Result
게시물 키워드"KIST"에 대한 4618개의 검색결과를 찾았습니다.
탄소섬유를 뛰어넘을 유일한 소재인 탄소나노튜브섬유, 상용화 가능한 제조 방법 개발
- 탄소섬유처럼 단단하고, 일반섬유처럼 유연하고, 금속만큼이나 전기전도도 우수 - 우주, 항공 분야 등 여러 분야에 활용될 수 있는 핵심 소재 기술 한국과학기술연구원(KIST, 원장 이병권) 탄소융합소재연구센터 김승민 박사, 기능성복합소재연구센터 정현수 박사, 서울대학교 재료공학부 박종래 교수 공동 연구팀은 기존 탄소나노튜브섬유 제조 방법들의 장점만을 융합하여, 매우 가벼우면서 높은 강도와 전기전도도를 갖는 탄소나노튜브섬유*를 빠르게 제조하는 방법을 개발했다고 밝혔다. *탄소나노튜브섬유(carbon nanotube fiber): 탄소만으로 구성된 원통형의 나노 구조체로 구성된 매크로 섬유 탄소나노튜브는 기존의 소재들이 갖고 있지 못한 우월한 물성을 보유하고 있는 것이 밝혀지며 탄소섬유를 뛰어넘을 수 있는 유일한 소재로 큰 기대를 받았다. 하지만 길이가 밀리미터 수준에도 미치지 못하는 수준으로 매우 짧아 실제 소재로 활용하지는 못하고 있다. 이를 극복하기 위해 볏짚을 꼬듯이 꼬아 섬유화시키는 연구가 진행되고 있다. 탄소나노튜브섬유를 제조하는 방법은 직접방사법**과 습식방사법***으로 분류가 된다. 전 세계 연구자들은 위 두 가지 방식 중 하나에 매진하여 연구하고 있으나 아직까지는 제작된 소재가 기존 소재보다 뛰어나지 못하거나 제조 공정이 복잡하여 상용화되지 못하고 있다. **직접방사법(direct spinning): 탄소나노튜브 합성부터 섬유화까지 한 번에 이루어지는 방식 ***습식방사법(wet spinning): 탄소나노튜브를 용매에 분산해 섬유화 하는 방식 KIST 연구진은 기존 두 가지 탄소나노튜브섬유 제조법의 장점만을 융합하여 새로운 제조 방법을 개발하였다. 직접방사법을 제조하는 방법은 공정이 비교적 간단하지만 만족할 만한 성능이 나오지 않아 후처리 공정이 필요했다. KIST 연구팀은 이 후처리공정에 습식방사법에서 사용되는 용매와 응고방식을 적용시켰다. 이 방법으로 제조된 탄소나노튜브섬유는 탄소섬유만큼이나 단단하고, 금속 소재에 버금가는 전기전도도를 보유하고 있으며, 일반 섬유와 같은 유연성을 갖고 있어 향후 우주, 항공 분야는 물론 웨어러블 전자 소자, 센서, 복합 소재 등 여러 응용 분야에 핵심 소재로 활용될 수 있을 것으로 기대된다. 특히 개발된 제조 방법은 탄소나노튜브의 합성에서부터 섬유화 및 고강도화를 위한 집적화 공정까지 수 분내에 이루어지는 방법으로써, 향후 탄소나노튜브섬유를 상용화하는 데 있어 핵심 기술로 활용될 것으로 보인다. KIST 탄소융합소재연구센터 김승민 박사는 “기존 산업에 사용되는 소재의 물성을 능가할 수 있는 탄소나노튜브섬유를 매우 효율적으로 제조할 수 있는 방법을 제시했다는 데 본 연구의 중요성이 있다”고 강조 하고, "향후 확보된 탄소나노튜브섬유 제조 기술을 더욱 발전시키는 데 매진하겠다"고 밝혔다. 이번 연구는 과학기술정보통신부(장관 유영민) 지원으로 KIST 오픈리서치프로그램을 통해 수행되었으며, 세계적 학술지인 ‘네이처 커뮤니케이션스’(Nature Communications, IF: 11.88, JCR 분야 상위 : 6.52%)에 최신호에 게재 되었다. 