Result
게시물 키워드"KIST"에 대한 4618개의 검색결과를 찾았습니다.
수소 분리막의 투과도를 정밀 측정하는 기술 개발
- 고순도 수소 정제를 위한 핵심 기술로서 수소 경제 활성화 뒷받침 기대 한국과학기술연구원(KIST, 원장 이병권) 에너지소재연구단 이영수 박사팀(심재혁, 서진유 박사)은 금속 수소 분리막의 수소 투과도를 정확하게 측정할 수 있는 방법을 개발했다고 밝혔다. 정부는 올 1월 수소 경제 활성화 로드맵을 발표하고 수소를 자동차 연료와 전력생산을 위한 새로운 동력원으로 키우겠다는 장기 계획을 발표했다. 다양한 분야에 수소 연료를 사용하기 위해서는 혼합 가스에서 수소만을 선택적으로 골라내는 분리·정제 기술이 필수적이다. 일부 금속 소재는 원자 상태의 수소만을 통과시키고 그 외 다른 가스는 거의 통과시키지 않아 혼합 가스에서 수소를 분리·정제하기 위한 분리막으로 사용할 수 있다. 우수한 성능의 수소 분리막을 개발하기 위해서는 무엇보다 수소 분리막의 투과도를 정확하게 측정할 수 있어야 한다. 분리막의 수소 투과도는 금속 분리막양단에 수소 압력 차이를 가한 후 시간에 따른 수소 투과량을 측정하여 평가한다. 기존에는 분리막 양단의 압력이 일정하게 유지되는 특수한 조건을 가정하고 투과도를 측정하였다. 그러나, 일반적인 실험조건에서는 수소가 투과되어 나오는 쪽의 압력이 점점 증가하기 때문에 측정된 결과를 신뢰하기 어려웠다. KIST 연구진은 이 같은 문제를 해결하기 위해 일반적인 실험조건에서도 투과도를 정확히 측정할 수 있는 방법을 개발하였다. 연구팀은 압력이 변하는 조건에서의 투과도를 해석하기 위해 수소 분리막 내부에서 시간에 따라 변하는 수소 농도를 시뮬레이션하였다. 그리고 시뮬레이션 결과를 새로운 방식으로 재해석하여 압력이 변하는 조건에서도 정확한 수소 투과도를 얻을 수 있었다. 기존 방식으로 해석한 결과는 실제값과 2~30%이상 차이를 보이는 데 비해 KIST 연구팀이 개발한 방식은 오차범위 1% 내외로 99% 이상의 신뢰도를 보였다. 또한, 추가 실험이나 복잡한 시뮬레이션을 하지 않고 기존 실험 데이터만을 가지고도 압력 변화 상황에서의 투과도를 간단하게 도출하는 방법도 제시하였다. KIST 이영수 박사는 “이번 연구를 통해 금속 수소 분리막의 정확한 특성 평가가 가능해졌으며, 신뢰성 있는 기초 데이터를 바탕으로 다양한 분리막 소재를 개발하는 데 크게 이바지할 것으로 기대한다.”라고 밝혔다. 이번 연구는 과학기술정보통신부(장관 유영민)의 지원을 받아 KIST 기관고유사업으로 수행되었다. 해당 성과는 소재 분야 세계적 학술지 ‘Journal of Membrane Science’ (IF: 7.015, JCR 분야 상위 1.72%) 최신호에 게재되었다. * (논문명) A finite outlet volume correction to the time lag method: The case of hydrogen permeation through V-alloy and Pd membranes - (제1저자, 교신저자) 한국과학기술연구원 이영수 책임연구원 - (공저자) 한국과학기술연구원 심재혁 책임연구원 - (공저자) 한국과학기술연구원 서진유 책임연구원 <그림설명> [그림 1] (좌) 금속 분리막을 통해 수소가 선택적으로 이동하는 것을 보여주는 모식도 (우) 금속 분리막 내부에서 시간에 따른 수소 원자 농도 분포의 변화를 시뮬레이션한 결과 [그림 2] KIST 연구진이 제작한 수소투과도 측정 장치 [그림 3] (붉은 점선) Pd 분리막에서 수소 투과 시 시간에 따른 압력 변화의 실험값 (푸른선) 기존 수식을 적용하여 얻은 투과도 (검은선) 본 연구에서 제시한 식으로부터 얻은 투과도로부터 시뮬레이션한 압력 변화값 기존 방식의 경우 예측값이 실제 값보다 2~30% 적게 나오나, 본 연구에서 개발한 식을 적용하였을 때 두 값이 거의 일치하여 신뢰도가 향상되었음을 알 수 있음.
