Result
게시물 키워드"KIST"에 대한 4616개의 검색결과를 찾았습니다.
울퉁불퉁한 표면에도 구현 가능한 플렉서블 센서기술 개발
- 다양한 형태/구조의 기판에 고성능 플렉서블 센서 구현, 차세대 웨어러블 기기에 활용 - 하이드로젤을 이용한 나노메쉬 전극 전사 프린팅 기술 개발 한국과학기술연구원(KIST, 원장 이병권) 스핀융합연구단 이현정 박사팀은 하이드로젤*과 나노 잉크 소재를 이용하여, 다양한 형태와 구조의 유연기판에 고성능 센서를 손쉽게 만들 수 있는 전사 프린팅(Transfer-Printing)** 기술을 개발했다고 밝혔다. *하이드로젤(Hydrogel) : 용매가 물이거나 물이 기본 성분으로 들어 있는 젤리 모양의 물질 **전사 프린팅(Transfer-Printing) 공정 : 전사기판에 만든 전극을 최종기판에 옮김으로써 소자를 제조하는 공정. 최근 스마트워치, 피트니스 밴드 등 웨어러블 기기들에 대한 관심이 빠르게 증가하고 있다. 특히, 착용하는 형태의 웨어러블 기기에서 피부에 붙이는 형태의 웨어러블 기기로 기술의 영역이 확장됨에 따라 고성능 센서를 다양한 형태와 종류의 기판에 구현할 수 있는 기술에 대한 요구가 늘어나고 있다. 전사 프린팅 공정은 피부에 붙였다 떼면 그림이 옮겨지는 판박이 스티커처럼 프린트할 제품을 미리 만들어놓고 옮길 수 있는 공정으로, 열적 혹은 화학적으로 취약한 기판 위에 소자를 만드는데 생길 수 있는 공정상의 여러 어려움을 피할 수 있다는 장점이 있어 플렉서블 소자의 제조에 널리 활용되고 있다. 하지만 지금까지 개발된 전사 프린팅공정은 주로 최종기판이 평평할 때에만 적용이 가능한 단점이 있었다. KIST 이현정 박사팀은 이러한 한계를 극복하고, 다양한 표면 거칠기 및 특성을 지닌 유연 기판 상에 고성능 유연 센서를 형성할 수 있는 쉽고 간단한 전사 프린팅 공정기술을 개발하였다. KIST 연구진은 하이드로젤 소재가 다공성***이면서 친수성인 점에 착안하여, 수용액 기반 나노소재 잉크****를 기판 형태로 굳힌 하이드로젤 표면에 인쇄하면 인쇄된 잉크 중 계면활성제와 물은 하이드로젤의 구멍을 통해 빠르게 빠져나가고 구멍보다 크면서 소수성 특성을 지닌 나노 소재만 하이드로젤 표면에 남겨 원하는 패턴의 전극을 형성하였다. ***다공성 구조 : 고체의 표면이나 내부에 작은 구멍이 많이 있는 구조 ****수용액 기반 나노소재 잉크 : 계면활성제를 이용하여 소수성 나노소재를 물에 분산시킨 잉크 이때 프린팅 되는 나노 잉크의 양이 적어 전극 형성속도가 매우 빨라 나노전극의 구조가 균일하며 순도가 높아 전기적 특성이 뛰어났다. 또한, 나노 소재의 소수성 특성으로 인해 하이드로젤과의 상호 작용력이 매우 낮아 전극이 다양한 기판에 손쉽게 전사되었다. 특히, 몰딩이 가능한 고분자 용액을 하이드로젤 상에서 굳히는 방법을 통해서 나노전극을 전사하는 기술을 개발하여 거친 표면을 지닌 유연 기판 상에도 손쉽게 유연 전극을 형성하였다. 나노 전극을 실험용 장갑 상에 바로 전사하여 손가락의 움직임을 감지할 수 있는 변형 센서를 제작하였으며, 맥박을 측정할 수 있는 고성능 유연 압력 센서도 구현하였다. KIST 이현정 박사는 “이번 성과는 고성능 유연 센서를 다양한 특성과 구조를 지닌 기판에 손쉽게 구현하는 새로운 방법을 제시한 것으로, 추후 디지털 헬스케어, 지능형 인간-기계 인터페이스, 의공학, 차세대 전자소자 분야 등 유연 기판 혹은 비전통적 기판 소재 상에 집적화된 고성능 소자 구현을 필요로 하는 다양한 분야에 활용 가능할 것으로 기대된다”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민) 지원으로 KIST Young Fellow 사업과 바이오의료기술개발사업, 나노원천기술개발사업 등을 통해 수행되었으며, 연구결과는 나노분야 국제 저널인 ‘Nano Letters’(IF: 12.080, JCR 분야 상위 5.822%) 최신호에 게재되었다. * (논문명) Hydrogel-Templated Transfer-Printing of Conductive Nanonetworks for Wearable Sensors on Topographic Flexible Substrates - (제1저자) 한국과학기술연구원 강태형 박사후연구원 - (교신저자) 한국과학기술연구원 이현정 책임연구원 <그림설명> 그림1) 하이드로젤을 이용한 전사 프린팅 공정의 모식도 그림2 ) 전사 프린팅 공정으로 제조된 스트레인 센서로 엄지, 검지, 중지의 모션을 모니터링한 결과 및 측정에 사용한 손가락 모션의 사진 전사 프린팅 공정으로 제조된 유연압력센서로 측정한 맥박의 신호. 그래픽=KIST. (우측상단) 측정에 사용한 센서의 실제 사진
울퉁불퉁한 표면에도 구현 가능한 플렉서블 센서기술 개발
- 다양한 형태/구조의 기판에 고성능 플렉서블 센서 구현, 차세대 웨어러블 기기에 활용 - 하이드로젤을 이용한 나노메쉬 전극 전사 프린팅 기술 개발 한국과학기술연구원(KIST, 원장 이병권) 스핀융합연구단 이현정 박사팀은 하이드로젤*과 나노 잉크 소재를 이용하여, 다양한 형태와 구조의 유연기판에 고성능 센서를 손쉽게 만들 수 있는 전사 프린팅(Transfer-Printing)** 기술을 개발했다고 밝혔다. *하이드로젤(Hydrogel) : 용매가 물이거나 물이 기본 성분으로 들어 있는 젤리 모양의 물질 **전사 프린팅(Transfer-Printing) 공정 : 전사기판에 만든 전극을 최종기판에 옮김으로써 소자를 제조하는 공정. 최근 스마트워치, 피트니스 밴드 등 웨어러블 기기들에 대한 관심이 빠르게 증가하고 있다. 특히, 착용하는 형태의 웨어러블 기기에서 피부에 붙이는 형태의 웨어러블 기기로 기술의 영역이 확장됨에 따라 고성능 센서를 다양한 형태와 종류의 기판에 구현할 수 있는 기술에 대한 요구가 늘어나고 있다. 