또한, 관련 기술은 한국(특허번호: 10-1972987), 미국(특허번호: 10246333)에 특허 등록되었다. *(논문명) ‘Direct spinning and densification method for high-performance carbon nanotube fibers’ - (제 1저자) 한국과학기술연구원 이재근 박사 - (제 1저자) 한국과학기술연구원 이동명 연구원 - (제 1저자) 서울대학교 정연수 박사과정 - (교신저자) 한국과학기술연구원 김승민 박사 - (교신저자) 한국과학기술연구원 정현수 박사 - (교신저자) 서울대학교 재료공학부 박종래 교수 <그림 설명> [그림 1] 본 연구에서 개발한 방법으로 처리 전(a, b, c), 처리 후 (d, e, f) 탄소나노튜브의 물성비교. (a, d) 비강도 값 비교를 보여주는 인장강도 그래프 (b, e) 섬유내 탄소나노튜브 정렬도 비교를 보여주는 편광라만 데이터 (c, f) 밀집도 비교를 보여주는 주사전자현미경 사진 [그림 2] (a) 본 연구에서 개발된 탄소나노튜브 섬유와 다른 종류의 탄소소재 기반 섬유 및 금속들과 비강도 및 비전기전도도 비교 그림 (b) 본 연구에서 개발된 방식으로 산업적용을 위해 고안한 직접방사법 연속 후처리 공정 모식도
탄소섬유를 뛰어넘을 유일한 소재인 탄소나노튜브섬유, 상용화 가능한 제조 방법 개발
- 탄소섬유처럼 단단하고, 일반섬유처럼 유연하고, 금속만큼이나 전기전도도 우수 - 우주, 항공 분야 등 여러 분야에 활용될 수 있는 핵심 소재 기술 한국과학기술연구원(KIST, 원장 이병권) 탄소융합소재연구센터 김승민 박사, 기능성복합소재연구센터 정현수 박사, 서울대학교 재료공학부 박종래 교수 공동 연구팀은 기존 탄소나노튜브섬유 제조 방법들의 장점만을 융합하여, 매우 가벼우면서 높은 강도와 전기전도도를 갖는 탄소나노튜브섬유*를 빠르게 제조하는 방법을 개발했다고 밝혔다. *탄소나노튜브섬유(carbon nanotube fiber): 탄소만으로 구성된 원통형의 나노 구조체로 구성된 매크로 섬유 탄소나노튜브는 기존의 소재들이 갖고 있지 못한 우월한 물성을 보유하고 있는 것이 밝혀지며 탄소섬유를 뛰어넘을 수 있는 유일한 소재로 큰 기대를 받았다. 하지만 길이가 밀리미터 수준에도 미치지 못하는 수준으로 매우 짧아 실제 소재로 활용하지는 못하고 있다. 이를 극복하기 위해 볏짚을 꼬듯이 꼬아 섬유화시키는 연구가 진행되고 있다. 탄소나노튜브섬유를 제조하는 방법은 직접방사법**과 습식방사법***으로 분류가 된다. 전 세계 연구자들은 위 두 가지 방식 중 하나에 매진하여 연구하고 있으나 아직까지는 제작된 소재가 기존 소재보다 뛰어나지 못하거나 제조 공정이 복잡하여 상용화되지 못하고 있다. **직접방사법(direct spinning): 탄소나노튜브 합성부터 섬유화까지 한 번에 이루어지는 방식 ***습식방사법(wet spinning): 탄소나노튜브를 용매에 분산해 섬유화 하는 방식 KIST 연구진은 기존 두 가지 탄소나노튜브섬유 제조법의 장점만을 융합하여 새로운 제조 방법을 개발하였다. 직접방사법을 제조하는 방법은 공정이 비교적 간단하지만 만족할 만한 성능이 나오지 않아 후처리 공정이 필요했다. KIST 연구팀은 이 후처리공정에 습식방사법에서 사용되는 용매와 응고방식을 적용시켰다. 이 방법으로 제조된 탄소나노튜브섬유는 탄소섬유만큼이나 단단하고, 금속 소재에 버금가는 전기전도도를 보유하고 있으며, 일반 섬유와 같은 유연성을 갖고 있어 향후 우주, 항공 분야는 물론 웨어러블 전자 소자, 센서, 복합 소재 등 여러 응용 분야에 핵심 소재로 활용될 수 있을 것으로 기대된다. 특히 개발된 제조 방법은 탄소나노튜브의 합성에서부터 섬유화 및 고강도화를 위한 집적화 공정까지 수 분내에 이루어지는 방법으로써, 향후 탄소나노튜브섬유를 상용화하는 데 있어 핵심 기술로 활용될 것으로 보인다. KIST 탄소융합소재연구센터 김승민 박사는 “기존 산업에 사용되는 소재의 물성을 능가할 수 있는 탄소나노튜브섬유를 매우 효율적으로 제조할 수 있는 방법을 제시했다는 데 본 연구의 중요성이 있다”고 강조 하고, "향후 확보된 탄소나노튜브섬유 제조 기술을 더욱 발전시키는 데 매진하겠다"고 밝혔다. 