

식품안전 및 가치창출 기술

※ 출처 : 융합연구정책센터

□ 선정 사유

- 일본 방사능 유출, 중국 인플루엔자 확산 등 지속적으로 발생하는 식품 안전 관련 사고로 식품자원에 대한 위험성 및 소비자 불안 증가
 - 식품의 생산, 유통, 소비의 전 과정에서 안전 관리의 효율적 운영을 위한 식품안전화 방안 및 품질관리·유통기술 개발의 필요성 대두
- 인구 증가, 삶의 질 향상에 따라 농업 생산성 향상 및 품질 제고에 대한 수요 확대에 따른 안정적 식량 확보 중요
 - FTA로 인한 시장 개방 확대 및 농축산업 저성장 구조 속에서 농업 과 과학기술의 융합 등을 통한 농림식품 R&D 사업의 체계적 추진 필요
 - 과학기술을 활용하여 농립기술개발사업 확대·개편하는 등 농업육성 정책을 추진하여 글로벌 무한경쟁시대의 농업 경쟁력 제고

□ 개요

- (기술개념) 농림수산물 등의 식량자원을 활용하여 신선식품이나 가공 제품으로 판매할 수 있도록 식품 안전을 확보하고, 편의성과 기능성을 부가시키기 위해 가공, 생산 및 상품화에 요구되는 제반 기술
- (기술범위) '식품안전 확보 및 식량자원 관리 기술' 및 '식품가치 창출 기술'로 구분
 - (식품안전 확보 및 식량자원 관리 기술) 식량자원을 수확한 후 관리하는 기술과 시장 요구를 충족하기 위한 유통 및 시스템 개발, 식품가공처리 및 공정기술 포함
 - (식품가치 창출 기술) 유전정보를 고려하여 개인별 맞춤식 설계로 생산되는 고부가가치 신기능 식품 개발 및 질병에 대한 예방이나 건강 보조 등의 기능을 가진 식품의 효능과 예후를 평가하여 관리 하기 위한 기술

□ 국내·외 정책동향

- (국외) 해외 선진국들은 과학기술정책을 주요 국정 Agenda로 설정, 농림식품 R&D 핵심 투자분야 설정과 추진체계 효율화 추진
 - (미국) 차관급 정책 총괄기획 부서로 REEO*를 신설('08 농업법)하고 식품안전, 건강, 바이오에너지에 집중 투자하고 있으며, 과거 생산성 향상이 주된 목적이었다면, 공공보건, 사회복지 및 친환경 등 국민에 대한 안전한 먹거리 제공으로 방향 전환
 - * Research, Education, and Extension Office(REEO)
 - (네덜란드) 정부주도형 농업기술개발 형태를 유지하며, Wageningen UR(Wageningen University & Centre)에 12개 연구소 및 서비스 기관이 연구를 수행하고 이외 9개의 응용연구센터가 현장 중심의 연구 수행
 - (일본) 농림수산성 내 농림수산기술회의가 정책을 총괄하고 국가연구 기관을 6개의 독립행정법인으로 개편(`09)하여 지속가능성, 안전식품, 미래기술 등에 집중투자하고 있으며 민간 R&D 활성화

<주요 국가별 중점 R&D 분야 특징>

국가	중점 투자 분야	추진 배경					
공통	·생명공학 접목 신품종 개발 ·식품안전 ·바이오에너지	·유전자원 확보 및 종자 개발 경쟁 치열 ·안전 먹거리에 대한 소비자 니즈 증가 ·화석연료 대체 시급					
미국	·글로벌 시장 확보 ·식품안전 및 건강 ·바이오에너지	·글로벌 시장 경쟁력 확보 선점 노력 ·영양, 품질 안전에 대한 지속적 요구 ·대체 에너지 개발 선점적 지위 유지					
EU	·지속가능 생산관리 ·식품안전 ·비식품 바이오기술 (에너지·소재·촉매)	·식품망 관리를 통한 국가, 지역, 글로벌 시장의 소비자 니즈와 기대 충족 ·유럽 농식품 산업의 국제 경쟁력 지원					
네덜란드	·바이오경제 ·기후변화 ·식품, 건강 및 행동 ·전문가 영역(시스템바이오, 바이오나노기술, 규모와 거버넌스 연계) ·지식활용 및 가치증대	·사회적 가치경영 및 지속가능성 향상 정책추진 ·프로그램 혁신을 통한 공공-민간 파트너십 개발 ·식품과 의료시설과의 연계 강화 ·산업·경제 분야와 연계를 통한 신산업으로의 경쟁력 추구					
일본	·농림수산업의 지속발전 ·고품질 안전 식품 확보 ·농어촌 지역자원 개발 ·다면적 환경기능 연구 ·차세대 선도 미래기술	·국가차원에서 농림수산업을 차세대 미래 성장 산업으로 육성 ·환경과 지역경제, 안정적인 식량 공급을 동시에 해결					