전사 프린팅 공정은 피부에 붙였다 떼면 그림이 옮겨지는 판박이 스티커처럼 프린트할 제품을 미리 만들어놓고 옮길 수 있는 공정으로, 열적 혹은 화학적으로 취약한 기판 위에 소자를 만드는데 생길 수 있는 공정상의 여러 어려움을 피할 수 있다는 장점이 있어 플렉서블 소자의 제조에 널리 활용되고 있다. 하지만 지금까지 개발된 전사 프린팅공정은 주로 최종기판이 평평할 때에만 적용이 가능한 단점이 있었다. KIST 이현정 박사팀은 이러한 한계를 극복하고, 다양한 표면 거칠기 및 특성을 지닌 유연 기판 상에 고성능 유연 센서를 형성할 수 있는 쉽고 간단한 전사 프린팅 공정기술을 개발하였다. KIST 연구진은 하이드로젤 소재가 다공성***이면서 친수성인 점에 착안하여, 수용액 기반 나노소재 잉크****를 기판 형태로 굳힌 하이드로젤 표면에 인쇄하면 인쇄된 잉크 중 계면활성제와 물은 하이드로젤의 구멍을 통해 빠르게 빠져나가고 구멍보다 크면서 소수성 특성을 지닌 나노 소재만 하이드로젤 표면에 남겨 원하는 패턴의 전극을 형성하였다. ***다공성 구조 : 고체의 표면이나 내부에 작은 구멍이 많이 있는 구조 ****수용액 기반 나노소재 잉크 : 계면활성제를 이용하여 소수성 나노소재를 물에 분산시킨 잉크 이때 프린팅 되는 나노 잉크의 양이 적어 전극 형성속도가 매우 빨라 나노전극의 구조가 균일하며 순도가 높아 전기적 특성이 뛰어났다. 또한, 나노 소재의 소수성 특성으로 인해 하이드로젤과의 상호 작용력이 매우 낮아 전극이 다양한 기판에 손쉽게 전사되었다. 특히, 몰딩이 가능한 고분자 용액을 하이드로젤 상에서 굳히는 방법을 통해서 나노전극을 전사하는 기술을 개발하여 거친 표면을 지닌 유연 기판 상에도 손쉽게 유연 전극을 형성하였다. 나노 전극을 실험용 장갑 상에 바로 전사하여 손가락의 움직임을 감지할 수 있는 변형 센서를 제작하였으며, 맥박을 측정할 수 있는 고성능 유연 압력 센서도 구현하였다. KIST 이현정 박사는 “이번 성과는 고성능 유연 센서를 다양한 특성과 구조를 지닌 기판에 손쉽게 구현하는 새로운 방법을 제시한 것으로, 추후 디지털 헬스케어, 지능형 인간-기계 인터페이스, 의공학, 차세대 전자소자 분야 등 유연 기판 혹은 비전통적 기판 소재 상에 집적화된 고성능 소자 구현을 필요로 하는 다양한 분야에 활용 가능할 것으로 기대된다”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민) 지원으로 KIST Young Fellow 사업과 바이오의료기술개발사업, 나노원천기술개발사업 등을 통해 수행되었으며, 연구결과는 나노분야 국제 저널인 ‘Nano Letters’(IF: 12.080, JCR 분야 상위 5.822%) 최신호에 게재되었다. * (논문명) Hydrogel-Templated Transfer-Printing of Conductive Nanonetworks for Wearable Sensors on Topographic Flexible Substrates - (제1저자) 한국과학기술연구원 강태형 박사후연구원 - (교신저자) 한국과학기술연구원 이현정 책임연구원 <그림설명> 그림1) 하이드로젤을 이용한 전사 프린팅 공정의 모식도 그림2 ) 전사 프린팅 공정으로 제조된 스트레인 센서로 엄지, 검지, 중지의 모션을 모니터링한 결과 및 측정에 사용한 손가락 모션의 사진 전사 프린팅 공정으로 제조된 유연압력센서로 측정한 맥박의 신호. 그래픽=KIST. (우측상단) 측정에 사용한 센서의 실제 사진
울퉁불퉁한 표면에도 구현 가능한 플렉서블 센서기술 개발
- 다양한 형태/구조의 기판에 고성능 플렉서블 센서 구현, 차세대 웨어러블 기기에 활용 - 하이드로젤을 이용한 나노메쉬 전극 전사 프린팅 기술 개발 한국과학기술연구원(KIST, 원장 이병권) 스핀융합연구단 이현정 박사팀은 하이드로젤*과 나노 잉크 소재를 이용하여, 다양한 형태와 구조의 유연기판에 고성능 센서를 손쉽게 만들 수 있는 전사 프린팅(Transfer-Printing)** 기술을 개발했다고 밝혔다. *하이드로젤(Hydrogel) : 용매가 물이거나 물이 기본 성분으로 들어 있는 젤리 모양의 물질 **전사 프린팅(Transfer-Printing) 공정 : 전사기판에 만든 전극을 최종기판에 옮김으로써 소자를 제조하는 공정. 최근 스마트워치, 피트니스 밴드 등 웨어러블 기기들에 대한 관심이 빠르게 증가하고 있다. 특히, 착용하는 형태의 웨어러블 기기에서 피부에 붙이는 형태의 웨어러블 기기로 기술의 영역이 확장됨에 따라 고성능 센서를 다양한 형태와 종류의 기판에 구현할 수 있는 기술에 대한 요구가 늘어나고 있다. 전사 프린팅 공정은 피부에 붙였다 떼면 그림이 옮겨지는 판박이 스티커처럼 프린트할 제품을 미리 만들어놓고 옮길 수 있는 공정으로, 열적 혹은 화학적으로 취약한 기판 위에 소자를 만드는데 생길 수 있는 공정상의 여러 어려움을 피할 수 있다는 장점이 있어 플렉서블 소자의 제조에 널리 활용되고 있다. 하지만 지금까지 개발된 전사 프린팅공정은 주로 최종기판이 평평할 때에만 적용이 가능한 단점이 있었다. KIST 이현정 박사팀은 이러한 한계를 극복하고, 다양한 표면 거칠기 및 특성을 지닌 유연 기판 상에 고성능 유연 센서를 형성할 수 있는 쉽고 간단한 전사 프린팅 공정기술을 개발하였다. KIST 연구진은 하이드로젤 소재가 다공성***이면서 친수성인 점에 착안하여, 수용액 기반 나노소재 잉크****를 기판 형태로 굳힌 하이드로젤 표면에 인쇄하면 인쇄된 잉크 중 계면활성제와 물은 하이드로젤의 구멍을 통해 빠르게 빠져나가고 구멍보다 크면서 소수성 특성을 지닌 나노 소재만 하이드로젤 표면에 남겨 원하는 패턴의 전극을 형성하였다. ***다공성 구조 : 고체의 표면이나 내부에 작은 구멍이 많이 있는 구조 ****수용액 기반 나노소재 잉크 : 계면활성제를 이용하여 소수성 나노소재를 물에 분산시킨 잉크 이때 프린팅 되는 나노 잉크의 양이 적어 전극 형성속도가 매우 빨라 나노전극의 구조가 균일하며 순도가 높아 전기적 특성이 뛰어났다. 