수소 분리막의 투과도를 정밀 측정하는 기술 개발
- 고순도 수소 정제를 위한 핵심 기술로서 수소 경제 활성화 뒷받침 기대 한국과학기술연구원(KIST, 원장 이병권) 에너지소재연구단 이영수 박사팀(심재혁, 서진유 박사)은 금속 수소 분리막의 수소 투과도를 정확하게 측정할 수 있는 방법을 개발했다고 밝혔다. 정부는 올 1월 수소 경제 활성화 로드맵을 발표하고 수소를 자동차 연료와 전력생산을 위한 새로운 동력원으로 키우겠다는 장기 계획을 발표했다. 다양한 분야에 수소 연료를 사용하기 위해서는 혼합 가스에서 수소만을 선택적으로 골라내는 분리·정제 기술이 필수적이다. 일부 금속 소재는 원자 상태의 수소만을 통과시키고 그 외 다른 가스는 거의 통과시키지 않아 혼합 가스에서 수소를 분리·정제하기 위한 분리막으로 사용할 수 있다. 우수한 성능의 수소 분리막을 개발하기 위해서는 무엇보다 수소 분리막의 투과도를 정확하게 측정할 수 있어야 한다. 분리막의 수소 투과도는 금속 분리막양단에 수소 압력 차이를 가한 후 시간에 따른 수소 투과량을 측정하여 평가한다. 기존에는 분리막 양단의 압력이 일정하게 유지되는 특수한 조건을 가정하고 투과도를 측정하였다. 그러나, 일반적인 실험조건에서는 수소가 투과되어 나오는 쪽의 압력이 점점 증가하기 때문에 측정된 결과를 신뢰하기 어려웠다. KIST 연구진은 이 같은 문제를 해결하기 위해 일반적인 실험조건에서도 투과도를 정확히 측정할 수 있는 방법을 개발하였다. 연구팀은 압력이 변하는 조건에서의 투과도를 해석하기 위해 수소 분리막 내부에서 시간에 따라 변하는 수소 농도를 시뮬레이션하였다. 그리고 시뮬레이션 결과를 새로운 방식으로 재해석하여 압력이 변하는 조건에서도 정확한 수소 투과도를 얻을 수 있었다. 기존 방식으로 해석한 결과는 실제값과 2~30%이상 차이를 보이는 데 비해 KIST 연구팀이 개발한 방식은 오차범위 1% 내외로 99% 이상의 신뢰도를 보였다. 또한, 추가 실험이나 복잡한 시뮬레이션을 하지 않고 기존 실험 데이터만을 가지고도 압력 변화 상황에서의 투과도를 간단하게 도출하는 방법도 제시하였다. KIST 이영수 박사는 “이번 연구를 통해 금속 수소 분리막의 정확한 특성 평가가 가능해졌으며, 신뢰성 있는 기초 데이터를 바탕으로 다양한 분리막 소재를 개발하는 데 크게 이바지할 것으로 기대한다.”라고 밝혔다. 이번 연구는 과학기술정보통신부(장관 유영민)의 지원을 받아 KIST 기관고유사업으로 수행되었다. 해당 성과는 소재 분야 세계적 학술지 ‘Journal of Membrane Science’ (IF: 7.015, JCR 분야 상위 1.72%) 최신호에 게재되었다. * (논문명) A finite outlet volume correction to the time lag method: The case of hydrogen permeation through V-alloy and Pd membranes - (제1저자, 교신저자) 한국과학기술연구원 이영수 책임연구원 - (공저자) 한국과학기술연구원 심재혁 책임연구원 - (공저자) 한국과학기술연구원 서진유 책임연구원 <그림설명> [그림 1] (좌) 금속 분리막을 통해 수소가 선택적으로 이동하는 것을 보여주는 모식도 (우) 금속 분리막 내부에서 시간에 따른 수소 원자 농도 분포의 변화를 시뮬레이션한 결과 [그림 2] KIST 연구진이 제작한 수소투과도 측정 장치 [그림 3] (붉은 점선) Pd 분리막에서 수소 투과 시 시간에 따른 압력 변화의 실험값 (푸른선) 기존 수식을 적용하여 얻은 투과도 (검은선) 본 연구에서 제시한 식으로부터 얻은 투과도로부터 시뮬레이션한 압력 변화값 기존 방식의 경우 예측값이 실제 값보다 2~30% 적게 나오나, 본 연구에서 개발한 식을 적용하였을 때 두 값이 거의 일치하여 신뢰도가 향상되었음을 알 수 있음.
수소 분리막의 투과도를 정밀 측정하는 기술 개발
- 고순도 수소 정제를 위한 핵심 기술로서 수소 경제 활성화 뒷받침 기대 한국과학기술연구원(KIST, 원장 이병권) 에너지소재연구단 이영수 박사팀(심재혁, 서진유 박사)은 금속 수소 분리막의 수소 투과도를 정확하게 측정할 수 있는 방법을 개발했다고 밝혔다. 정부는 올 1월 수소 경제 활성화 로드맵을 발표하고 수소를 자동차 연료와 전력생산을 위한 새로운 동력원으로 키우겠다는 장기 계획을 발표했다. 다양한 분야에 수소 연료를 사용하기 위해서는 혼합 가스에서 수소만을 선택적으로 골라내는 분리·정제 기술이 필수적이다. 일부 금속 소재는 원자 상태의 수소만을 통과시키고 그 외 다른 가스는 거의 통과시키지 않아 혼합 가스에서 수소를 분리·정제하기 위한 분리막으로 사용할 수 있다. 우수한 성능의 수소 분리막을 개발하기 위해서는 무엇보다 수소 분리막의 투과도를 정확하게 측정할 수 있어야 한다. 분리막의 수소 투과도는 금속 분리막양단에 수소 압력 차이를 가한 후 시간에 따른 수소 투과량을 측정하여 평가한다. 기존에는 분리막 양단의 압력이 일정하게 유지되는 특수한 조건을 가정하고 투과도를 측정하였다. 그러나, 일반적인 실험조건에서는 수소가 투과되어 나오는 쪽의 압력이 점점 증가하기 때문에 측정된 결과를 신뢰하기 어려웠다. KIST 연구진은 이 같은 문제를 해결하기 위해 일반적인 실험조건에서도 투과도를 정확히 측정할 수 있는 방법을 개발하였다. 연구팀은 압력이 변하는 조건에서의 투과도를 해석하기 위해 수소 분리막 내부에서 시간에 따라 변하는 수소 농도를 시뮬레이션하였다. 그리고 시뮬레이션 결과를 새로운 방식으로 재해석하여 압력이 변하는 조건에서도 정확한 수소 투과도를 얻을 수 있었다. 기존 방식으로 해석한 결과는 실제값과 2~30%이상 차이를 보이는 데 비해 KIST 연구팀이 개발한 방식은 오차범위 1% 내외로 99% 이상의 신뢰도를 보였다. 또한, 추가 실험이나 복잡한 시뮬레이션을 하지 않고 기존 실험 데이터만을 가지고도 압력 변화 상황에서의 투과도를 간단하게 도출하는 방법도 제시하였다. KIST 이영수 박사는 “이번 연구를 통해 금속 수소 분리막의 정확한 특성 평가가 가능해졌으며, 신뢰성 있는 기초 데이터를 바탕으로 다양한 분리막 소재를 개발하는 데 크게 이바지할 것으로 기대한다.”라고 밝혔다. 이번 연구는 과학기술정보통신부(장관 유영민)의 지원을 받아 KIST 기관고유사업으로 수행되었다. 해당 성과는 소재 분야 세계적 학술지 ‘Journal of Membrane Science’ (IF: 7.015, JCR 분야 상위 1.72%) 최신호에 게재되었다. * (논문명) A finite outlet volume correction to the time lag method: The case of hydrogen permeation through V-alloy and Pd membranes - (제1저자, 교신저자) 한국과학기술연구원 이영수 책임연구원 - (공저자) 한국과학기술연구원 심재혁 책임연구원 - (공저자) 한국과학기술연구원 서진유 책임연구원 <그림설명> [그림 1] (좌) 금속 분리막을 통해 수소가 선택적으로 이동하는 것을 보여주는 모식도 (우) 금속 분리막 내부에서 시간에 따른 수소 원자 농도 분포의 변화를 시뮬레이션한 결과 [그림 2] KIST 연구진이 제작한 수소투과도 측정 장치 [그림 3] (붉은 점선) Pd 분리막에서 수소 투과 시 시간에 따른 압력 변화의 실험값 (푸른선) 기존 수식을 적용하여 얻은 투과도 (검은선) 본 연구에서 제시한 식으로부터 얻은 투과도로부터 시뮬레이션한 압력 변화값 기존 방식의 경우 예측값이 실제 값보다 2~30% 적게 나오나, 본 연구에서 개발한 식을 적용하였을 때 두 값이 거의 일치하여 신뢰도가 향상되었음을 알 수 있음.