이번 연구는 과학기술정보통신부(장관 유영민) 지원으로 KIST 오픈리서치프로그램을 통해 수행되었으며, 세계적 학술지인 ‘네이처 커뮤니케이션스’(Nature Communications, IF: 11.88, JCR 분야 상위 : 6.52%)에 최신호에 게재 되었다. 또한, 관련 기술은 한국(특허번호: 10-1972987), 미국(특허번호: 10246333)에 특허 등록되었다. *(논문명) ‘Direct spinning and densification method for high-performance carbon nanotube fibers’ - (제 1저자) 한국과학기술연구원 이재근 박사 - (제 1저자) 한국과학기술연구원 이동명 연구원 - (제 1저자) 서울대학교 정연수 박사과정 - (교신저자) 한국과학기술연구원 김승민 박사 - (교신저자) 한국과학기술연구원 정현수 박사 - (교신저자) 서울대학교 재료공학부 박종래 교수 <그림 설명> [그림 1] 본 연구에서 개발한 방법으로 처리 전(a, b, c), 처리 후 (d, e, f) 탄소나노튜브의 물성비교. (a, d) 비강도 값 비교를 보여주는 인장강도 그래프 (b, e) 섬유내 탄소나노튜브 정렬도 비교를 보여주는 편광라만 데이터 (c, f) 밀집도 비교를 보여주는 주사전자현미경 사진 [그림 2] (a) 본 연구에서 개발된 탄소나노튜브 섬유와 다른 종류의 탄소소재 기반 섬유 및 금속들과 비강도 및 비전기전도도 비교 그림 (b) 본 연구에서 개발된 방식으로 산업적용을 위해 고안한 직접방사법 연속 후처리 공정 모식도
탄소섬유를 뛰어넘을 유일한 소재인 탄소나노튜브섬유, 상용화 가능한 제조 방법 개발
- 탄소섬유처럼 단단하고, 일반섬유처럼 유연하고, 금속만큼이나 전기전도도 우수 - 우주, 항공 분야 등 여러 분야에 활용될 수 있는 핵심 소재 기술 한국과학기술연구원(KIST, 원장 이병권) 탄소융합소재연구센터 김승민 박사, 기능성복합소재연구센터 정현수 박사, 서울대학교 재료공학부 박종래 교수 공동 연구팀은 기존 탄소나노튜브섬유 제조 방법들의 장점만을 융합하여, 매우 가벼우면서 높은 강도와 전기전도도를 갖는 탄소나노튜브섬유*를 빠르게 제조하는 방법을 개발했다고 밝혔다. *탄소나노튜브섬유(carbon nanotube fiber): 탄소만으로 구성된 원통형의 나노 구조체로 구성된 매크로 섬유 탄소나노튜브는 기존의 소재들이 갖고 있지 못한 우월한 물성을 보유하고 있는 것이 밝혀지며 탄소섬유를 뛰어넘을 수 있는 유일한 소재로 큰 기대를 받았다. 하지만 길이가 밀리미터 수준에도 미치지 못하는 수준으로 매우 짧아 실제 소재로 활용하지는 못하고 있다. 이를 극복하기 위해 볏짚을 꼬듯이 꼬아 섬유화시키는 연구가 진행되고 있다. 탄소나노튜브섬유를 제조하는 방법은 직접방사법**과 습식방사법***으로 분류가 된다. 전 세계 연구자들은 위 두 가지 방식 중 하나에 매진하여 연구하고 있으나 아직까지는 제작된 소재가 기존 소재보다 뛰어나지 못하거나 제조 공정이 복잡하여 상용화되지 못하고 있다. **직접방사법(direct spinning): 탄소나노튜브 합성부터 섬유화까지 한 번에 이루어지는 방식 ***습식방사법(wet spinning): 탄소나노튜브를 용매에 분산해 섬유화 하는 방식 KIST 연구진은 기존 두 가지 탄소나노튜브섬유 제조법의 장점만을 융합하여 새로운 제조 방법을 개발하였다. 직접방사법을 제조하는 방법은 공정이 비교적 간단하지만 만족할 만한 성능이 나오지 않아 후처리 공정이 필요했다. KIST 연구팀은 이 후처리공정에 습식방사법에서 사용되는 용매와 응고방식을 적용시켰다. 이 방법으로 제조된 탄소나노튜브섬유는 탄소섬유만큼이나 단단하고, 금속 소재에 버금가는 전기전도도를 보유하고 있으며, 일반 섬유와 같은 유연성을 갖고 있어 향후 우주, 항공 분야는 물론 웨어러블 전자 소자, 센서, 복합 소재 등 여러 응용 분야에 핵심 소재로 활용될 수 있을 것으로 기대된다. 