Result
게시물 키워드""에 대한 9459개의 검색결과를 찾았습니다.
ARTKIST 레지던시 입주 작가전 ‘예술이 과학을 더(+)하다’ 개최
ARTKIST 레지던시 입주 작가전 ‘예술이 과학을 더(+)하다’ 개최 한국과학기술연구원(KIST, 원장 이병권)은 KIST 본원 구름다리 창의문화공간에서 ARTKIST 레지던시 입주 작가들의 지난 1년을 돌아보는 전시회 ‘예술이 과학을 더(+)하다’ 전을 12월 1일부터 2월말까지 개최한다고 밝혔다. KIST는 2013년말 과학자와 예술가의 자연스러운 교감과 소통을 통해 창의·융합문화를 조성하기위해 연구소내에 예술창작 스튜디오인 “ARTKIST 레지던시”를 설치했다. 아울러 KIST는 작품 활동을 펼칠 공간이 부족한 젊은 예술가들에게 1년간 KIST L3 연구동 1층 스튜디오를 무상으로 지원했다. 창의력을 기반으로 독창적 성과를 낸다는 공통점이 있는 과학자와 예술가가 한 공간에 거주하면서 상호 교류하고, 예술가에게는 공간과 창작활동을 지원한다는 취지로 만든 프로그램이다. 지난 1년여간 회화, 설치, 조각, 영상 등 다양한 분야의 7명의 입주 예술가들은 과학기술 종합연구소인 KIST의 다양한 연구부서를 견학하고, 관심분야 과학자 면담, 워크샵 개최, KIST 창의포럼(인문학과 예술강좌) 등에 적극 참여해 작품 영역 확대와 소양 강화를 위해 노력해 왔다. 또한 ARTKIST 레지던시 입주기념 전시회 및 오픈 스튜디오 개최, 과학 상상그리기 대회 및 KIST 가족작품전 심사위원 참여, 연구자를 위한 미술감상교실 강좌 개최 등 과학자들에게 예술적 감성을 키우기 위한 다양한 원내 활동에 참여했다. 작가 개인적으로는 개인전 4회, 그룹전 16회, 해외 개인전, 국내외 아트페어 10여회 참여 등 활발한 외부활동을 펼쳤다. 올 하반기부터는 이번 결과전 준비를 위해 자체 워크샵을 개최하고, 관심분야 과학자와 작품 제작을 위한 기술 자문을 구하는 등 KIST와 과학을 염두에 둔 작품 구상과, 제작에 매진해 왔다. 입주작가들과 세미나와 협의를 진행해 왔던 물자원순환연구단 이석헌 단장은 “연구프로젝트를 진행하며 전공분야인 세부 단위연구에 심혈을 쏟다보면 정작 새로운 테마의 큰 그림(연구기획)을 그리는데 소홀할 수 있는데, 예술가들은 직관적이고 독창적 상상력이 풍부하여 같이 이야기해보면 새로운 생각과 참신한 아이디어를 가지고 있는 경우가 많아 서로 도움을 주고 받을수 있는 여지가 많다” 라고 말했다. 키네틱아트 왕지원 작가는 미래 인류에 대해 과학자들에게 직접 의견을 구하고, 설문지를 보냈다. 이에 대한 답변을 토대로 184개 기어(gear)를 조합하여 생명의 근원인 물의 이미지를 형상화하였다. 구동되어지는 물결무늬의 기어는 과학과 예술의 유기적 결합을 의미한다. 