가 원활하지 않아 급성 신부전증, 출혈, 괴사, 골다공증 등의 부작용이 발생 가능

▶ 이 때 맞춤약물치료를 통해 특정 개인에게 적정한 용량의 적정한 약물을 복용하게 하여 부작용을 예방하고 치료 효과 높임

02 동반 진단

● 특정 약물 치료에 대한 환자의 반응성을 예측하기 위한 분자 진단 기법의 일종

사례

HER2/NEU 단백질의 과발현으로 인한 유방암은 전체 유방암 환자의 20~30%를 차지하며, 이에 초점을 맞춘 HER2 또는 HER2/NEU 진단을 위한 FDA 승인을 받은 동반진단 기법이 실제 임상 치료에 활용

03 표적 치료

생체지표와 동반진단을 활용하여 실제 임상 현장에서 행해지는 정밀맞춤치료의 총화- 질환 발생의 생물학적 프로세스를 표적으로 하는 모든 형태의 치료 방법 포괄

사례

항암제 표적치료는 종양이 자라거나 인접 세포로 전이되는 것과 관련 있는 특정 분자의 기능을 저해하거나, 종양이 성장하기 위한 필수적인 혈관의 생성을 억제하거나, 특정부위의 암세포를 공격하도록 면역체계를 자극하거나, 암세포 만을 선택적으로 괴사시킬 수 있도록 독성 물질에 표지자를 달아 전달하는 등의 다양한 범주를 포함

– 잘 알려진 표적 치료제는 페암 치료제인 Elrotinib, Gefitinib, Cetuximab 등 존재

04 유전체 분석을 통한 질병위험도 예측

다양한 질병에서 유전체분석을 통한 유전 정보를 바탕으로 질병의 발병 가능성을 낮출 수 있는 치료 등 예방적 조치가 가능해 임상의 다양한 분야에서 활용

사례

美영화배우 안젤리나 졸리는 유전체분석을 통해 유방암에 걸리지 않았음에도, 가족력과 BRCA1 유전자 돌연변이 보유를 근거로 유방절제술을 함

 4

 국내외 정책 동향

국가	정책
미국	▶ 정밀의학 이니셔티브(Precision Medicine Initiative)를 예산안 우선정책 중 하나로 선정 ('16)하고, NIH와 FDA에 중점적으로 22억 달러 (약 2,370억 원)를 투자하여 의학의 새로운 장을 열 것으로 선언
중국	▶ 15년간('16~'30) 600억 위안(약 92억 달러) 규모의 정밀의학에 대한 투자 정책인 정준의료 계획(精準醫療計劃)을 언급했으며, 차기 5개년 계획을 승인한 후 정밀의학 발전 계획을 공식 발표할 예정('17.3)
유럽	▶ 주요 기초과학연구 프로그램인 FP7(7th Framework Programme for research and technological development)에서 보건·의료 부문으로 투자된 총 61억 유로 중 9억 유로 (14.8%)를 정밀의학에 투자하였으며, 800억 유로 규모의 연구개발 투자가 이뤄지는 Horizon 2020 program('14~'20)에서도 정밀의료를 주요 과제로 인식
일본	 ▶ '의료혁신 5개년 전략('12.6)'에서 맞춤의료 (개별화치료,個別化治療)를 주요 과제로 삼아, 맞춤의료에 관련된 혁신적인 신약과 의료기기를 개발해 의료 산업을 주요 성장 산업으로 육성 ▶ 현재 3개의 바이오뱅크에 축적되어 있는 유전체 정보를 취합해 연구에 활용하여 원인 불명의 질병을 가진 아동의 유전체를 분석하여 치료에 활용하는 프로젝트 개시.
국내	 ▶ 2014년부터 시행된 '포스트게놈 신사업육성을 위한 다부처 유전체 사업'이 대표적으로 향후 8년간 약 5,788억 원을 투입할 예정이며 그 중 개인별 맞춤의료에 배정된 예산은 1,577억 원 ▶ 한·미 정밀의료 연구 협력을 통해 아시아 정밀의료 산업 주도권을 확보하는 계기를 마련하고 미국과 함께 세계 정밀의료 시장을 선도하는 동반자적 협력 관계의 구축을 위해 '한·미 정밀의료/메르스 연구 협력의향서 (LOI)'를 체결(2015. 10)

 05

 국내외 연구 동향

01 해외 연구 동향

● (약물유전체 맞춤치료 가이드라인 개발) 약물-유전자쌍에 대한 평가를 통한 근거 획득 후, 이것을 기반으로 임상적으로 활용할 수 있는 가이드라인의 개발은 맞춤치료 구현을 위한 선결 조건