수소 분리막의 투과도를 정밀 측정하는 기술 개발
- 고순도 수소 정제를 위한 핵심 기술로서 수소 경제 활성화 뒷받침 기대 한국과학기술연구원(KIST, 원장 이병권) 에너지소재연구단 이영수 박사팀(심재혁, 서진유 박사)은 금속 수소 분리막의 수소 투과도를 정확하게 측정할 수 있는 방법을 개발했다고 밝혔다. 정부는 올 1월 수소 경제 활성화 로드맵을 발표하고 수소를 자동차 연료와 전력생산을 위한 새로운 동력원으로 키우겠다는 장기 계획을 발표했다. 다양한 분야에 수소 연료를 사용하기 위해서는 혼합 가스에서 수소만을 선택적으로 골라내는 분리·정제 기술이 필수적이다. 일부 금속 소재는 원자 상태의 수소만을 통과시키고 그 외 다른 가스는 거의 통과시키지 않아 혼합 가스에서 수소를 분리·정제하기 위한 분리막으로 사용할 수 있다. 우수한 성능의 수소 분리막을 개발하기 위해서는 무엇보다 수소 분리막의 투과도를 정확하게 측정할 수 있어야 한다. 분리막의 수소 투과도는 금속 분리막양단에 수소 압력 차이를 가한 후 시간에 따른 수소 투과량을 측정하여 평가한다. 기존에는 분리막 양단의 압력이 일정하게 유지되는 특수한 조건을 가정하고 투과도를 측정하였다. 그러나, 일반적인 실험조건에서는 수소가 투과되어 나오는 쪽의 압력이 점점 증가하기 때문에 측정된 결과를 신뢰하기 어려웠다. KIST 연구진은 이 같은 문제를 해결하기 위해 일반적인 실험조건에서도 투과도를 정확히 측정할 수 있는 방법을 개발하였다. 연구팀은 압력이 변하는 조건에서의 투과도를 해석하기 위해 수소 분리막 내부에서 시간에 따라 변하는 수소 농도를 시뮬레이션하였다. 그리고 시뮬레이션 결과를 새로운 방식으로 재해석하여 압력이 변하는 조건에서도 정확한 수소 투과도를 얻을 수 있었다. 기존 방식으로 해석한 결과는 실제값과 2~30%이상 차이를 보이는 데 비해 KIST 연구팀이 개발한 방식은 오차범위 1% 내외로 99% 이상의 신뢰도를 보였다. 또한, 추가 실험이나 복잡한 시뮬레이션을 하지 않고 기존 실험 데이터만을 가지고도 압력 변화 상황에서의 투과도를 간단하게 도출하는 방법도 제시하였다. KIST 이영수 박사는 “이번 연구를 통해 금속 수소 분리막의 정확한 특성 평가가 가능해졌으며, 신뢰성 있는 기초 데이터를 바탕으로 다양한 분리막 소재를 개발하는 데 크게 이바지할 것으로 기대한다.”라고 밝혔다. 이번 연구는 과학기술정보통신부(장관 유영민)의 지원을 받아 KIST 기관고유사업으로 수행되었다. 해당 성과는 소재 분야 세계적 학술지 ‘Journal of Membrane Science’ (IF: 7.015, JCR 분야 상위 1.72%) 최신호에 게재되었다. * (논문명) A finite outlet volume correction to the time lag method: The case of hydrogen permeation through V-alloy and Pd membranes - (제1저자, 교신저자) 한국과학기술연구원 이영수 책임연구원 - (공저자) 한국과학기술연구원 심재혁 책임연구원 - (공저자) 한국과학기술연구원 서진유 책임연구원 <그림설명> [그림 1] (좌) 금속 분리막을 통해 수소가 선택적으로 이동하는 것을 보여주는 모식도 (우) 금속 분리막 내부에서 시간에 따른 수소 원자 농도 분포의 변화를 시뮬레이션한 결과 [그림 2] KIST 연구진이 제작한 수소투과도 측정 장치 [그림 3] (붉은 점선) Pd 분리막에서 수소 투과 시 시간에 따른 압력 변화의 실험값 (푸른선) 기존 수식을 적용하여 얻은 투과도 (검은선) 본 연구에서 제시한 식으로부터 얻은 투과도로부터 시뮬레이션한 압력 변화값 기존 방식의 경우 예측값이 실제 값보다 2~30% 적게 나오나, 본 연구에서 개발한 식을 적용하였을 때 두 값이 거의 일치하여 신뢰도가 향상되었음을 알 수 있음.