왕작가는 기술적 지원은 물론이고 과학의 발전과 인간의 미래에 대해 과학자들의 생각이 많이 궁금했는데 ARTKIST 레지던시 입주를 통해 자기분야의 전문가인 과학자들의 의견을 접할 수 있어 이번 전시작품 제작에 많은 도움이 되었다”며, “앞으로의 작업방향 설정에도 좋은 길잡이가 될 것같다”며 고마움을 표현했다. 홍승태 작가는 극사실 인체 조각을 하는 작가이다. 작업시간이 많이 소요되는 한계를 극복하고자 시각적으로 다양한 표현을 할 수 있는 영상을 활용한 매핑기술을 입체조각에 적용시켰다. 홍작가는 이런 작품 아이디어를 KIST 영상미디어연구센터와의 협력을 통해 가질 수 있었으며, 극사실과 팝아트를 접목하여 대중에게 보다 쉽게 다가갈 수 있는 이미지를 사용했다. 전시회에 참가하는 다른 작가인 김은옥(김시현) 작가는 300호 캔버스 위에 전통보자기를 극사실로 표현하고, KIST가 개발한 휴머노이드 로봇인 마루, 아라의 이미지를 첨가해 전통과 현대의 새로운 만남을 시도했다. 이병권 KIST 원장은 “과학자와 예술가의 교류하면서 서로에게 도움을 주고 받을수 있는 가능성을 ARTKIST 레지던시를 통해 발견한 것이 가장 큰 의미”라고 생각한다며, “이번 전시가 기폭제가 되어 과학자와 예술가가 서로 창의적 시각과 발상을 자신의 영역에 새롭게 적용해 보는 새로운 기회가 많아지기를 희망한다”고 말했다. o 문의: KIST 문화확산팀(T.958-6045), 홍보팀(T.958-6313) <용어설명> o 아트 레지던시(Art Residency) : 일반적으로 미술창작스튜디오로도 불리며, 아트 스튜디오(Art Studio)라는 이름으로도 운영되고 있다. 해외에서는 아티스트 커뮤니티, 아트 콜로니, 아트 빌리지 등으로도 운영되고 있으며, 가장 일반적으로 아티스트 인 레지던스 프로그램으로 일컬어진다. 이러한 아트 레지던시는 그 이름으로 알 수 있듯, 예술가들이 함께 거주하면서 창작활동을 할 수 있도록 하는 공간지원 및 창작 지원 프로그램이다.
[정보공개목록] 2014년 11월
[정보공개목록] 2014년 10월
KIST, 이상배 박사 美 광학회 펠로우(석학회원) 선정
KIST, 이상배 박사 美 광학회 펠로우(석학회원) 선정 한국과학기술연구원(KIST, 원장 이병권)은 광전융합시스템 연구단 이상배 책임연구원이 미국 광학회(OSA)의 최고 영예 회원인 펠로우(석학회원)"에 선정됐다고 밝혔다. 미국 광학회는 1916년 설립된 이래 80여 개국 1만8천여명의 회원이 활발한 연구를 벌여 광학분야에서 권위를 인정받고 있는 학회이다. 이중 매년 약 전체 회원의 0.4%의 회원에게만 펠로우가 수여된다. 이 박사는 1985년 KIST 연구원으로 입사한 이래 30년간 국내외에 걸쳐 300여 편이상의 논문을 발표하는 등 왕성한 연구를 해왔으며 미국 광학회 펠로우 선정심사에서는 광통신과 광센서 분야에 응용되는 광섬유 격자와 광섬유 레이저등 광소자 기술 개발에 대한 공로를 인정받았다.