▼ 해외 맞춤치료 가이드라인		
이름	내용	
PharmGKB (미국)	 ▶ 약물유전체학 정보를 저장하는 장소로 약물유전체에 관한 기초 연구와 임상 적용에 관한 정보들을 다루고 있음 ▶ 현재 5,000여개 유전자변이, 900개 이상 약물 관련 유전자, 600개 이상의 약물 관련 정보 축적 	
CPIC (미국)	 약물-유전자쌍의 우선순위를 결정하여 유전형에 따른 표현형을 할당하고 유전형에 기반한 용량 변경 또는 약물 변경 등 근거 기반의 맞춤치료를 권고안으로 제시 현재까지 약 30개 이상의 CPIC 가이드라인과 그 근거기반으로 분류된 약물-유전자쌍 정보를 작성 및 배포 	
DPWG (네덜란드)	 ▶ 근거 수준 및 임상적 타당성에 대한 등급을 정해 해당 환자의 정도에 따른 맞춤치료 권고의 필요 유무를 결정, 용량 조정, 치료 전략, 대체약물 선택 등의 내용을 제시 ▶ 현재까지 53개의 약물과 11개의 유전자에 대한 권고안이 2008년과 2011년 두 차례에 걸쳐 발행 	
P&T Committee (미국)	▶ 안전성과 효율성을 고려한 약물선택 및 대체약물 처방의 방법을 규정하는 것을 목적으로 각 기관들의 약물처방집의 관리·개정을 포함한 약물사용과 관련된 업무를 담당	

- (보건 정보기술과 맞춤치료의 결합) 다양한 유전정보를 프로그램에 의해 자동 분석·통합의 과정을 거쳐 임상에 빠르게 적용하는 역동적인 접근 방법
 - 미국에서 임상 시 사용 가능한 유전적 정보 중 핵심 정보를 선정하여 IT시스템 구축을 시도 중
- (의료 기관에서의 약물유전체 기반 맞춤치료 임상 적용) 검증된 약물유전체 정보와 전자식 의무기록이 연동된 의료 시스템을 바탕으로 임상적용이 미국의 의료 기관*을 통해 이뤄지고 있음
 - * 미국의 선제적 약물유전체검사를 기반으로 한 맞춤약물치료 기관(표)

▼미국의 맞춤치료 임상 의료 기관		
이름	내용	분석가능 유전자 수
Mayo Clinic	PGRNseq	84
Vanderbilt Medical Center	VeraCode ADME core panel	34
St. Jude Children's Hospital	Affymetrix DMET plus Array	230
Mount Sinai Medical Center	Sequenom iPLEX ADME PGx	36

- 《 (실용화를 위한 규제 정책 개선) 최근 정밀의학을 요구하는 세계적 추세에 따라 현장에서의 정밀의료 임상 구현을 위한 실용화 추진
 - (미국) FDA의 규제와 CLIA*법령을 통해 맞춤치료 관련 의약품 및 진단 검사의 안전성, 유효성, 임상적 타당성 등에 대해 검토
 - * CLIA (Clinical Laboratory Improvement Amendments): 어떠한 검사실에서 검사가 수행되더라도 정확성, 신뢰성 및 적시성이 보장될 수 있도록 모든 검사의 질 표준을 수립하고 진단검사의학검사의 질을 보장하기 위해 '88년 미국의회에서 제정
 - (유럽) 유전자검사, 동반진단제를 포함하는 맞춤의료 관련 체외 검사는 모두 체외진단용 의료기기 지침인 'IVD Directive 98/79/EC'에 의해 효능, 품질, 안전에 관해 검토·승인
- (맞춤의료 관련 보험 적용의 확대) 전 세계적으로 정밀의학 관련 보험 적용은 부분적으로 이뤄지고 있어, 빠른 시일 내에 보험 적용의 확대를 통해 정밀의학이 보편적으로 이루어질 것으로 예상

02 국내 연구 동향

● 우리나라는 주로 암질환을 대상으로 한 정밀의학 연구를 진행중

기관	연구동향
국립 암센터	 ▶ 임상유전체 분석을 통한 유전체 연구, 맞춤형 표적치료법 개발, 내성 극복 치료법 개발 등 연구를 수행 ▶ 한·미 정밀의학/메르스 연구 협력 협약을 통해 NIH와 연계하여 한·미 정밀의학 공동 연구 협력에 참여 ▶ 대규모 암 정밀의학 코호트 구축을 통해 암 질환 관련 정밀의학 맞춤치료 구현을 시도
삼성서울병원	▶ 개인별 암 클리닉 운영을 통해 전체 암 환자에게 개인별 맞춤형 치료를 제공하는 것을 목표로 유전체 기반의 개인 맞춤의학 프로그램을 진행 ▶ KT와의 공동 연구 협약을 통해 1천명의 암 환자 유전체 정보를 분석, 자체적인 암 질환 대상 맞춤 치료제 개발을 목표로 한 미국의 TGen(Translational Genomics Research Institute)과의 공동 협약* * '혁신적 개인 맞춤 암 치료 프로그램 (IPCP, Innovative Personalized Cancer Program)'을 향후 3년간 운영할 예정
서울대병원	▶ 2015년 4월 '암 맞춤 치료센터'를 개소하여 위암, 대장암, 간암, 유방암, 폐암, 혈액암 등 한국인 에게서 많이 나타나는 주요 6개 암을 대상으로 암 환자 개개인의 유전자를 분석하여 최적의 치료법을 제시하는 것을 목표