- (국내) 식품산업이 농림수산업과 함께 동반 성장할 수 있는 환경으로 변화발전함에 따라 1차 농림수산물 중심 정책에서 벗어나 식품가공· 유통 및 외식업을 포괄하는 지원하는 정책으로 방향을 전환
 - '농림수산식품과학기술 육성 5개년 종합계획(`10~`14)' 및 '농림식품 과학기술 육성 중장기계획(`13~`22)*'을 수립하여 농림수산식품 분야 R&D 청사진 마련
 - * 국정과제 및 농정목표를 반영하여 농식품 산업정책을 실질적으로 지원할 수 있는 시스템을 마련하고 궁극적으로 농업분야에 창조경제를 실현하고자 함
 - `94년 신규 추진한 농림기술개발사업을 확대, 개편하는 등 농림식품 R&D 외연 확대
 - ※ R&D 영역확대: (기존)농림기술개발 → (신규)Golden Seed 프로젝트, 바이오그린 21, 식품산업기술개발, 첨단생산기술개발, 수출전략기술개발, 가축질병기술개발 등

□ 국내 R&D 지원 현황

- 3개 부·청(57개 사업, 7,533개 과제)이 `12년에 집행한 R&D 투자액은 9,085억 원으로 국가 전체 R&D 예산의 5.7% 수준
 - ※ 국가 전체 R&D 예산(`12년) 160,244억원
 - 국가 전체 R&D 투자에서 농식품 분야 R&D가 차지하는 비중은 `08 년부터 점차 감소하는 추세였으나 `11년부터 비슷한 수준 유지
 - ※ 5.9%('08년) → 5.7%('09년) → 5.6%('10년) → 5.8%('11년) → 5.7%('12년)
- 농식품 분야 R&D 투자액은 전년대비 470억 원 증가(5.5% 증가)
 - `12년도 국가 전체 R&D 예산 증가액인 1조 1,342억 원의 4.1% 차지

<연도별 투자현황 추이(2010~2012년)>

(단위: 억원, %)

(21) 4 2, 2)							
구분	2010년		2011년		2012년		
<u> </u>	투자액	비중	투자액	비중	투자액	비중	증기율
농림수산식품 3개 부청	7.720	5.6	8,615	5.8	9,085	5.7	5.5
교과부	43,922	32.1	47,497	31.9	49,753	31.0	5.7
지경부	44,169	32.2	45,269	30.4	47,448	29.6	4.8
기타 부처	41,152	30.0	47,510	31.9	53,953	33.7	12.6
 전체	137,014	100.0	148,902	100.0	160,244	100.0	7.8

※ 출처 : 농림수산식품기술기획평가원, 2012년 농림수산식품 국가연구개발사업 투자 ·성과분석 보고서(2013)

- 농식품부를 중심으로 농업의 부가가치를 높이고, 농식품분야의 국가 경쟁력 제고 및 소득향상을 목적으로 고부가가치식품기술개발사업, 첨단생산기술개발사업 등을 추진
 - (고부가가치식품기술개발) 농수산물 연계 품목 가공 및 기능성 소재 개발 기술지원을 통해 농수산업과 식품산업의 동반 성장 도모
 - (첨단생산기술개발) 농어업 인구 감소, 고령화, 농업경영비 상승 압력 증대 등의 불리여건을 최소화하기 위해 IT등 신기술 융합의 환경친화형·생산비절감형 첨단생산 산업기반 구축 및 산업화 촉진

<관련 분야의 주요 지원과제 현황>

사업명 (부처명)	과제명 연구 내용		연구책임자 (연구비-`12년)
고부가가치식품 기술개발 (농림수산식품부)	간 기능 개선 효능을 갖는 오가피 발효물 소재 개발 및 산업화	·오가피를 기질로 한 미생물 발효물로부터 간 기능 개선 효능을 갖는 소재 개발하여 제품개발 및 산업화	조주현 (100백만원)
첨단생산기술개발 (농림수산식품부)	한우 이력추적 현장 검증을 위한 휴대용 유전자 분석 마이크로 통합 시스템 개발	·한우 소 불법유통, 품질 및 질병 안전성 확인, 한우 소 고기 둔갑 판매 등의 문제 를 해결하고자 현장에서 신 속 정확하게 판별할 수 있 는 휴대용 유전자 분석 마이 크로 통합 디바이스 개발	서태석 (270백만원)

※ 출처 : 농림수산식품기술기획평가원, 2014 고부가가치식품 우수기술발표회 농림수산식품기술기획평가원, 농림축산식품 R&D 우수성과 사례집

□ 국내의 기술수준분석

<관련 분야의 국·내외 기술수준>

기술 분야	세부기술분야	최고 기술 보유국 (기술 수준 100%)	국내 수준 (최고 수준 국가 대비)
식품 안전 확보	농축산물 품질 및 안전관리 기술	미국	73.4%
	식품 위해인자 검출 및 제어기술	미국	72.2%
	식품 품질관리 유통 기술	미국	74.5%
 식품	저탄소 녹색 및 첨단 융복합 식품 개발	미국	69.3%
가치 창출	식품 기능성 탐색 및 특수목적 식품 개발	미국	77.4%
	식품 신소재 개발	미국	77.7%