또한, 나노 소재의 소수성 특성으로 인해 하이드로젤과의 상호 작용력이 매우 낮아 전극이 다양한 기판에 손쉽게 전사되었다. 특히, 몰딩이 가능한 고분자 용액을 하이드로젤 상에서 굳히는 방법을 통해서 나노전극을 전사하는 기술을 개발하여 거친 표면을 지닌 유연 기판 상에도 손쉽게 유연 전극을 형성하였다. 나노 전극을 실험용 장갑 상에 바로 전사하여 손가락의 움직임을 감지할 수 있는 변형 센서를 제작하였으며, 맥박을 측정할 수 있는 고성능 유연 압력 센서도 구현하였다. KIST 이현정 박사는 “이번 성과는 고성능 유연 센서를 다양한 특성과 구조를 지닌 기판에 손쉽게 구현하는 새로운 방법을 제시한 것으로, 추후 디지털 헬스케어, 지능형 인간-기계 인터페이스, 의공학, 차세대 전자소자 분야 등 유연 기판 혹은 비전통적 기판 소재 상에 집적화된 고성능 소자 구현을 필요로 하는 다양한 분야에 활용 가능할 것으로 기대된다”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민) 지원으로 KIST Young Fellow 사업과 바이오의료기술개발사업, 나노원천기술개발사업 등을 통해 수행되었으며, 연구결과는 나노분야 국제 저널인 ‘Nano Letters’(IF: 12.080, JCR 분야 상위 5.822%) 최신호에 게재되었다. * (논문명) Hydrogel-Templated Transfer-Printing of Conductive Nanonetworks for Wearable Sensors on Topographic Flexible Substrates - (제1저자) 한국과학기술연구원 강태형 박사후연구원 - (교신저자) 한국과학기술연구원 이현정 책임연구원 <그림설명> 그림1) 하이드로젤을 이용한 전사 프린팅 공정의 모식도 그림2 ) 전사 프린팅 공정으로 제조된 스트레인 센서로 엄지, 검지, 중지의 모션을 모니터링한 결과 및 측정에 사용한 손가락 모션의 사진 전사 프린팅 공정으로 제조된 유연압력센서로 측정한 맥박의 신호. 그래픽=KIST. (우측상단) 측정에 사용한 센서의 실제 사진
울퉁불퉁한 표면에도 구현 가능한 플렉서블 센서기술 개발
- 다양한 형태/구조의 기판에 고성능 플렉서블 센서 구현, 차세대 웨어러블 기기에 활용 - 하이드로젤을 이용한 나노메쉬 전극 전사 프린팅 기술 개발 한국과학기술연구원(KIST, 원장 이병권) 스핀융합연구단 이현정 박사팀은 하이드로젤*과 나노 잉크 소재를 이용하여, 다양한 형태와 구조의 유연기판에 고성능 센서를 손쉽게 만들 수 있는 전사 프린팅(Transfer-Printing)** 기술을 개발했다고 밝혔다. *하이드로젤(Hydrogel) : 용매가 물이거나 물이 기본 성분으로 들어 있는 젤리 모양의 물질 **전사 프린팅(Transfer-Printing) 공정 : 전사기판에 만든 전극을 최종기판에 옮김으로써 소자를 제조하는 공정. 최근 스마트워치, 피트니스 밴드 등 웨어러블 기기들에 대한 관심이 빠르게 증가하고 있다. 특히, 착용하는 형태의 웨어러블 기기에서 피부에 붙이는 형태의 웨어러블 기기로 기술의 영역이 확장됨에 따라 고성능 센서를 다양한 형태와 종류의 기판에 구현할 수 있는 기술에 대한 요구가 늘어나고 있다. 전사 프린팅 공정은 피부에 붙였다 떼면 그림이 옮겨지는 판박이 스티커처럼 프린트할 제품을 미리 만들어놓고 옮길 수 있는 공정으로, 열적 혹은 화학적으로 취약한 기판 위에 소자를 만드는데 생길 수 있는 공정상의 여러 어려움을 피할 수 있다는 장점이 있어 플렉서블 소자의 제조에 널리 활용되고 있다. 하지만 지금까지 개발된 전사 프린팅공정은 주로 최종기판이 평평할 때에만 적용이 가능한 단점이 있었다. KIST 이현정 박사팀은 이러한 한계를 극복하고, 다양한 표면 거칠기 및 특성을 지닌 유연 기판 상에 고성능 유연 센서를 형성할 수 있는 쉽고 간단한 전사 프린팅 공정기술을 개발하였다. KIST 연구진은 하이드로젤 소재가 다공성***이면서 친수성인 점에 착안하여, 수용액 기반 나노소재 잉크****를 기판 형태로 굳힌 하이드로젤 표면에 인쇄하면 인쇄된 잉크 중 계면활성제와 물은 하이드로젤의 구멍을 통해 빠르게 빠져나가고 구멍보다 크면서 소수성 특성을 지닌 나노 소재만 하이드로젤 표면에 남겨 원하는 패턴의 전극을 형성하였다. ***다공성 구조 : 고체의 표면이나 내부에 작은 구멍이 많이 있는 구조 ****수용액 기반 나노소재 잉크 : 계면활성제를 이용하여 소수성 나노소재를 물에 분산시킨 잉크 이때 프린팅 되는 나노 잉크의 양이 적어 전극 형성속도가 매우 빨라 나노전극의 구조가 균일하며 순도가 높아 전기적 특성이 뛰어났다. 또한, 나노 소재의 소수성 특성으로 인해 하이드로젤과의 상호 작용력이 매우 낮아 전극이 다양한 기판에 손쉽게 전사되었다. 특히, 몰딩이 가능한 고분자 용액을 하이드로젤 상에서 굳히는 방법을 통해서 나노전극을 전사하는 기술을 개발하여 거친 표면을 지닌 유연 기판 상에도 손쉽게 유연 전극을 형성하였다. 