값싸고 효율적인 차세대 연료전지 촉매기술 개발
- 백금 대체 가능한 탄소계 코어쉘 구조의 고활성/고내구성 나노 촉매 개발 - 연료전지 구동 시 고가의 백금 촉매와 유사한 성능, 향후 차세대 촉매 연구 기여 한국과학기술연구원(KIST, 원장 이병권) 수소·연료전지연구단 유성종 박사팀은 충남대학교 정남기 교수와의 공동연구를 통해, 최근 차세대 연료전지로 각광받고 있는 알칼라인 연료전지*의 고가 백금 촉매를 대체할 수 있는 저가형 촉매를 개발했다고 밝혔다. *알칼라인 연료전지 : 알칼라인 조건에서 수소와 산소의 화학적 에너지를 전기적 에너지로 변환하는 에너지 변환 장치로써, 에너지 발생 단계에서 물밖에 배출하지 않는 친환경 에너지원 연료전지의 전극에서는 산소환원반응**이 발생하는데, 이는 전지 효율을 결정하는데 가장 핵심이 되는 요소이다. 산소환원반응은 연료전지의 반응 속도를 느리게 하고, 전지의 효율을 높이기 어렵게 하는 주원인이다. 기존 알칼라인 연료전지는 이러한 산소환원반응에 전기화학적 활성이 우수한 백금 기반의 합금 나노 입자를 사용하는 것이 일반적이었다. 그러나 백금계열 촉매는 내구성이 부족하고 가격이 비싸다는 한계를 갖고 있었다. **산소환원반응 : 산소에 전자와 물을 반응시켜 수산화물을 생성하는 환원 반응. (O2 + 2H2O + 4e- → 4OH-) 최근 백금 소재를 대체하기 위해 탄소계 촉매 연구가 활발하게 진행 중이다. 현재까지 개발된 탄소계 소재 촉매들은 우수한 산소환원반응 활성을 보이지만, 실제 알칼라인 연료전지 구동 시 산소환원반응의 활성화 지점을 알 수 없어 성능을 높이는 데 한계가 있었다. KIST 연구진은 최근 연구를 통해 고가의 백금계 촉매를 대체할 수 있는 탄소계 촉매를 개발하여 연료전지 성능과 내구성을 향상시키는데 성공했다. 이번에 개발된 촉매는 코발트 재질의 코어에 그래핀 구조의 탄소 껍질을 갖는 코어-쉘(Core-Shell) 구조***로서 성능과 내구성은 물론 경제성까지 갖춘 매우 우수한 소재이다. KIST 연구팀은 코어-쉘 구조를 통해 반응면적을 극대화하여 상용 백금 촉매와 유사한 구조의 전극을 형성하였고, 이를 통해 우수한 연료전지 성능을 구현해 내었다. ***코어-쉘(Core-Shell) 구조 : 가운데에 위치한 ‘코어’ 물질을 ‘쉘’ 물질이 껍데기처럼 둘러싼 구조 KIST-충남대학교 공동연구진은 코발트 금속 위에 그래핀 껍질을 형성할 경우 그래핀 표면에 산소환원반응에 유리한 전자구조가 만들어진다는 사실을 밝혀내었다. 또한 연료전지 핵심인 전극소재를 기존 탄소계 소재보다 3배 이상 얇게 만들었음에도 불구하고 상용 백금계 소재와 유사한 성능을 구현함으로써 비백금계 촉매의 상용화시기를 앞당길 수 있을 것으로 기대된다. KIST 유성종 박사는 “최근 알칼라인 연료전지를 상용화하기 위한 핵심 소재 연구가 활발하게 진행되고 있는데, 이번 연구를 통해 아직까지 명확하게 밝혀지지 않은 산소환원반응의 활성점을 규명하고, 실제 연료전지 구동에 핵심이 되는 전극 소재의 새로운 개발 방향을 제시했다.”고 연구 의의를 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민) 지원으로 KIST 기관고유사업과 기후변화대응기술개발사업, 글로벌프론티어 멀티스케일에너지시스템 연구사업으로 수행되었다. 충남대학교와의 공동 연구로 진행된 이번 연구는 에너지 환경 분야 저명 학술지인 ‘Energy & Environmental Science’ (IF: 33.25, JCR 분야 상위 0.20%)의 최신호에 표지논문(Back Cover)으로 게재되었다. * (논문명) Work function-tailored graphene via transition metal encapsulation as a highly active and durable catalyst for the oxygen reduction reaction - (제 1저자) KIST 수소·연료전지연구단 장주혁 연구원(박사과정) 충남대학교 에너지과학기술대학원 Monika Sharma 박사 - (교신저자) KIST 수소·연료전지연구단 유성종 책임연구원 충남대학교 에너지과학기술대학원 정남기 교수 <그림설명> [그림 1] 탄소계 코어쉘 구조 나노 촉매 연구 개념 모식도 (a) 코어쉘 구조에 따른 그래핀 표면 일함수 변화 (b) 개발된 촉매의 3차원 구조 그래핀 쉘 형성에 따른 반응 면적 변화 [그림 2] (a) 코발트 코어-그래핀 쉘 구조 나노 촉매 합성 방법 및 실제 형상 (b) 알칼라인 연료전지 구동 시 성능 결과
값싸고 효율적인 차세대 연료전지 촉매기술 개발
- 백금 대체 가능한 탄소계 코어쉘 구조의 고활성/고내구성 나노 촉매 개발 - 연료전지 구동 시 고가의 백금 촉매와 유사한 성능, 향후 차세대 촉매 연구 기여 한국과학기술연구원(KIST, 원장 이병권) 수소·연료전지연구단 유성종 박사팀은 충남대학교 정남기 교수와의 공동연구를 통해, 최근 차세대 연료전지로 각광받고 있는 알칼라인 연료전지*의 고가 백금 촉매를 대체할 수 있는 저가형 촉매를 개발했다고 밝혔다. *알칼라인 연료전지 : 알칼라인 조건에서 수소와 산소의 화학적 에너지를 전기적 에너지로 변환하는 에너지 변환 장치로써, 에너지 발생 단계에서 물밖에 배출하지 않는 친환경 에너지원 연료전지의 전극에서는 산소환원반응**이 발생하는데, 이는 전지 효율을 결정하는데 가장 핵심이 되는 요소이다. 산소환원반응은 연료전지의 반응 속도를 느리게 하고, 전지의 효율을 높이기 어렵게 하는 주원인이다. 