※ 출처: 농림수산식품기술기획평가원, 2012 농림수산식품 기술수준평가(2012.12)

- (해외) 식품안전 및 식품가치 창출 분야 관련 6개 주요기술의 최고 기술 보유국은 모두 미국인 것으로 나타남
 - (농축산물 품질 및 안전관리/위해인자 검출 및 제어기술) 미국, EU 등은 GAP·HACCP 등에 의거, 안전 농림축수산물 생산관리를 강화하고 관련 지침을 통해 규범화하여, 유해물질 신속진단·잔류 저감화 등 안전관리 기술 수준이 높음
 - (식품 품질관리 유통기술) 지능형 포장, 식품 전자상거래 활성화 및 유니버셜 디자인이나 지속가능한 사회에 맞는 유통기술 등 신개념의 기술이 등장
 - (기능성 소재 가공 및 상품화 기술) 고유의 식품기술에 IT, BT, NT 등이 접목되면서 식품산업에 적용되는 기술영역이 넓어지고 있으며, 실제로 현장에 적용되어 다양한 제품개발이 이루어지는 추세
 - ※ 나노입자화, 나노분체기술을 이용한 제품 응용이나 캠슐을 이용한 식품소재와 식품의 입자를 나노크기로 분쇄하여 분산성을 높이고 체내흡수력을 향상시킨 음료제품 등이 등장하고 있으며 기능성 물질을 나노크기로 소재화하는 분야가 빠르게 전개
- (국내) '2012 농림수산식품 기술수준평가' 결과를 바탕으로 식품안전 및 식품가치 창출 분야의 국내 기술수준을 분석한 결과, 최고 기술수 준 보유국인 미국 대비 평균 74.1%이며 기술격차는 5.4년임

□ 기대 효과

- 세계 식품산업 시장규모는 지속적으로 확대될 전망이며 인구증가 및 신흥개발국 성장에 따라 `15년에는 6.1조 달러에 도달할 것으로 예상
 - 기후변화, 환경변화 등 생태계 변화뿐만 아니라 개도국의 급격한 인 구증가로 인해 세계적으로 식량자원 부족 문제 대두
 - 건강에 대한 소비자 관심이 증대되고 삶의 질이 높아짐에 따라 식품을 통한 질병의 사전예방 및 고품질의 안전한 식품에 대한 필요성증대
 - 수확량을 향상시키고 고품질의 안전한 식품을 안정적으로 공급할 수 있는 기술개발을 통한 고부가가치 첨단 식품산업화 기대
- 농식품 분야 국제 경쟁력을 확보하여 글로벌 시장 진입

- 대부분 수입 원료에 의존하고 있는 기능성 식품 소재 개발 국산화하고 맞춤형 기능성 식품 등의 적극적인 개발로 식품산업을 국가 신성장 동력으로 육성
- 식품산업과 다양한 분야의 기술·산업과의 융복합 및 유망분야 조기 선점을 통한 산업경쟁력 강화

□ 결론 및 정책적 시사점

- 농림식품분야의 R&D 투자 확대 필요
 - 농림수산식품부 R&D 투자액은 전년대비 5.5% 정도 증가하였으나, 타 부처에 비해 저조
 - 특히 민간 R&D 투자가 미흡하였고, 소액·다건의 백화점식 투자로 핵심기술에 대한 선택과 집중이 부족
 - FTA 등 농업의 국내외 환경변화에 대응하고 농생명자원이 국부창출 원이 되는 바이오 경제시대를 선도하기 위해서는 농림수산식품 R&D에 대한 보다 적극적 투자 필요
- 국내 농림식품분야는 생산성 향상 및 식품안전을 위한 다양한 분야 와의 융합연구 추진 확대 필요
 - 현재 농식품 분야와 IT, NT, BT 등 융합을 추진하고 있으나, 초보적 단계이며 전반적인 활용도 미흡
 - 시설농업(원예, 축산 등) 중심으로 추진 중인 ICT 융합을 임업, 농업 경영, 유통 등에 확대하여 생산·가공·유통·소비에 이르는 가치사슬 전반에 확산 필요
 - 최근 이슈로 부각되고 있는 빅데이터를 활용한 '빅데이터 기반 식품 안전 위해평가 및 소통 기술'이나 식품의 생산, 유통, 소비의 전과정 에서 위해요소 검출 및 저감화를 위한 '통합적 식품생산공정의 스마 트 품질관리 기술' 등과 같은 융합기술 개발 노력 필요
- 농림식품 분야의 정보 통합·개방 추진으로 정보 활용 활성화 추진
 - 공공·민간에 산재되어 있는 농식품 정보를 통합·개방하여 관련 산업 의 육성 및 신사업 발굴에 활용할 수 있도록 정보제공 기반 마련
- 식품산업 영역 확장을 통한 신산업 창출

- 실버시장, 건강지향 식품시장 약선 소재 개발 및 맞춤형 제품개발
- 의학, 약학분야와의 연구협력 강화, 식품소재 고도화 연구영역 확대 추진