나노 전극을 실험용 장갑 상에 바로 전사하여 손가락의 움직임을 감지할 수 있는 변형 센서를 제작하였으며, 맥박을 측정할 수 있는 고성능 유연 압력 센서도 구현하였다. KIST 이현정 박사는 “이번 성과는 고성능 유연 센서를 다양한 특성과 구조를 지닌 기판에 손쉽게 구현하는 새로운 방법을 제시한 것으로, 추후 디지털 헬스케어, 지능형 인간-기계 인터페이스, 의공학, 차세대 전자소자 분야 등 유연 기판 혹은 비전통적 기판 소재 상에 집적화된 고성능 소자 구현을 필요로 하는 다양한 분야에 활용 가능할 것으로 기대된다”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민) 지원으로 KIST Young Fellow 사업과 바이오의료기술개발사업, 나노원천기술개발사업 등을 통해 수행되었으며, 연구결과는 나노분야 국제 저널인 ‘Nano Letters’(IF: 12.080, JCR 분야 상위 5.822%) 최신호에 게재되었다. * (논문명) Hydrogel-Templated Transfer-Printing of Conductive Nanonetworks for Wearable Sensors on Topographic Flexible Substrates - (제1저자) 한국과학기술연구원 강태형 박사후연구원 - (교신저자) 한국과학기술연구원 이현정 책임연구원 <그림설명> 그림1) 하이드로젤을 이용한 전사 프린팅 공정의 모식도 그림2 ) 전사 프린팅 공정으로 제조된 스트레인 센서로 엄지, 검지, 중지의 모션을 모니터링한 결과 및 측정에 사용한 손가락 모션의 사진 전사 프린팅 공정으로 제조된 유연압력센서로 측정한 맥박의 신호. 그래픽=KIST. (우측상단) 측정에 사용한 센서의 실제 사진
울퉁불퉁한 표면에도 구현 가능한 플렉서블 센서기술 개발
- 다양한 형태/구조의 기판에 고성능 플렉서블 센서 구현, 차세대 웨어러블 기기에 활용 - 하이드로젤을 이용한 나노메쉬 전극 전사 프린팅 기술 개발 한국과학기술연구원(KIST, 원장 이병권) 스핀융합연구단 이현정 박사팀은 하이드로젤*과 나노 잉크 소재를 이용하여, 다양한 형태와 구조의 유연기판에 고성능 센서를 손쉽게 만들 수 있는 전사 프린팅(Transfer-Printing)** 기술을 개발했다고 밝혔다. *하이드로젤(Hydrogel) : 용매가 물이거나 물이 기본 성분으로 들어 있는 젤리 모양의 물질 **전사 프린팅(Transfer-Printing) 공정 : 전사기판에 만든 전극을 최종기판에 옮김으로써 소자를 제조하는 공정. 최근 스마트워치, 피트니스 밴드 등 웨어러블 기기들에 대한 관심이 빠르게 증가하고 있다. 특히, 착용하는 형태의 웨어러블 기기에서 피부에 붙이는 형태의 웨어러블 기기로 기술의 영역이 확장됨에 따라 고성능 센서를 다양한 형태와 종류의 기판에 구현할 수 있는 기술에 대한 요구가 늘어나고 있다. 전사 프린팅 공정은 피부에 붙였다 떼면 그림이 옮겨지는 판박이 스티커처럼 프린트할 제품을 미리 만들어놓고 옮길 수 있는 공정으로, 열적 혹은 화학적으로 취약한 기판 위에 소자를 만드는데 생길 수 있는 공정상의 여러 어려움을 피할 수 있다는 장점이 있어 플렉서블 소자의 제조에 널리 활용되고 있다. 하지만 지금까지 개발된 전사 프린팅공정은 주로 최종기판이 평평할 때에만 적용이 가능한 단점이 있었다. KIST 이현정 박사팀은 이러한 한계를 극복하고, 다양한 표면 거칠기 및 특성을 지닌 유연 기판 상에 고성능 유연 센서를 형성할 수 있는 쉽고 간단한 전사 프린팅 공정기술을 개발하였다. KIST 연구진은 하이드로젤 소재가 다공성***이면서 친수성인 점에 착안하여, 수용액 기반 나노소재 잉크****를 기판 형태로 굳힌 하이드로젤 표면에 인쇄하면 인쇄된 잉크 중 계면활성제와 물은 하이드로젤의 구멍을 통해 빠르게 빠져나가고 구멍보다 크면서 소수성 특성을 지닌 나노 소재만 하이드로젤 표면에 남겨 원하는 패턴의 전극을 형성하였다. ***다공성 구조 : 고체의 표면이나 내부에 작은 구멍이 많이 있는 구조 ****수용액 기반 나노소재 잉크 : 계면활성제를 이용하여 소수성 나노소재를 물에 분산시킨 잉크 이때 프린팅 되는 나노 잉크의 양이 적어 전극 형성속도가 매우 빨라 나노전극의 구조가 균일하며 순도가 높아 전기적 특성이 뛰어났다. 또한, 나노 소재의 소수성 특성으로 인해 하이드로젤과의 상호 작용력이 매우 낮아 전극이 다양한 기판에 손쉽게 전사되었다. 특히, 몰딩이 가능한 고분자 용액을 하이드로젤 상에서 굳히는 방법을 통해서 나노전극을 전사하는 기술을 개발하여 거친 표면을 지닌 유연 기판 상에도 손쉽게 유연 전극을 형성하였다. 나노 전극을 실험용 장갑 상에 바로 전사하여 손가락의 움직임을 감지할 수 있는 변형 센서를 제작하였으며, 맥박을 측정할 수 있는 고성능 유연 압력 센서도 구현하였다. KIST 이현정 박사는 “이번 성과는 고성능 유연 센서를 다양한 특성과 구조를 지닌 기판에 손쉽게 구현하는 새로운 방법을 제시한 것으로, 추후 디지털 헬스케어, 지능형 인간-기계 인터페이스, 의공학, 차세대 전자소자 분야 등 유연 기판 혹은 비전통적 기판 소재 상에 집적화된 고성능 소자 구현을 필요로 하는 다양한 분야에 활용 가능할 것으로 기대된다”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민) 지원으로 KIST Young Fellow 사업과 바이오의료기술개발사업, 나노원천기술개발사업 등을 통해 수행되었으며, 연구결과는 나노분야 국제 저널인 ‘Nano Letters’(IF: 12.080, JCR 분야 상위 5.822%) 최신호에 게재되었다. * (논문명) Hydrogel-Templated Transfer-Printing of Conductive Nanonetworks for Wearable Sensors on Topographic Flexible Substrates - (제1저자) 한국과학기술연구원 강태형 박사후연구원 - (교신저자) 한국과학기술연구원 이현정 책임연구원 <그림설명> 그림1) 하이드로젤을 이용한 전사 프린팅 공정의 모식도 그림2 ) 전사 프린팅 공정으로 제조된 스트레인 센서로 엄지, 검지, 중지의 모션을 모니터링한 결과 및 측정에 사용한 손가락 모션의 사진 전사 프린팅 공정으로 제조된 유연압력센서로 측정한 맥박의 신호. 그래픽=KIST. (우측상단) 측정에 사용한 센서의 실제 사진