기존 알칼라인 연료전지는 이러한 산소환원반응에 전기화학적 활성이 우수한 백금 기반의 합금 나노 입자를 사용하는 것이 일반적이었다. 그러나 백금계열 촉매는 내구성이 부족하고 가격이 비싸다는 한계를 갖고 있었다. **산소환원반응 : 산소에 전자와 물을 반응시켜 수산화물을 생성하는 환원 반응. (O2 + 2H2O + 4e- → 4OH-) 최근 백금 소재를 대체하기 위해 탄소계 촉매 연구가 활발하게 진행 중이다. 현재까지 개발된 탄소계 소재 촉매들은 우수한 산소환원반응 활성을 보이지만, 실제 알칼라인 연료전지 구동 시 산소환원반응의 활성화 지점을 알 수 없어 성능을 높이는 데 한계가 있었다. KIST 연구진은 최근 연구를 통해 고가의 백금계 촉매를 대체할 수 있는 탄소계 촉매를 개발하여 연료전지 성능과 내구성을 향상시키는데 성공했다. 이번에 개발된 촉매는 코발트 재질의 코어에 그래핀 구조의 탄소 껍질을 갖는 코어-쉘(Core-Shell) 구조***로서 성능과 내구성은 물론 경제성까지 갖춘 매우 우수한 소재이다. KIST 연구팀은 코어-쉘 구조를 통해 반응면적을 극대화하여 상용 백금 촉매와 유사한 구조의 전극을 형성하였고, 이를 통해 우수한 연료전지 성능을 구현해 내었다. ***코어-쉘(Core-Shell) 구조 : 가운데에 위치한 ‘코어’ 물질을 ‘쉘’ 물질이 껍데기처럼 둘러싼 구조 KIST-충남대학교 공동연구진은 코발트 금속 위에 그래핀 껍질을 형성할 경우 그래핀 표면에 산소환원반응에 유리한 전자구조가 만들어진다는 사실을 밝혀내었다. 또한 연료전지 핵심인 전극소재를 기존 탄소계 소재보다 3배 이상 얇게 만들었음에도 불구하고 상용 백금계 소재와 유사한 성능을 구현함으로써 비백금계 촉매의 상용화시기를 앞당길 수 있을 것으로 기대된다. KIST 유성종 박사는 “최근 알칼라인 연료전지를 상용화하기 위한 핵심 소재 연구가 활발하게 진행되고 있는데, 이번 연구를 통해 아직까지 명확하게 밝혀지지 않은 산소환원반응의 활성점을 규명하고, 실제 연료전지 구동에 핵심이 되는 전극 소재의 새로운 개발 방향을 제시했다.”고 연구 의의를 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민) 지원으로 KIST 기관고유사업과 기후변화대응기술개발사업, 글로벌프론티어 멀티스케일에너지시스템 연구사업으로 수행되었다. 충남대학교와의 공동 연구로 진행된 이번 연구는 에너지 환경 분야 저명 학술지인 ‘Energy & Environmental Science’ (IF: 33.25, JCR 분야 상위 0.20%)의 최신호에 표지논문(Back Cover)으로 게재되었다. * (논문명) Work function-tailored graphene via transition metal encapsulation as a highly active and durable catalyst for the oxygen reduction reaction - (제 1저자) KIST 수소·연료전지연구단 장주혁 연구원(박사과정) 충남대학교 에너지과학기술대학원 Monika Sharma 박사 - (교신저자) KIST 수소·연료전지연구단 유성종 책임연구원 충남대학교 에너지과학기술대학원 정남기 교수 <그림설명> [그림 1] 탄소계 코어쉘 구조 나노 촉매 연구 개념 모식도 (a) 코어쉘 구조에 따른 그래핀 표면 일함수 변화 (b) 개발된 촉매의 3차원 구조 그래핀 쉘 형성에 따른 반응 면적 변화 [그림 2] (a) 코발트 코어-그래핀 쉘 구조 나노 촉매 합성 방법 및 실제 형상 (b) 알칼라인 연료전지 구동 시 성능 결과
값싸고 효율적인 차세대 연료전지 촉매기술 개발
- 백금 대체 가능한 탄소계 코어쉘 구조의 고활성/고내구성 나노 촉매 개발 - 연료전지 구동 시 고가의 백금 촉매와 유사한 성능, 향후 차세대 촉매 연구 기여 한국과학기술연구원(KIST, 원장 이병권) 수소·연료전지연구단 유성종 박사팀은 충남대학교 정남기 교수와의 공동연구를 통해, 최근 차세대 연료전지로 각광받고 있는 알칼라인 연료전지*의 고가 백금 촉매를 대체할 수 있는 저가형 촉매를 개발했다고 밝혔다. *알칼라인 연료전지 : 알칼라인 조건에서 수소와 산소의 화학적 에너지를 전기적 에너지로 변환하는 에너지 변환 장치로써, 에너지 발생 단계에서 물밖에 배출하지 않는 친환경 에너지원 연료전지의 전극에서는 산소환원반응**이 발생하는데, 이는 전지 효율을 결정하는데 가장 핵심이 되는 요소이다. 산소환원반응은 연료전지의 반응 속도를 느리게 하고, 전지의 효율을 높이기 어렵게 하는 주원인이다. 기존 알칼라인 연료전지는 이러한 산소환원반응에 전기화학적 활성이 우수한 백금 기반의 합금 나노 입자를 사용하는 것이 일반적이었다. 그러나 백금계열 촉매는 내구성이 부족하고 가격이 비싸다는 한계를 갖고 있었다. **산소환원반응 : 산소에 전자와 물을 반응시켜 수산화물을 생성하는 환원 반응. (O2 + 2H2O + 4e- → 4OH-) 최근 백금 소재를 대체하기 위해 탄소계 촉매 연구가 활발하게 진행 중이다. 현재까지 개발된 탄소계 소재 촉매들은 우수한 산소환원반응 활성을 보이지만, 실제 알칼라인 연료전지 구동 시 산소환원반응의 활성화 지점을 알 수 없어 성능을 높이는 데 한계가 있었다. KIST 연구진은 최근 연구를 통해 고가의 백금계 촉매를 대체할 수 있는 탄소계 촉매를 개발하여 연료전지 성능과 내구성을 향상시키는데 성공했다. 