KIST, 탠덤 태양전지 효율 극대화 플랫폼 기술 개발
KIST, 탠덤 태양전지 효율 극대화 플랫폼 기술 개발 - 유기물 반도체의 값싼 장점, 무기물 반도체의 효율이 높은 장점 극대화 - 2.4V의 높은 전압을 이용하면 직접 물분해를 통해 수소 생산 가능 환경친화적이며 미래지향적인 에너지 생산방법으로 태양전지를 최우선적으로 생각할 수 있다. 세계적으로 태양전지 보급이 확대되고 있는데 효율이 개선된다면 태양에너지 활용 분야는 더 넓어질 수 있다. 하지만 실리콘 태양전지와 같은 단일 접합 태양전지는 이론적 한계효율(쇼클리-콰이저 한계?, Shockley-Queisser limit)을 넘어설 수 없는 것으로 여겨져 왔다. 이 한계를 돌파할 수 있는 기술이 바로 탠덤 (다중 접합) 태양전지다. *쇼클리-콰이저 한계 : 낮은 에너지의 광자는 태양전지로 쓰이는 반도체에 흡수되지 못한 채 투과되고, 높은 에너지의 광자는 흡수된 후 열에너지로 낭비되기 때문에 발생하는 이론적 한계효율 한국과학기술연구원(KIST, 원장 이병권) 광전하이브리드연구센터 김홍곤 박사팀은 태양전지의 이론효율 한계를 뛰어넘을 수 있는 유-무기 하이브리드 탠덤 태양전지의 플랫폼 기술을 개발했다. 탠덤 태양전지는 광 흡수 영역이 서로 보완적인 두 개 이상의 광흡수 반도체를 수직으로 쌓아 태양에너지 중 투과되는 손실과 열에너지로 낭비되는 손실을 최소한으로 줄이는 기술이다. 기존의 무기탠덤 태양전지는 갈륨, 비소와 같은 값비싼 재료와 고가의 공정장비를 사용하여 제조되기 때문에 우주선과 같이 제한된 곳에 활용될 뿐 널리 상용화되지는 못했다. 연구팀이 개발한 기술은 유-무기 하이브리드 탠덤 구조를 고안하여 저비용, 고효율 태양전지를 가능하게 하는 플랫폼 기술이다. 유기물 반도체의 저렴한 장점과 무기물 반도체의 효율이 높은 장점을 하나의 소자 내에서 최대화하는 것이 핵심 아이디어였다. 연구팀은 이웃하는 단일 접합 태양전지들을 이어주는 계면층 개발과 소자 전체에서 전류 분포를 고르게 하는 전류매칭 기술에 주력했고, 그 결과 유-무기 하이브리드 구조의 탠덤 태양전지 분야에서는 세계 최고인 9.5%의 효율을 달성했다. 이번에 개발된 유-무기 하이브리드 탠덤 태양전지는 2.4 V에 달하는 높은 전압이 가장 큰 특징으로 이는 물분해를 통한 수소 생산에 활용되기에도 충분한 크기이다. 또, 세계 각국의 많은 연구자들이 다양한 종류의 단일 접합 태양전지 분야에서 광전변환효율 개선을 위해 노력하고 있는데, 이번에 확보된 플랫폼 기술을 적용하면 단일 접합 태양전지의 기술발전을 탠덤 태양전지의 고효율화에 바로 적용할 수 있다는 게 연구진의 설명이다. 이번 성과는 국가과학기술연구회(구 기초기술연구회) NAP(National Agenda Project, 국가 아젠다 해결형)사업 및 KIST의 기관고유사업의 결과다. KIST 광전하이브리드연구센터의 김홍곤, 이도권, 한승희 박사 연구팀의 태양전지 분야에서 축적된 원천기술과 성균관대학교 이준신 교수팀의 무기박막태양전지 기술, 그리고 서울대학교 김창순 교수팀의 계산과학이 어우러진 융합연구를 통해 이루어낸 성과라는 점에서도 의의가 크다. KIST 김홍곤 박사는 “개발된 탠덤 소자는 그 자체로 매우 높은 전압을 나타내기 때문에 모듈화(일반적으로 태양전지로부터 고전압을 얻기 위해 단일접합 태양전지 여러 개를 직렬 연결하는 것)에 따른 저항손실 없이도 물분해 등에 적용될 수 있다”면서 “다양한 단일접합 태양전지 기술이 발전함에 따라 탠덤화 플랫폼 기술의 수요도 증가할 것”이라고 말했다. 