기관	연구동향
서울아산병원	 ▶ 2012년 유전체 맞춤 암 치료센터를 설립, 미국 하버드의대와 공동으로 맞춤형 암치료 시스템인 '한국형 온코맵'과 차세대 유전체 해독 기술을 이용한 '온코패널'을 구축하여 암 질환 대상 정밀 의학 맞춤치료의 기반을 구축 ▶ 미국 MD Anderson 암 센터, 프랑스 구스타브 로시 암 연구소, 중국 푸단대 상하이 암 센터 등 세계 유명 병원과의 연구 협력을 통해 연구 역량을 강화 ▶ 담도암과 폐암의 경우 실제 임상 치료에서 유전체 맞춤 표적치료제를 적용한 맞춤치료를 구현
연세대병원	▶ '개인맞춤치료센터(IPCT, Institute for Personalized Cancer Therapy)'를 개소('15)하여 기초-임상 중개연구의 활성화를 통해 암 대상 정밀의학 구현을 위한 연구를 진행
인제대 약물 유전체연구센터	 한국인의 약물유전체 특성 및 약물반응에 영향을 미치는 요인들을 규명하고 맞춤약물치료의 임상적용을 위한 약물유전체 데이터베이스를 구축 약물대사효소, 약물수송단백, 항암제, 혈당저하제, 중추신경계 약물 등에 대한 약물유전체 연구와 맞춤약물치료 기술의 개발에 주력 부산백병원과 연계해 약물유전체를 기반으로 한 심혈관질환 대상의 맞춤약물치료와 결핵 맞춤약물치료를 실제 임상에서 구현

● 바이오헬스 규제 개혁 완화를 통한 정밀의학 발전 촉진

- '바이오헬스산업 규제 개혁 및 활성화 방안'을 마련하여 정밀의학 관련 연구 및 관련 산업에 대한 규제를 완화(보건복지부, '15. 11)
- 유전자검사의 경우 LDT 제도*를 도입하여 유전자검사 항목을 확대하고 건강보험 급여 적용을 확대
 - * LDT (Laboratory Developed Test) : 해당 임상 검사실의 Medical Director의 책임 하에 필요에 따라 개발하여 제공되는 임상 검사 서비스(미국의 CLIA와 유사)
- 아직까지 허가된 유전자검사 대상 질병 범위가 한정되어 있어 검사항목의 확대 등 해결해야 할 문제가 남음

- 정밀의료는 많은 질병들을 극복할 대안이라는 관점에서 미래 선도 의학으로 대두
- 현재 국내 정밀의료 실용화는 초기단계로서 성공적인 정밀의료의 정착을 위해 연구정책 투자지원 전략과 지원의 확대가 필요
 - 국민들이 정밀의료의 혜택을 받을 수 있도록 해당 분야의 전문가 배양을 위한 교육 프로그램 및 인프라 구축을 위한 임상현장 적용 지원 필요
 - 의료보험 상환 제도 등 정밀의료 관련 의료보험제도 정책 지원·수정을 통해 더 많은 대중들에게 정밀의료가 보급될 수 있도록 지원
- 특히, 약물유전체 기반 맞춤치료가 임상 현장에서 시행되기 위해서는 가이드라인 개발과 IT 프로그램을 통한 실시간 선제적 예방 및 치료가 가능한 의료 시스템 구축 시급
 - 이를 위해, 임상 적용을 위한 예측 모델 구축 등과 같은 실용화 연구에 대한 집중적인 투자와 연구 지원 필요

참고자료

- \bigcirc
- 1. 한국과학기술단체총연합회, 유전체학의 발전과 정밀맞춤의학 시대의 도래, 2015. 12.
- 2. 생명공학정책센터, BiolNpro 20호, 정밀의학 최신 동향, 2016. 1. 26
- 3. 과학기술정책연구원, 개인 유전체 기반 맞춤 의료 현황과 발전과제, 2015. 12. 1
- 4. PMC Fact Sheet, The Age of Personalized Medicine, What Is Personalized Medicine?, 2014. 6.
- 5. Large-Scale Genome Sequencing and Analysis Centers (LSAC), ^rThe Cost of Sequencing a Human Genome_J, 2016. 7.
- 6. 한국과학기술평가원, 정밀의료의 성공전략, 2016. 8. 31.
- 7. 매일경제, '나만을 위한' 치료법, 정밀의학 선점 경쟁 뜨겁다, 2016. 4. 6.
- 8. Dunnenberger H, Crews K, Hoffman J, Caudle K, Broeckel U, Howard S et al. Preemptive clinical pharmacogenetics implementation: Current programs in five US medical centers.

 Annu. Rev. Pharmacol. Toxicol., 2015; 55: 89–106
- 9. 보건복지부, 식품의약품안전처, 바이오헬스산업 규제개혁 및 활성화 방안, 2015.11.06.
- 10. 생명공학정책센터, BioNwatch, 차세대염기서열분석(NGS) 기반 유전체 동향, 2017. 1. 19.