울퉁불퉁한 표면에도 구현 가능한 플렉서블 센서기술 개발
- 다양한 형태/구조의 기판에 고성능 플렉서블 센서 구현, 차세대 웨어러블 기기에 활용 - 하이드로젤을 이용한 나노메쉬 전극 전사 프린팅 기술 개발 한국과학기술연구원(KIST, 원장 이병권) 스핀융합연구단 이현정 박사팀은 하이드로젤*과 나노 잉크 소재를 이용하여, 다양한 형태와 구조의 유연기판에 고성능 센서를 손쉽게 만들 수 있는 전사 프린팅(Transfer-Printing)** 기술을 개발했다고 밝혔다. *하이드로젤(Hydrogel) : 용매가 물이거나 물이 기본 성분으로 들어 있는 젤리 모양의 물질 **전사 프린팅(Transfer-Printing) 공정 : 전사기판에 만든 전극을 최종기판에 옮김으로써 소자를 제조하는 공정. 최근 스마트워치, 피트니스 밴드 등 웨어러블 기기들에 대한 관심이 빠르게 증가하고 있다. 특히, 착용하는 형태의 웨어러블 기기에서 피부에 붙이는 형태의 웨어러블 기기로 기술의 영역이 확장됨에 따라 고성능 센서를 다양한 형태와 종류의 기판에 구현할 수 있는 기술에 대한 요구가 늘어나고 있다. 전사 프린팅 공정은 피부에 붙였다 떼면 그림이 옮겨지는 판박이 스티커처럼 프린트할 제품을 미리 만들어놓고 옮길 수 있는 공정으로, 열적 혹은 화학적으로 취약한 기판 위에 소자를 만드는데 생길 수 있는 공정상의 여러 어려움을 피할 수 있다는 장점이 있어 플렉서블 소자의 제조에 널리 활용되고 있다. 하지만 지금까지 개발된 전사 프린팅공정은 주로 최종기판이 평평할 때에만 적용이 가능한 단점이 있었다. KIST 이현정 박사팀은 이러한 한계를 극복하고, 다양한 표면 거칠기 및 특성을 지닌 유연 기판 상에 고성능 유연 센서를 형성할 수 있는 쉽고 간단한 전사 프린팅 공정기술을 개발하였다. KIST 연구진은 하이드로젤 소재가 다공성***이면서 친수성인 점에 착안하여, 수용액 기반 나노소재 잉크****를 기판 형태로 굳힌 하이드로젤 표면에 인쇄하면 인쇄된 잉크 중 계면활성제와 물은 하이드로젤의 구멍을 통해 빠르게 빠져나가고 구멍보다 크면서 소수성 특성을 지닌 나노 소재만 하이드로젤 표면에 남겨 원하는 패턴의 전극을 형성하였다. ***다공성 구조 : 고체의 표면이나 내부에 작은 구멍이 많이 있는 구조 ****수용액 기반 나노소재 잉크 : 계면활성제를 이용하여 소수성 나노소재를 물에 분산시킨 잉크 이때 프린팅 되는 나노 잉크의 양이 적어 전극 형성속도가 매우 빨라 나노전극의 구조가 균일하며 순도가 높아 전기적 특성이 뛰어났다. 또한, 나노 소재의 소수성 특성으로 인해 하이드로젤과의 상호 작용력이 매우 낮아 전극이 다양한 기판에 손쉽게 전사되었다. 특히, 몰딩이 가능한 고분자 용액을 하이드로젤 상에서 굳히는 방법을 통해서 나노전극을 전사하는 기술을 개발하여 거친 표면을 지닌 유연 기판 상에도 손쉽게 유연 전극을 형성하였다. 나노 전극을 실험용 장갑 상에 바로 전사하여 손가락의 움직임을 감지할 수 있는 변형 센서를 제작하였으며, 맥박을 측정할 수 있는 고성능 유연 압력 센서도 구현하였다. KIST 이현정 박사는 “이번 성과는 고성능 유연 센서를 다양한 특성과 구조를 지닌 기판에 손쉽게 구현하는 새로운 방법을 제시한 것으로, 추후 디지털 헬스케어, 지능형 인간-기계 인터페이스, 의공학, 차세대 전자소자 분야 등 유연 기판 혹은 비전통적 기판 소재 상에 집적화된 고성능 소자 구현을 필요로 하는 다양한 분야에 활용 가능할 것으로 기대된다”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민) 지원으로 KIST Young Fellow 사업과 바이오의료기술개발사업, 나노원천기술개발사업 등을 통해 수행되었으며, 연구결과는 나노분야 국제 저널인 ‘Nano Letters’(IF: 12.080, JCR 분야 상위 5.822%) 최신호에 게재되었다. * (논문명) Hydrogel-Templated Transfer-Printing of Conductive Nanonetworks for Wearable Sensors on Topographic Flexible Substrates - (제1저자) 한국과학기술연구원 강태형 박사후연구원 - (교신저자) 한국과학기술연구원 이현정 책임연구원 <그림설명> 그림1) 하이드로젤을 이용한 전사 프린팅 공정의 모식도 그림2 ) 전사 프린팅 공정으로 제조된 스트레인 센서로 엄지, 검지, 중지의 모션을 모니터링한 결과 및 측정에 사용한 손가락 모션의 사진 전사 프린팅 공정으로 제조된 유연압력센서로 측정한 맥박의 신호. 그래픽=KIST. (우측상단) 측정에 사용한 센서의 실제 사진
울퉁불퉁한 표면에도 구현 가능한 플렉서블 센서기술 개발