이번 연구 성과는 11월 21일 네이처 출판사에서 발행하는 사이언티픽 리포트(Scientific Reports) 온라인판에 "Triple-Junction Hybrid Tandem Solar Cells with Amorphous Silicon and Polymer-Fullerene Blends"의 제목으로 게재되었다. <참고 이미지 자료> 1. 연구내용 요약용 이미지 위: 유-무기 하이브리드 탠덤 태양전지 구조 아래: 탠덤 태양전지 고효율화를 위한 계산 결과 KIST 김홍곤 박사 KIST 이도권 박사
KIST, 탠덤 태양전지 효율 극대화 플랫폼 기술 개발
KIST, 탠덤 태양전지 효율 극대화 플랫폼 기술 개발 - 유기물 반도체의 값싼 장점, 무기물 반도체의 효율이 높은 장점 극대화 - 2.4V의 높은 전압을 이용하면 직접 물분해를 통해 수소 생산 가능 환경친화적이며 미래지향적인 에너지 생산방법으로 태양전지를 최우선적으로 생각할 수 있다. 세계적으로 태양전지 보급이 확대되고 있는데 효율이 개선된다면 태양에너지 활용 분야는 더 넓어질 수 있다. 하지만 실리콘 태양전지와 같은 단일 접합 태양전지는 이론적 한계효율(쇼클리-콰이저 한계?, Shockley-Queisser limit)을 넘어설 수 없는 것으로 여겨져 왔다. 이 한계를 돌파할 수 있는 기술이 바로 탠덤 (다중 접합) 태양전지다. *쇼클리-콰이저 한계 : 낮은 에너지의 광자는 태양전지로 쓰이는 반도체에 흡수되지 못한 채 투과되고, 높은 에너지의 광자는 흡수된 후 열에너지로 낭비되기 때문에 발생하는 이론적 한계효율 한국과학기술연구원(KIST, 원장 이병권) 광전하이브리드연구센터 김홍곤 박사팀은 태양전지의 이론효율 한계를 뛰어넘을 수 있는 유-무기 하이브리드 탠덤 태양전지의 플랫폼 기술을 개발했다. 탠덤 태양전지는 광 흡수 영역이 서로 보완적인 두 개 이상의 광흡수 반도체를 수직으로 쌓아 태양에너지 중 투과되는 손실과 열에너지로 낭비되는 손실을 최소한으로 줄이는 기술이다. 기존의 무기탠덤 태양전지는 갈륨, 비소와 같은 값비싼 재료와 고가의 공정장비를 사용하여 제조되기 때문에 우주선과 같이 제한된 곳에 활용될 뿐 널리 상용화되지는 못했다. 연구팀이 개발한 기술은 유-무기 하이브리드 탠덤 구조를 고안하여 저비용, 고효율 태양전지를 가능하게 하는 플랫폼 기술이다. 유기물 반도체의 저렴한 장점과 무기물 반도체의 효율이 높은 장점을 하나의 소자 내에서 최대화하는 것이 핵심 아이디어였다. 연구팀은 이웃하는 단일 접합 태양전지들을 이어주는 계면층 개발과 소자 전체에서 전류 분포를 고르게 하는 전류매칭 기술에 주력했고, 그 결과 유-무기 하이브리드 구조의 탠덤 태양전지 분야에서는 세계 최고인 9.5%의 효율을 달성했다. 이번에 개발된 유-무기 하이브리드 탠덤 태양전지는 2.4 V에 달하는 높은 전압이 가장 큰 특징으로 이는 물분해를 통한 수소 생산에 활용되기에도 충분한 크기이다. 