이번에 개발된 촉매는 코발트 재질의 코어에 그래핀 구조의 탄소 껍질을 갖는 코어-쉘(Core-Shell) 구조***로서 성능과 내구성은 물론 경제성까지 갖춘 매우 우수한 소재이다. KIST 연구팀은 코어-쉘 구조를 통해 반응면적을 극대화하여 상용 백금 촉매와 유사한 구조의 전극을 형성하였고, 이를 통해 우수한 연료전지 성능을 구현해 내었다. ***코어-쉘(Core-Shell) 구조 : 가운데에 위치한 ‘코어’ 물질을 ‘쉘’ 물질이 껍데기처럼 둘러싼 구조 KIST-충남대학교 공동연구진은 코발트 금속 위에 그래핀 껍질을 형성할 경우 그래핀 표면에 산소환원반응에 유리한 전자구조가 만들어진다는 사실을 밝혀내었다. 또한 연료전지 핵심인 전극소재를 기존 탄소계 소재보다 3배 이상 얇게 만들었음에도 불구하고 상용 백금계 소재와 유사한 성능을 구현함으로써 비백금계 촉매의 상용화시기를 앞당길 수 있을 것으로 기대된다. KIST 유성종 박사는 “최근 알칼라인 연료전지를 상용화하기 위한 핵심 소재 연구가 활발하게 진행되고 있는데, 이번 연구를 통해 아직까지 명확하게 밝혀지지 않은 산소환원반응의 활성점을 규명하고, 실제 연료전지 구동에 핵심이 되는 전극 소재의 새로운 개발 방향을 제시했다.”고 연구 의의를 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민) 지원으로 KIST 기관고유사업과 기후변화대응기술개발사업, 글로벌프론티어 멀티스케일에너지시스템 연구사업으로 수행되었다. 충남대학교와의 공동 연구로 진행된 이번 연구는 에너지 환경 분야 저명 학술지인 ‘Energy & Environmental Science’ (IF: 33.25, JCR 분야 상위 0.20%)의 최신호에 표지논문(Back Cover)으로 게재되었다. * (논문명) Work function-tailored graphene via transition metal encapsulation as a highly active and durable catalyst for the oxygen reduction reaction - (제 1저자) KIST 수소·연료전지연구단 장주혁 연구원(박사과정) 충남대학교 에너지과학기술대학원 Monika Sharma 박사 - (교신저자) KIST 수소·연료전지연구단 유성종 책임연구원 충남대학교 에너지과학기술대학원 정남기 교수 <그림설명> [그림 1] 탄소계 코어쉘 구조 나노 촉매 연구 개념 모식도 (a) 코어쉘 구조에 따른 그래핀 표면 일함수 변화 (b) 개발된 촉매의 3차원 구조 그래핀 쉘 형성에 따른 반응 면적 변화 [그림 2] (a) 코발트 코어-그래핀 쉘 구조 나노 촉매 합성 방법 및 실제 형상 (b) 알칼라인 연료전지 구동 시 성능 결과
값싸고 효율적인 차세대 연료전지 촉매기술 개발
- 백금 대체 가능한 탄소계 코어쉘 구조의 고활성/고내구성 나노 촉매 개발 - 연료전지 구동 시 고가의 백금 촉매와 유사한 성능, 향후 차세대 촉매 연구 기여 한국과학기술연구원(KIST, 원장 이병권) 수소·연료전지연구단 유성종 박사팀은 충남대학교 정남기 교수와의 공동연구를 통해, 최근 차세대 연료전지로 각광받고 있는 알칼라인 연료전지*의 고가 백금 촉매를 대체할 수 있는 저가형 촉매를 개발했다고 밝혔다. *알칼라인 연료전지 : 알칼라인 조건에서 수소와 산소의 화학적 에너지를 전기적 에너지로 변환하는 에너지 변환 장치로써, 에너지 발생 단계에서 물밖에 배출하지 않는 친환경 에너지원 연료전지의 전극에서는 산소환원반응**이 발생하는데, 이는 전지 효율을 결정하는데 가장 핵심이 되는 요소이다. 산소환원반응은 연료전지의 반응 속도를 느리게 하고, 전지의 효율을 높이기 어렵게 하는 주원인이다. 기존 알칼라인 연료전지는 이러한 산소환원반응에 전기화학적 활성이 우수한 백금 기반의 합금 나노 입자를 사용하는 것이 일반적이었다. 그러나 백금계열 촉매는 내구성이 부족하고 가격이 비싸다는 한계를 갖고 있었다. **산소환원반응 : 산소에 전자와 물을 반응시켜 수산화물을 생성하는 환원 반응. (O2 + 2H2O + 4e- → 4OH-) 최근 백금 소재를 대체하기 위해 탄소계 촉매 연구가 활발하게 진행 중이다. 현재까지 개발된 탄소계 소재 촉매들은 우수한 산소환원반응 활성을 보이지만, 실제 알칼라인 연료전지 구동 시 산소환원반응의 활성화 지점을 알 수 없어 성능을 높이는 데 한계가 있었다. KIST 연구진은 최근 연구를 통해 고가의 백금계 촉매를 대체할 수 있는 탄소계 촉매를 개발하여 연료전지 성능과 내구성을 향상시키는데 성공했다. 이번에 개발된 촉매는 코발트 재질의 코어에 그래핀 구조의 탄소 껍질을 갖는 코어-쉘(Core-Shell) 구조***로서 성능과 내구성은 물론 경제성까지 갖춘 매우 우수한 소재이다. KIST 연구팀은 코어-쉘 구조를 통해 반응면적을 극대화하여 상용 백금 촉매와 유사한 구조의 전극을 형성하였고, 이를 통해 우수한 연료전지 성능을 구현해 내었다. ***코어-쉘(Core-Shell) 구조 : 가운데에 위치한 ‘코어’ 물질을 ‘쉘’ 물질이 껍데기처럼 둘러싼 구조 KIST-충남대학교 공동연구진은 코발트 금속 위에 그래핀 껍질을 형성할 경우 그래핀 표면에 산소환원반응에 유리한 전자구조가 만들어진다는 사실을 밝혀내었다. 