- 다양한 형태/구조의 기판에 고성능 플렉서블 센서 구현, 차세대 웨어러블 기기에 활용 - 하이드로젤을 이용한 나노메쉬 전극 전사 프린팅 기술 개발 한국과학기술연구원(KIST, 원장 이병권) 스핀융합연구단 이현정 박사팀은 하이드로젤*과 나노 잉크 소재를 이용하여, 다양한 형태와 구조의 유연기판에 고성능 센서를 손쉽게 만들 수 있는 전사 프린팅(Transfer-Printing)** 기술을 개발했다고 밝혔다. *하이드로젤(Hydrogel) : 용매가 물이거나 물이 기본 성분으로 들어 있는 젤리 모양의 물질 **전사 프린팅(Transfer-Printing) 공정 : 전사기판에 만든 전극을 최종기판에 옮김으로써 소자를 제조하는 공정. 최근 스마트워치, 피트니스 밴드 등 웨어러블 기기들에 대한 관심이 빠르게 증가하고 있다. 특히, 착용하는 형태의 웨어러블 기기에서 피부에 붙이는 형태의 웨어러블 기기로 기술의 영역이 확장됨에 따라 고성능 센서를 다양한 형태와 종류의 기판에 구현할 수 있는 기술에 대한 요구가 늘어나고 있다. 전사 프린팅 공정은 피부에 붙였다 떼면 그림이 옮겨지는 판박이 스티커처럼 프린트할 제품을 미리 만들어놓고 옮길 수 있는 공정으로, 열적 혹은 화학적으로 취약한 기판 위에 소자를 만드는데 생길 수 있는 공정상의 여러 어려움을 피할 수 있다는 장점이 있어 플렉서블 소자의 제조에 널리 활용되고 있다. 하지만 지금까지 개발된 전사 프린팅공정은 주로 최종기판이 평평할 때에만 적용이 가능한 단점이 있었다. KIST 이현정 박사팀은 이러한 한계를 극복하고, 다양한 표면 거칠기 및 특성을 지닌 유연 기판 상에 고성능 유연 센서를 형성할 수 있는 쉽고 간단한 전사 프린팅 공정기술을 개발하였다. KIST 연구진은 하이드로젤 소재가 다공성***이면서 친수성인 점에 착안하여, 수용액 기반 나노소재 잉크****를 기판 형태로 굳힌 하이드로젤 표면에 인쇄하면 인쇄된 잉크 중 계면활성제와 물은 하이드로젤의 구멍을 통해 빠르게 빠져나가고 구멍보다 크면서 소수성 특성을 지닌 나노 소재만 하이드로젤 표면에 남겨 원하는 패턴의 전극을 형성하였다. ***다공성 구조 : 고체의 표면이나 내부에 작은 구멍이 많이 있는 구조 ****수용액 기반 나노소재 잉크 : 계면활성제를 이용하여 소수성 나노소재를 물에 분산시킨 잉크 이때 프린팅 되는 나노 잉크의 양이 적어 전극 형성속도가 매우 빨라 나노전극의 구조가 균일하며 순도가 높아 전기적 특성이 뛰어났다. 또한, 나노 소재의 소수성 특성으로 인해 하이드로젤과의 상호 작용력이 매우 낮아 전극이 다양한 기판에 손쉽게 전사되었다. 특히, 몰딩이 가능한 고분자 용액을 하이드로젤 상에서 굳히는 방법을 통해서 나노전극을 전사하는 기술을 개발하여 거친 표면을 지닌 유연 기판 상에도 손쉽게 유연 전극을 형성하였다. 나노 전극을 실험용 장갑 상에 바로 전사하여 손가락의 움직임을 감지할 수 있는 변형 센서를 제작하였으며, 맥박을 측정할 수 있는 고성능 유연 압력 센서도 구현하였다. KIST 이현정 박사는 “이번 성과는 고성능 유연 센서를 다양한 특성과 구조를 지닌 기판에 손쉽게 구현하는 새로운 방법을 제시한 것으로, 추후 디지털 헬스케어, 지능형 인간-기계 인터페이스, 의공학, 차세대 전자소자 분야 등 유연 기판 혹은 비전통적 기판 소재 상에 집적화된 고성능 소자 구현을 필요로 하는 다양한 분야에 활용 가능할 것으로 기대된다”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민) 지원으로 KIST Young Fellow 사업과 바이오의료기술개발사업, 나노원천기술개발사업 등을 통해 수행되었으며, 연구결과는 나노분야 국제 저널인 ‘Nano Letters’(IF: 12.080, JCR 분야 상위 5.822%) 최신호에 게재되었다. * (논문명) Hydrogel-Templated Transfer-Printing of Conductive Nanonetworks for Wearable Sensors on Topographic Flexible Substrates - (제1저자) 한국과학기술연구원 강태형 박사후연구원 - (교신저자) 한국과학기술연구원 이현정 책임연구원 <그림설명> 그림1) 하이드로젤을 이용한 전사 프린팅 공정의 모식도 그림2 ) 전사 프린팅 공정으로 제조된 스트레인 센서로 엄지, 검지, 중지의 모션을 모니터링한 결과 및 측정에 사용한 손가락 모션의 사진 전사 프린팅 공정으로 제조된 유연압력센서로 측정한 맥박의 신호. 그래픽=KIST. (우측상단) 측정에 사용한 센서의 실제 사진
생활 속 발생하는 정전기로 전자기기 충전 및 구동 가능한 기술 나온다
- 쉽고 간단한 공정으로 고내구성/고출력의 스펀지 나노발전기 개발 - 정전기로 블루투스 센서를 충전 및 구동, 향후 사물인터넷 응용 기대 정전기는 생활 속 불편함을 주기도 하고, 반도체 제조 공정에서는 반도체 칩의 불량을 발생시키기도 하는 골칫덩이이다. 이러한 정전기를 비롯한 진동, 빛 등 우리 주변에서 버려지는 에너지들을 수확하여 전기 에너지를 만들 수 있다면? 최근 신재생에너지로 에너지 전환기에 이르면서 버려지는 에너지를 수집해 전기로 바꿔주는 에너지 하베스팅*(Energy harvesting)기술이 전 세계적으로 크게 주목받고 있다. *에너지 하베스팅(Energy harvesting) : 우리 주변에서 버려지는 진동, 열, 빛, 전파 등의 에너지를 수확하여 우리가 쓸 수 있는 전기 에너지로 변환하는 기술 한국과학기술연구원(KIST, 원장 이병권) 전자재료연구단 송현철 박사, 강종윤 단장 연구팀은 에너지 하베스팅 기술의 일종으로 생활 속 불편한 존재였던 정전기를 이용하여 실제 전자기기에 사용할 수 있는 전기를 생산하는 스펀지 형태의 고내구성·고출력 나노발전기를 개발했다고 밝혔다. KIST 연구진은 증기캡슐공정**(Vapor Capsulation Casting)을 이용하여 물과 실리콘(PDMS, Polydimethylsiloxane)만으로 미세 기공을 가지는 실리콘 스펀지를 짧은 시간 내에 간단히 제작할 수 있는 방법을 개발하였다. 형성된 미세 기공이 전체 표면적과 정전용량을 향상시켜 정전기 발생량을 크게 증가시켰으며, 이를 이용해 고내구성·고출력을 지니는 정전기 나노발전기를 개발하였다. **증기캡슐공정(Vapor Capsulation Casting) : 증기의 열운동 에너지를 이용하여, PDMS와 같은 매질에 수증기를 침투시켜 다공성 구조체를 제작하는 공정기술. 