또, 세계 각국의 많은 연구자들이 다양한 종류의 단일 접합 태양전지 분야에서 광전변환효율 개선을 위해 노력하고 있는데, 이번에 확보된 플랫폼 기술을 적용하면 단일 접합 태양전지의 기술발전을 탠덤 태양전지의 고효율화에 바로 적용할 수 있다는 게 연구진의 설명이다. 이번 성과는 국가과학기술연구회(구 기초기술연구회) NAP(National Agenda Project, 국가 아젠다 해결형)사업 및 KIST의 기관고유사업의 결과다. KIST 광전하이브리드연구센터의 김홍곤, 이도권, 한승희 박사 연구팀의 태양전지 분야에서 축적된 원천기술과 성균관대학교 이준신 교수팀의 무기박막태양전지 기술, 그리고 서울대학교 김창순 교수팀의 계산과학이 어우러진 융합연구를 통해 이루어낸 성과라는 점에서도 의의가 크다. KIST 김홍곤 박사는 “개발된 탠덤 소자는 그 자체로 매우 높은 전압을 나타내기 때문에 모듈화(일반적으로 태양전지로부터 고전압을 얻기 위해 단일접합 태양전지 여러 개를 직렬 연결하는 것)에 따른 저항손실 없이도 물분해 등에 적용될 수 있다”면서 “다양한 단일접합 태양전지 기술이 발전함에 따라 탠덤화 플랫폼 기술의 수요도 증가할 것”이라고 말했다. 이번 연구 성과는 11월 21일 네이처 출판사에서 발행하는 사이언티픽 리포트(Scientific Reports) 온라인판에 "Triple-Junction Hybrid Tandem Solar Cells with Amorphous Silicon and Polymer-Fullerene Blends"의 제목으로 게재되었다. <참고 이미지 자료> 1. 연구내용 요약용 이미지 위: 유-무기 하이브리드 탠덤 태양전지 구조 아래: 탠덤 태양전지 고효율화를 위한 계산 결과 KIST 김홍곤 박사 KIST 이도권 박사
KIST, 탠덤 태양전지 효율 극대화 플랫폼 기술 개발
KIST, 탠덤 태양전지 효율 극대화 플랫폼 기술 개발 - 유기물 반도체의 값싼 장점, 무기물 반도체의 효율이 높은 장점 극대화 - 2.4V의 높은 전압을 이용하면 직접 물분해를 통해 수소 생산 가능 환경친화적이며 미래지향적인 에너지 생산방법으로 태양전지를 최우선적으로 생각할 수 있다. 세계적으로 태양전지 보급이 확대되고 있는데 효율이 개선된다면 태양에너지 활용 분야는 더 넓어질 수 있다. 하지만 실리콘 태양전지와 같은 단일 접합 태양전지는 이론적 한계효율(쇼클리-콰이저 한계?, Shockley-Queisser limit)을 넘어설 수 없는 것으로 여겨져 왔다. 이 한계를 돌파할 수 있는 기술이 바로 탠덤 (다중 접합) 태양전지다. *쇼클리-콰이저 한계 : 낮은 에너지의 광자는 태양전지로 쓰이는 반도체에 흡수되지 못한 채 투과되고, 높은 에너지의 광자는 흡수된 후 열에너지로 낭비되기 때문에 발생하는 이론적 한계효율 한국과학기술연구원(KIST, 원장 이병권) 광전하이브리드연구센터 김홍곤 박사팀은 태양전지의 이론효율 한계를 뛰어넘을 수 있는 유-무기 하이브리드 탠덤 태양전지의 플랫폼 기술을 개발했다. 탠덤 태양전지는 광 흡수 영역이 서로 보완적인 두 개 이상의 광흡수 반도체를 수직으로 쌓아 태양에너지 중 투과되는 손실과 열에너지로 낭비되는 손실을 최소한으로 줄이는 기술이다. 기존의 무기탠덤 태양전지는 갈륨, 비소와 같은 값비싼 재료와 고가의 공정장비를 사용하여 제조되기 때문에 우주선과 같이 제한된 곳에 활용될 뿐 널리 상용화되지는 못했다. 