또한 연료전지 핵심인 전극소재를 기존 탄소계 소재보다 3배 이상 얇게 만들었음에도 불구하고 상용 백금계 소재와 유사한 성능을 구현함으로써 비백금계 촉매의 상용화시기를 앞당길 수 있을 것으로 기대된다. KIST 유성종 박사는 “최근 알칼라인 연료전지를 상용화하기 위한 핵심 소재 연구가 활발하게 진행되고 있는데, 이번 연구를 통해 아직까지 명확하게 밝혀지지 않은 산소환원반응의 활성점을 규명하고, 실제 연료전지 구동에 핵심이 되는 전극 소재의 새로운 개발 방향을 제시했다.”고 연구 의의를 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민) 지원으로 KIST 기관고유사업과 기후변화대응기술개발사업, 글로벌프론티어 멀티스케일에너지시스템 연구사업으로 수행되었다. 충남대학교와의 공동 연구로 진행된 이번 연구는 에너지 환경 분야 저명 학술지인 ‘Energy & Environmental Science’ (IF: 33.25, JCR 분야 상위 0.20%)의 최신호에 표지논문(Back Cover)으로 게재되었다. * (논문명) Work function-tailored graphene via transition metal encapsulation as a highly active and durable catalyst for the oxygen reduction reaction - (제 1저자) KIST 수소·연료전지연구단 장주혁 연구원(박사과정) 충남대학교 에너지과학기술대학원 Monika Sharma 박사 - (교신저자) KIST 수소·연료전지연구단 유성종 책임연구원 충남대학교 에너지과학기술대학원 정남기 교수 <그림설명> [그림 1] 탄소계 코어쉘 구조 나노 촉매 연구 개념 모식도 (a) 코어쉘 구조에 따른 그래핀 표면 일함수 변화 (b) 개발된 촉매의 3차원 구조 그래핀 쉘 형성에 따른 반응 면적 변화 [그림 2] (a) 코발트 코어-그래핀 쉘 구조 나노 촉매 합성 방법 및 실제 형상 (b) 알칼라인 연료전지 구동 시 성능 결과
값싸고 효율적인 차세대 연료전지 촉매기술 개발
- 백금 대체 가능한 탄소계 코어쉘 구조의 고활성/고내구성 나노 촉매 개발 - 연료전지 구동 시 고가의 백금 촉매와 유사한 성능, 향후 차세대 촉매 연구 기여 한국과학기술연구원(KIST, 원장 이병권) 수소·연료전지연구단 유성종 박사팀은 충남대학교 정남기 교수와의 공동연구를 통해, 최근 차세대 연료전지로 각광받고 있는 알칼라인 연료전지*의 고가 백금 촉매를 대체할 수 있는 저가형 촉매를 개발했다고 밝혔다. *알칼라인 연료전지 : 알칼라인 조건에서 수소와 산소의 화학적 에너지를 전기적 에너지로 변환하는 에너지 변환 장치로써, 에너지 발생 단계에서 물밖에 배출하지 않는 친환경 에너지원 연료전지의 전극에서는 산소환원반응**이 발생하는데, 이는 전지 효율을 결정하는데 가장 핵심이 되는 요소이다. 산소환원반응은 연료전지의 반응 속도를 느리게 하고, 전지의 효율을 높이기 어렵게 하는 주원인이다. 기존 알칼라인 연료전지는 이러한 산소환원반응에 전기화학적 활성이 우수한 백금 기반의 합금 나노 입자를 사용하는 것이 일반적이었다. 그러나 백금계열 촉매는 내구성이 부족하고 가격이 비싸다는 한계를 갖고 있었다. **산소환원반응 : 산소에 전자와 물을 반응시켜 수산화물을 생성하는 환원 반응. (O2 + 2H2O + 4e- → 4OH-) 최근 백금 소재를 대체하기 위해 탄소계 촉매 연구가 활발하게 진행 중이다. 현재까지 개발된 탄소계 소재 촉매들은 우수한 산소환원반응 활성을 보이지만, 실제 알칼라인 연료전지 구동 시 산소환원반응의 활성화 지점을 알 수 없어 성능을 높이는 데 한계가 있었다. KIST 연구진은 최근 연구를 통해 고가의 백금계 촉매를 대체할 수 있는 탄소계 촉매를 개발하여 연료전지 성능과 내구성을 향상시키는데 성공했다. 이번에 개발된 촉매는 코발트 재질의 코어에 그래핀 구조의 탄소 껍질을 갖는 코어-쉘(Core-Shell) 구조***로서 성능과 내구성은 물론 경제성까지 갖춘 매우 우수한 소재이다. KIST 연구팀은 코어-쉘 구조를 통해 반응면적을 극대화하여 상용 백금 촉매와 유사한 구조의 전극을 형성하였고, 이를 통해 우수한 연료전지 성능을 구현해 내었다. ***코어-쉘(Core-Shell) 구조 : 가운데에 위치한 ‘코어’ 물질을 ‘쉘’ 물질이 껍데기처럼 둘러싼 구조 KIST-충남대학교 공동연구진은 코발트 금속 위에 그래핀 껍질을 형성할 경우 그래핀 표면에 산소환원반응에 유리한 전자구조가 만들어진다는 사실을 밝혀내었다. 또한 연료전지 핵심인 전극소재를 기존 탄소계 소재보다 3배 이상 얇게 만들었음에도 불구하고 상용 백금계 소재와 유사한 성능을 구현함으로써 비백금계 촉매의 상용화시기를 앞당길 수 있을 것으로 기대된다. KIST 유성종 박사는 “최근 알칼라인 연료전지를 상용화하기 위한 핵심 소재 연구가 활발하게 진행되고 있는데, 이번 연구를 통해 아직까지 명확하게 밝혀지지 않은 산소환원반응의 활성점을 규명하고, 실제 연료전지 구동에 핵심이 되는 전극 소재의 새로운 개발 방향을 제시했다.”고 연구 의의를 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민) 지원으로 KIST 기관고유사업과 기후변화대응기술개발사업, 글로벌프론티어 멀티스케일에너지시스템 연구사업으로 수행되었다. 