기존의 나노발전기는 복잡하고 어려운 공정이 필요했다. 하지만 이번 KIST 연구진이 개발한 공정을 이용하면 제작 시간과 비용을 크게 단축할 수 있어 나노발전기의 실용화를 앞당길 것으로 전망하고 있다. 또한 연구진은 증기캡슐공정의 변수들을 면밀히 조사하여, 다공성 구조***의 제어 방법을 확립하였는데, 이러한 다공성 실리콘 소재는 여러 연구 분야에 다양하게 활용 및 적용될 것으로 기대된다. ***다공성 구조 : 체적의 15~95% 정도가 기공으로 이루어진 구조로 기존의 치밀한 구조가 가지지 못하는 새로운 특성을 가지고 있는 구조. KIST 연구진은 개발한 정전기 나노발전기를 이용하여 실제 실내온도나 위치 등을 파악하는 블루투스 무선 센서 등을 구동하는데 성공했다. 향후 4차 산업혁명의 핵심기술 중 하나인 사물인터넷을 비롯하여, 무선 센서 네트워크나 웨어러블 전자기기의 자율전원으로써 핵심적 역할을 수행할 수 있을 것으로 보인다. 본 연구를 주도한 KIST 송현철 선임연구원은 “이번 연구결과로 쉽고 간단한 공정을 이용하여 다공성 구조를 제작하였다는데 큰 의의가 있으며, 기존의 에너지 하베스팅 발전장치보다 가격·성능·내구성 면에서 높은 경쟁력을 가진 혁신적인 제품이 될 것으로 기대한다.”고 언급했으며, KIST 강종윤 책임연구원(전자재료연구단장)은 “현재 여러 가지 에너지 하베스팅 기술들을 개발 중에 있다. 이번 연구결과로 인해 다양한 환경에서 센서 네트워크의 자가발전을 위한 핵심적 역할을 수행할 수 있기를 기대한다.”고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민) 지원으로 KIST 기관고유사업과 국가과학기술연구회(이사장 원광연) 창의형 융합연구사업으로 수행되었다. 경희대학교 최덕현 교수와 공동연구로 진행된 본 연구 결과는 에너지 분야 국제 학술지인 ‘Nano Energy’(IF : 13.12, JCR 4.452%)의 최신 호에 게재되었다. * (논문명) Double layered dielectric elastomer by vapor encapsulation casting for highly deformable and strongly adhesive triboelectric materials - (제1저자) 한국과학기술연구원 Hai Bo Xu 연구원(박사후 연구과정) - (교신저자) 한국과학기술연구원 송현철 선임연구원 한국과학기술연구원 강종윤 단장(책임연구원) <그림설명> 그림 1) 증기캡슐공정 원리, 이를 이용해 제작된 실리콘 스폰지의 현미경 사진
생활 속 발생하는 정전기로 전자기기 충전 및 구동 가능한 기술 나온다
- 쉽고 간단한 공정으로 고내구성/고출력의 스펀지 나노발전기 개발 - 정전기로 블루투스 센서를 충전 및 구동, 향후 사물인터넷 응용 기대 정전기는 생활 속 불편함을 주기도 하고, 반도체 제조 공정에서는 반도체 칩의 불량을 발생시키기도 하는 골칫덩이이다. 이러한 정전기를 비롯한 진동, 빛 등 우리 주변에서 버려지는 에너지들을 수확하여 전기 에너지를 만들 수 있다면? 최근 신재생에너지로 에너지 전환기에 이르면서 버려지는 에너지를 수집해 전기로 바꿔주는 에너지 하베스팅*(Energy harvesting)기술이 전 세계적으로 크게 주목받고 있다. *에너지 하베스팅(Energy harvesting) : 우리 주변에서 버려지는 진동, 열, 빛, 전파 등의 에너지를 수확하여 우리가 쓸 수 있는 전기 에너지로 변환하는 기술 한국과학기술연구원(KIST, 원장 이병권) 전자재료연구단 송현철 박사, 강종윤 단장 연구팀은 에너지 하베스팅 기술의 일종으로 생활 속 불편한 존재였던 정전기를 이용하여 실제 전자기기에 사용할 수 있는 전기를 생산하는 스펀지 형태의 고내구성·고출력 나노발전기를 개발했다고 밝혔다. KIST 연구진은 증기캡슐공정**(Vapor Capsulation Casting)을 이용하여 물과 실리콘(PDMS, Polydimethylsiloxane)만으로 미세 기공을 가지는 실리콘 스펀지를 짧은 시간 내에 간단히 제작할 수 있는 방법을 개발하였다. 형성된 미세 기공이 전체 표면적과 정전용량을 향상시켜 정전기 발생량을 크게 증가시켰으며, 이를 이용해 고내구성·고출력을 지니는 정전기 나노발전기를 개발하였다. **증기캡슐공정(Vapor Capsulation Casting) : 증기의 열운동 에너지를 이용하여, PDMS와 같은 매질에 수증기를 침투시켜 다공성 구조체를 제작하는 공정기술. 기존의 나노발전기는 복잡하고 어려운 공정이 필요했다. 하지만 이번 KIST 연구진이 개발한 공정을 이용하면 제작 시간과 비용을 크게 단축할 수 있어 나노발전기의 실용화를 앞당길 것으로 전망하고 있다. 또한 연구진은 증기캡슐공정의 변수들을 면밀히 조사하여, 다공성 구조***의 제어 방법을 확립하였는데, 이러한 다공성 실리콘 소재는 여러 연구 분야에 다양하게 활용 및 적용될 것으로 기대된다. ***다공성 구조 : 체적의 15~95% 정도가 기공으로 이루어진 구조로 기존의 치밀한 구조가 가지지 못하는 새로운 특성을 가지고 있는 구조. KIST 연구진은 개발한 정전기 나노발전기를 이용하여 실제 실내온도나 위치 등을 파악하는 블루투스 무선 센서 등을 구동하는데 성공했다. 향후 4차 산업혁명의 핵심기술 중 하나인 사물인터넷을 비롯하여, 무선 센서 네트워크나 웨어러블 전자기기의 자율전원으로써 핵심적 역할을 수행할 수 있을 것으로 보인다. 본 연구를 주도한 KIST 송현철 선임연구원은 “이번 연구결과로 쉽고 간단한 공정을 이용하여 다공성 구조를 제작하였다는데 큰 의의가 있으며, 기존의 에너지 하베스팅 발전장치보다 가격·성능·내구성 면에서 높은 경쟁력을 가진 혁신적인 제품이 될 것으로 기대한다.”