연구팀이 개발한 기술은 유-무기 하이브리드 탠덤 구조를 고안하여 저비용, 고효율 태양전지를 가능하게 하는 플랫폼 기술이다. 유기물 반도체의 저렴한 장점과 무기물 반도체의 효율이 높은 장점을 하나의 소자 내에서 최대화하는 것이 핵심 아이디어였다. 연구팀은 이웃하는 단일 접합 태양전지들을 이어주는 계면층 개발과 소자 전체에서 전류 분포를 고르게 하는 전류매칭 기술에 주력했고, 그 결과 유-무기 하이브리드 구조의 탠덤 태양전지 분야에서는 세계 최고인 9.5%의 효율을 달성했다. 이번에 개발된 유-무기 하이브리드 탠덤 태양전지는 2.4 V에 달하는 높은 전압이 가장 큰 특징으로 이는 물분해를 통한 수소 생산에 활용되기에도 충분한 크기이다. 또, 세계 각국의 많은 연구자들이 다양한 종류의 단일 접합 태양전지 분야에서 광전변환효율 개선을 위해 노력하고 있는데, 이번에 확보된 플랫폼 기술을 적용하면 단일 접합 태양전지의 기술발전을 탠덤 태양전지의 고효율화에 바로 적용할 수 있다는 게 연구진의 설명이다. 이번 성과는 국가과학기술연구회(구 기초기술연구회) NAP(National Agenda Project, 국가 아젠다 해결형)사업 및 KIST의 기관고유사업의 결과다. KIST 광전하이브리드연구센터의 김홍곤, 이도권, 한승희 박사 연구팀의 태양전지 분야에서 축적된 원천기술과 성균관대학교 이준신 교수팀의 무기박막태양전지 기술, 그리고 서울대학교 김창순 교수팀의 계산과학이 어우러진 융합연구를 통해 이루어낸 성과라는 점에서도 의의가 크다. KIST 김홍곤 박사는 “개발된 탠덤 소자는 그 자체로 매우 높은 전압을 나타내기 때문에 모듈화(일반적으로 태양전지로부터 고전압을 얻기 위해 단일접합 태양전지 여러 개를 직렬 연결하는 것)에 따른 저항손실 없이도 물분해 등에 적용될 수 있다”면서 “다양한 단일접합 태양전지 기술이 발전함에 따라 탠덤화 플랫폼 기술의 수요도 증가할 것”이라고 말했다. 이번 연구 성과는 11월 21일 네이처 출판사에서 발행하는 사이언티픽 리포트(Scientific Reports) 온라인판에 "Triple-Junction Hybrid Tandem Solar Cells with Amorphous Silicon and Polymer-Fullerene Blends"의 제목으로 게재되었다. <참고 이미지 자료> 1. 연구내용 요약용 이미지 위: 유-무기 하이브리드 탠덤 태양전지 구조 아래: 탠덤 태양전지 고효율화를 위한 계산 결과 KIST 김홍곤 박사 KIST 이도권 박사
KIST, 탠덤 태양전지 효율 극대화 플랫폼 기술 개발
KIST, 탠덤 태양전지 효율 극대화 플랫폼 기술 개발 - 유기물 반도체의 값싼 장점, 무기물 반도체의 효율이 높은 장점 극대화 - 2.4V의 높은 전압을 이용하면 직접 물분해를 통해 수소 생산 가능 환경친화적이며 미래지향적인 에너지 생산방법으로 태양전지를 최우선적으로 생각할 수 있다. 세계적으로 태양전지 보급이 확대되고 있는데 효율이 개선된다면 태양에너지 활용 분야는 더 넓어질 수 있다. 하지만 실리콘 태양전지와 같은 단일 접합 태양전지는 이론적 한계효율(쇼클리-콰이저 한계?, Shockley-Queisser limit)을 넘어설 수 없는 것으로 여겨져 왔다. 