특히 개발된 제조 방법은 탄소나노튜브의 합성에서부터 섬유화 및 고강도화를 위한 집적화 공정까지 수 분내에 이루어지는 방법으로써, 향후 탄소나노튜브섬유를 상용화하는 데 있어 핵심 기술로 활용될 것으로 보인다. KIST 탄소융합소재연구센터 김승민 박사는 “기존 산업에 사용되는 소재의 물성을 능가할 수 있는 탄소나노튜브섬유를 매우 효율적으로 제조할 수 있는 방법을 제시했다는 데 본 연구의 중요성이 있다”고 강조 하고, "향후 확보된 탄소나노튜브섬유 제조 기술을 더욱 발전시키는 데 매진하겠다"고 밝혔다. 이번 연구는 과학기술정보통신부(장관 유영민) 지원으로 KIST 오픈리서치프로그램을 통해 수행되었으며, 세계적 학술지인 ‘네이처 커뮤니케이션스’(Nature Communications, IF: 11.88, JCR 분야 상위 : 6.52%)에 최신호에 게재 되었다. 또한, 관련 기술은 한국(특허번호: 10-1972987), 미국(특허번호: 10246333)에 특허 등록되었다. *(논문명) ‘Direct spinning and densification method for high-performance carbon nanotube fibers’ - (제 1저자) 한국과학기술연구원 이재근 박사 - (제 1저자) 한국과학기술연구원 이동명 연구원 - (제 1저자) 서울대학교 정연수 박사과정 - (교신저자) 한국과학기술연구원 김승민 박사 - (교신저자) 한국과학기술연구원 정현수 박사 - (교신저자) 서울대학교 재료공학부 박종래 교수 <그림 설명> [그림 1] 본 연구에서 개발한 방법으로 처리 전(a, b, c), 처리 후 (d, e, f) 탄소나노튜브의 물성비교. (a, d) 비강도 값 비교를 보여주는 인장강도 그래프 (b, e) 섬유내 탄소나노튜브 정렬도 비교를 보여주는 편광라만 데이터 (c, f) 밀집도 비교를 보여주는 주사전자현미경 사진 [그림 2] (a) 본 연구에서 개발된 탄소나노튜브 섬유와 다른 종류의 탄소소재 기반 섬유 및 금속들과 비강도 및 비전기전도도 비교 그림 (b) 본 연구에서 개발된 방식으로 산업적용을 위해 고안한 직접방사법 연속 후처리 공정 모식도
나노와이어, 원하는 대로 정확하게 배치하고 정렬한다
- 방향성 오스트왈드 라이프닝 원리 이용, 나노와이어 상용화를 위한 숙제 해결 한국과학기술연구원(KIST, 원장 이병권) 광전소재연구단 최원준 박사 주도하에 울산과학기술원(UNIST, 총장 정무영) 백정민 교수, 이화여자대학교(이화여대, 총장 김혜숙) 김명화 교수 공동연구팀은 단결정 이산화바나듐(VO2) 나노와이어를 정확하게 배치 및 정렬하는 공정 기술을 개발했다고 밝혔다. 나노와이어는 단면의 지름이 나노미터 수준인 선 구조를 갖는 물질이다. 전기적으로 뛰어난 특성을 보이며, 표면적이 넓어서 태양전지나 센서에 사용할 경우 효율이 뛰어나다. 또한, 초소형 회로를 제작하는 데에도 쓰일 수 있다. 최근 광전, 에너지 변환, 가스·바이오 센서 등의 분야에 나노와이어를 결합하고 있으며, 세계를 변화시킬 10대 신기술 가운데 하나로 꼽히기도 한다. 하지만, 이러한 많은 장점이 있음에도 나노와이어는 아직 상용화되지 못했다. 나노미터 수준의 회로를 제작하기 위해서는 나노와이어를 정확하게 배치하고, 정렬할 수 있어야 하는데, 아직은 원하는 밀도나 위치를 제어할 수 있는 기술이 없기 때문이다. 나노와이어의 상용화를 위해서는 고도로 균일한 치수로 나노와이어를 생산할 수 있는 공정이 절실했다. KIST 연구진은 이러한 기술적 한계를 극복하기 위해 기존의 연구들을 분석하여 밀리미터 길이의 나노와이어를 정렬시키는 데에 성공하였다. 