충남대학교와의 공동 연구로 진행된 이번 연구는 에너지 환경 분야 저명 학술지인 ‘Energy & Environmental Science’ (IF: 33.25, JCR 분야 상위 0.20%)의 최신호에 표지논문(Back Cover)으로 게재되었다. * (논문명) Work function-tailored graphene via transition metal encapsulation as a highly active and durable catalyst for the oxygen reduction reaction - (제 1저자) KIST 수소·연료전지연구단 장주혁 연구원(박사과정) 충남대학교 에너지과학기술대학원 Monika Sharma 박사 - (교신저자) KIST 수소·연료전지연구단 유성종 책임연구원 충남대학교 에너지과학기술대학원 정남기 교수 <그림설명> [그림 1] 탄소계 코어쉘 구조 나노 촉매 연구 개념 모식도 (a) 코어쉘 구조에 따른 그래핀 표면 일함수 변화 (b) 개발된 촉매의 3차원 구조 그래핀 쉘 형성에 따른 반응 면적 변화 [그림 2] (a) 코발트 코어-그래핀 쉘 구조 나노 촉매 합성 방법 및 실제 형상 (b) 알칼라인 연료전지 구동 시 성능 결과
값싸고 효율적인 차세대 연료전지 촉매기술 개발
- 백금 대체 가능한 탄소계 코어쉘 구조의 고활성/고내구성 나노 촉매 개발 - 연료전지 구동 시 고가의 백금 촉매와 유사한 성능, 향후 차세대 촉매 연구 기여 한국과학기술연구원(KIST, 원장 이병권) 수소·연료전지연구단 유성종 박사팀은 충남대학교 정남기 교수와의 공동연구를 통해, 최근 차세대 연료전지로 각광받고 있는 알칼라인 연료전지*의 고가 백금 촉매를 대체할 수 있는 저가형 촉매를 개발했다고 밝혔다. *알칼라인 연료전지 : 알칼라인 조건에서 수소와 산소의 화학적 에너지를 전기적 에너지로 변환하는 에너지 변환 장치로써, 에너지 발생 단계에서 물밖에 배출하지 않는 친환경 에너지원 연료전지의 전극에서는 산소환원반응**이 발생하는데, 이는 전지 효율을 결정하는데 가장 핵심이 되는 요소이다. 산소환원반응은 연료전지의 반응 속도를 느리게 하고, 전지의 효율을 높이기 어렵게 하는 주원인이다. 기존 알칼라인 연료전지는 이러한 산소환원반응에 전기화학적 활성이 우수한 백금 기반의 합금 나노 입자를 사용하는 것이 일반적이었다. 그러나 백금계열 촉매는 내구성이 부족하고 가격이 비싸다는 한계를 갖고 있었다. **산소환원반응 : 산소에 전자와 물을 반응시켜 수산화물을 생성하는 환원 반응. (O2 + 2H2O + 4e- → 4OH-) 최근 백금 소재를 대체하기 위해 탄소계 촉매 연구가 활발하게 진행 중이다. 현재까지 개발된 탄소계 소재 촉매들은 우수한 산소환원반응 활성을 보이지만, 실제 알칼라인 연료전지 구동 시 산소환원반응의 활성화 지점을 알 수 없어 성능을 높이는 데 한계가 있었다. KIST 연구진은 최근 연구를 통해 고가의 백금계 촉매를 대체할 수 있는 탄소계 촉매를 개발하여 연료전지 성능과 내구성을 향상시키는데 성공했다. 이번에 개발된 촉매는 코발트 재질의 코어에 그래핀 구조의 탄소 껍질을 갖는 코어-쉘(Core-Shell) 구조***로서 성능과 내구성은 물론 경제성까지 갖춘 매우 우수한 소재이다. KIST 연구팀은 코어-쉘 구조를 통해 반응면적을 극대화하여 상용 백금 촉매와 유사한 구조의 전극을 형성하였고, 이를 통해 우수한 연료전지 성능을 구현해 내었다. ***코어-쉘(Core-Shell) 구조 : 가운데에 위치한 ‘코어’ 물질을 ‘쉘’ 물질이 껍데기처럼 둘러싼 구조 KIST-충남대학교 공동연구진은 코발트 금속 위에 그래핀 껍질을 형성할 경우 그래핀 표면에 산소환원반응에 유리한 전자구조가 만들어진다는 사실을 밝혀내었다. 또한 연료전지 핵심인 전극소재를 기존 탄소계 소재보다 3배 이상 얇게 만들었음에도 불구하고 상용 백금계 소재와 유사한 성능을 구현함으로써 비백금계 촉매의 상용화시기를 앞당길 수 있을 것으로 기대된다. KIST 유성종 박사는 “최근 알칼라인 연료전지를 상용화하기 위한 핵심 소재 연구가 활발하게 진행되고 있는데, 이번 연구를 통해 아직까지 명확하게 밝혀지지 않은 산소환원반응의 활성점을 규명하고, 실제 연료전지 구동에 핵심이 되는 전극 소재의 새로운 개발 방향을 제시했다.”고 연구 의의를 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민) 지원으로 KIST 기관고유사업과 기후변화대응기술개발사업, 글로벌프론티어 멀티스케일에너지시스템 연구사업으로 수행되었다. 충남대학교와의 공동 연구로 진행된 이번 연구는 에너지 환경 분야 저명 학술지인 ‘Energy & Environmental Science’ (IF: 33.25, JCR 분야 상위 0.20%)의 최신호에 표지논문(Back Cover)으로 게재되었다. * (논문명) Work function-tailored graphene via transition metal encapsulation as a highly active and durable catalyst for the oxygen reduction reaction - (제 1저자) KIST 수소·연료전지연구단 장주혁 연구원(박사과정) 충남대학교 에너지과학기술대학원 Monika Sharma 박사 - (교신저자) KIST 수소·연료전지연구단 유성종 책임연구원 충남대학교 에너지과학기술대학원 정남기 교수 <그림설명> [그림 1] 탄소계 코어쉘 구조 나노 촉매 연구 개념 모식도 (a) 코어쉘 구조에 따른 그래핀 표면 일함수 변화 (b) 개발된 촉매의 3차원 구조 그래핀 쉘 형성에 따른 반응 면적 변화 [그림 2] (a) 코발트 코어-그래핀 쉘 구조 나노 촉매 합성 방법 및 실제 형상 (b) 알칼라인 연료전지 구동 시 성능 결과