이 한계를 돌파할 수 있는 기술이 바로 탠덤 (다중 접합) 태양전지다. *쇼클리-콰이저 한계 : 낮은 에너지의 광자는 태양전지로 쓰이는 반도체에 흡수되지 못한 채 투과되고, 높은 에너지의 광자는 흡수된 후 열에너지로 낭비되기 때문에 발생하는 이론적 한계효율 한국과학기술연구원(KIST, 원장 이병권) 광전하이브리드연구센터 김홍곤 박사팀은 태양전지의 이론효율 한계를 뛰어넘을 수 있는 유-무기 하이브리드 탠덤 태양전지의 플랫폼 기술을 개발했다. 탠덤 태양전지는 광 흡수 영역이 서로 보완적인 두 개 이상의 광흡수 반도체를 수직으로 쌓아 태양에너지 중 투과되는 손실과 열에너지로 낭비되는 손실을 최소한으로 줄이는 기술이다. 기존의 무기탠덤 태양전지는 갈륨, 비소와 같은 값비싼 재료와 고가의 공정장비를 사용하여 제조되기 때문에 우주선과 같이 제한된 곳에 활용될 뿐 널리 상용화되지는 못했다. 연구팀이 개발한 기술은 유-무기 하이브리드 탠덤 구조를 고안하여 저비용, 고효율 태양전지를 가능하게 하는 플랫폼 기술이다. 유기물 반도체의 저렴한 장점과 무기물 반도체의 효율이 높은 장점을 하나의 소자 내에서 최대화하는 것이 핵심 아이디어였다. 연구팀은 이웃하는 단일 접합 태양전지들을 이어주는 계면층 개발과 소자 전체에서 전류 분포를 고르게 하는 전류매칭 기술에 주력했고, 그 결과 유-무기 하이브리드 구조의 탠덤 태양전지 분야에서는 세계 최고인 9.5%의 효율을 달성했다. 이번에 개발된 유-무기 하이브리드 탠덤 태양전지는 2.4 V에 달하는 높은 전압이 가장 큰 특징으로 이는 물분해를 통한 수소 생산에 활용되기에도 충분한 크기이다. 또, 세계 각국의 많은 연구자들이 다양한 종류의 단일 접합 태양전지 분야에서 광전변환효율 개선을 위해 노력하고 있는데, 이번에 확보된 플랫폼 기술을 적용하면 단일 접합 태양전지의 기술발전을 탠덤 태양전지의 고효율화에 바로 적용할 수 있다는 게 연구진의 설명이다. 이번 성과는 국가과학기술연구회(구 기초기술연구회) NAP(National Agenda Project, 국가 아젠다 해결형)사업 및 KIST의 기관고유사업의 결과다. KIST 광전하이브리드연구센터의 김홍곤, 이도권, 한승희 박사 연구팀의 태양전지 분야에서 축적된 원천기술과 성균관대학교 이준신 교수팀의 무기박막태양전지 기술, 그리고 서울대학교 김창순 교수팀의 계산과학이 어우러진 융합연구를 통해 이루어낸 성과라는 점에서도 의의가 크다. KIST 김홍곤 박사는 “개발된 탠덤 소자는 그 자체로 매우 높은 전압을 나타내기 때문에 모듈화(일반적으로 태양전지로부터 고전압을 얻기 위해 단일접합 태양전지 여러 개를 직렬 연결하는 것)에 따른 저항손실 없이도 물분해 등에 적용될 수 있다”면서 “다양한 단일접합 태양전지 기술이 발전함에 따라 탠덤화 플랫폼 기술의 수요도 증가할 것”이라고 말했다. 이번 연구 성과는 11월 21일 네이처 출판사에서 발행하는 사이언티픽 리포트(Scientific Reports) 온라인판에 "Triple-Junction Hybrid Tandem Solar Cells with Amorphous Silicon and Polymer-Fullerene Blends"의 제목으로 게재되었다. <참고 이미지 자료> 1. 연구내용 요약용 이미지 위: 유-무기 하이브리드 탠덤 태양전지 구조 아래: 탠덤 태양전지 고효율화를 위한 계산 결과 KIST 김홍곤 박사 KIST 이도권 박사