고 언급했으며, KIST 강종윤 책임연구원(전자재료연구단장)은 “현재 여러 가지 에너지 하베스팅 기술들을 개발 중에 있다. 이번 연구결과로 인해 다양한 환경에서 센서 네트워크의 자가발전을 위한 핵심적 역할을 수행할 수 있기를 기대한다.”고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민) 지원으로 KIST 기관고유사업과 국가과학기술연구회(이사장 원광연) 창의형 융합연구사업으로 수행되었다. 경희대학교 최덕현 교수와 공동연구로 진행된 본 연구 결과는 에너지 분야 국제 학술지인 ‘Nano Energy’(IF : 13.12, JCR 4.452%)의 최신 호에 게재되었다. * (논문명) Double layered dielectric elastomer by vapor encapsulation casting for highly deformable and strongly adhesive triboelectric materials - (제1저자) 한국과학기술연구원 Hai Bo Xu 연구원(박사후 연구과정) - (교신저자) 한국과학기술연구원 송현철 선임연구원 한국과학기술연구원 강종윤 단장(책임연구원) <그림설명> 그림 1) 증기캡슐공정 원리, 이를 이용해 제작된 실리콘 스폰지의 현미경 사진
생활 속 발생하는 정전기로 전자기기 충전 및 구동 가능한 기술 나온다
- 쉽고 간단한 공정으로 고내구성/고출력의 스펀지 나노발전기 개발 - 정전기로 블루투스 센서를 충전 및 구동, 향후 사물인터넷 응용 기대 정전기는 생활 속 불편함을 주기도 하고, 반도체 제조 공정에서는 반도체 칩의 불량을 발생시키기도 하는 골칫덩이이다. 이러한 정전기를 비롯한 진동, 빛 등 우리 주변에서 버려지는 에너지들을 수확하여 전기 에너지를 만들 수 있다면? 최근 신재생에너지로 에너지 전환기에 이르면서 버려지는 에너지를 수집해 전기로 바꿔주는 에너지 하베스팅*(Energy harvesting)기술이 전 세계적으로 크게 주목받고 있다. *에너지 하베스팅(Energy harvesting) : 우리 주변에서 버려지는 진동, 열, 빛, 전파 등의 에너지를 수확하여 우리가 쓸 수 있는 전기 에너지로 변환하는 기술 한국과학기술연구원(KIST, 원장 이병권) 전자재료연구단 송현철 박사, 강종윤 단장 연구팀은 에너지 하베스팅 기술의 일종으로 생활 속 불편한 존재였던 정전기를 이용하여 실제 전자기기에 사용할 수 있는 전기를 생산하는 스펀지 형태의 고내구성·고출력 나노발전기를 개발했다고 밝혔다. KIST 연구진은 증기캡슐공정**(Vapor Capsulation Casting)을 이용하여 물과 실리콘(PDMS, Polydimethylsiloxane)만으로 미세 기공을 가지는 실리콘 스펀지를 짧은 시간 내에 간단히 제작할 수 있는 방법을 개발하였다. 형성된 미세 기공이 전체 표면적과 정전용량을 향상시켜 정전기 발생량을 크게 증가시켰으며, 이를 이용해 고내구성·고출력을 지니는 정전기 나노발전기를 개발하였다. **증기캡슐공정(Vapor Capsulation Casting) : 증기의 열운동 에너지를 이용하여, PDMS와 같은 매질에 수증기를 침투시켜 다공성 구조체를 제작하는 공정기술. 기존의 나노발전기는 복잡하고 어려운 공정이 필요했다. 하지만 이번 KIST 연구진이 개발한 공정을 이용하면 제작 시간과 비용을 크게 단축할 수 있어 나노발전기의 실용화를 앞당길 것으로 전망하고 있다. 또한 연구진은 증기캡슐공정의 변수들을 면밀히 조사하여, 다공성 구조***의 제어 방법을 확립하였는데, 이러한 다공성 실리콘 소재는 여러 연구 분야에 다양하게 활용 및 적용될 것으로 기대된다. ***다공성 구조 : 체적의 15~95% 정도가 기공으로 이루어진 구조로 기존의 치밀한 구조가 가지지 못하는 새로운 특성을 가지고 있는 구조. KIST 연구진은 개발한 정전기 나노발전기를 이용하여 실제 실내온도나 위치 등을 파악하는 블루투스 무선 센서 등을 구동하는데 성공했다. 향후 4차 산업혁명의 핵심기술 중 하나인 사물인터넷을 비롯하여, 무선 센서 네트워크나 웨어러블 전자기기의 자율전원으로써 핵심적 역할을 수행할 수 있을 것으로 보인다. 본 연구를 주도한 KIST 송현철 선임연구원은 “이번 연구결과로 쉽고 간단한 공정을 이용하여 다공성 구조를 제작하였다는데 큰 의의가 있으며, 기존의 에너지 하베스팅 발전장치보다 가격·성능·내구성 면에서 높은 경쟁력을 가진 혁신적인 제품이 될 것으로 기대한다.”고 언급했으며, KIST 강종윤 책임연구원(전자재료연구단장)은 “현재 여러 가지 에너지 하베스팅 기술들을 개발 중에 있다. 이번 연구결과로 인해 다양한 환경에서 센서 네트워크의 자가발전을 위한 핵심적 역할을 수행할 수 있기를 기대한다.”고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민) 지원으로 KIST 기관고유사업과 국가과학기술연구회(이사장 원광연) 창의형 융합연구사업으로 수행되었다. 경희대학교 최덕현 교수와 공동연구로 진행된 본 연구 결과는 에너지 분야 국제 학술지인 ‘Nano Energy’(IF : 13.12, JCR 4.452%)의 최신 호에 게재되었다. * (논문명) Double layered dielectric elastomer by vapor encapsulation casting for highly deformable and strongly adhesive triboelectric materials - (제1저자) 한국과학기술연구원 Hai Bo Xu 연구원(박사후 연구과정) - (교신저자) 한국과학기술연구원 송현철 선임연구원 한국과학기술연구원 강종윤 단장(책임연구원) <그림설명> 그림 1) 증기캡슐공정 원리, 이를 이용해 제작된 실리콘 스폰지의 현미경 사진