특정 패턴을 갖는 표면 위에서 나노물질(오산화바나듐, VO5)을 녹이면 액체 방울들로 분리되는데, 이때 특정 방향으로 나노 액체 방울들이 스스로 정렬되는 현상을 이용하여 고도로 균일하고, 정렬된 밀리미터 크기의 단결정 이산화바나듐(VO2) 나노와이어를 성공적으로 형성시켰다. 공동연구팀은 이 현상을 ‘방향성 오스트왈드 라이프닝*’이라고 정의하였다. *오스트왈드 라이프닝 : 사이즈가 큰 파티클의 에너지 상태가 사이즈가 작은 파티클 보다 낮아 사이즈가 작은 파티클은 액체상태로 녹아들어가는 반면 큰 파티클은 점점 더 크기가 성장한다는 이론 상온에서는 반도체인 이산화바나듐은 특정 온도가 되면 금속처럼 저항이 급격하게 감소하는 특성이 있다. KIST 연구팀은 이 특성을 이용하여 고도로 정렬된 밀리미터 크기의 이산화바나듐 나노와이어 변형 센서도 개발하였다. 제작된 변형 센서는 단결정 나노와이어의 특성으로 인해 높은 민감도와 빠른 반응 속도를 갖는다. KIST 최원준 박사는 “이번 성과는 이제까지 알기 어려웠던 산화바나듐 단결정 생성에 대한 이해를 높였을 뿐만 아니라 다양한 종류의 단결정 산화바나듐 나노와이어를 이용한 웨어러블 복합센서 제작에 중요한 계기가 될 것”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민) 지원으로 KIST-UNIST-Ulsan Center (KUUC) 과제와 한국연구재단 및 국토교통과학기술진흥원 사업으로 수행되었다. UNIST, 이화여대와의 공동연구로 진행된 이번 연구결과는 나노소재분야 국제 저널인 ‘Nano Letters’ (IF : 12.28, JCR 분야 상위 : 6.31%) 최신호에 게재되었다. * (논문명) Directional Ostwald Ripening for Producing Aligned Arrays of Nanowires - (제 1저자) 한국과학기술연구원 이혜진 박사((現)울산과학기술원) - (교신저자) 한국과학기술연구원 최원준 책임연구원 - (교신저자) 울산과학기술원 백정민 교수 - (교신저자) 이화여자대학교 김명화 교수 <그림설명> [그림 1] (A) 이산화바나듐 나노와이어 어레이 성장과정 모식도 및 주사전사현미경 이미지 (B) 플렉서블한 이산화바나듐 나노와이어 어레이 제작 방법 모식도 (상단), 플렉서블한 기판인 PDMS에 전사된 이산화바나듐 나노선 어레이에 전극 증착하여 변형센서 제작한 이미지와 변형율에 따른 저항변화율을 측정 (하단)
나노와이어, 원하는 대로 정확하게 배치하고 정렬한다
- 방향성 오스트왈드 라이프닝 원리 이용, 나노와이어 상용화를 위한 숙제 해결 한국과학기술연구원(KIST, 원장 이병권) 광전소재연구단 최원준 박사 주도하에 울산과학기술원(UNIST, 총장 정무영) 백정민 교수, 이화여자대학교(이화여대, 총장 김혜숙) 김명화 교수 공동연구팀은 단결정 이산화바나듐(VO2) 나노와이어를 정확하게 배치 및 정렬하는 공정 기술을 개발했다고 밝혔다. 나노와이어는 단면의 지름이 나노미터 수준인 선 구조를 갖는 물질이다. 전기적으로 뛰어난 특성을 보이며, 표면적이 넓어서 태양전지나 센서에 사용할 경우 효율이 뛰어나다. 또한, 초소형 회로를 제작하는 데에도 쓰일 수 있다. 최근 광전, 에너지 변환, 가스·바이오 센서 등의 분야에 나노와이어를 결합하고 있으며, 세계를 변화시킬 10대 신기술 가운데 하나로 꼽히기도 한다. 하지만, 이러한 많은 장점이 있음에도 나노와이어는 아직 상용화되지 못했다. 나노미터 수준의 회로를 제작하기 위해서는 나노와이어를 정확하게 배치하고, 정렬할 수 있어야 하는데, 아직은 원하는 밀도나 위치를 제어할 수 있는 기술이 없기 때문이다. 나노와이어의 상용화를 위해서는 고도로 균일한 치수로 나노와이어를 생산할 수 있는 공정이 절실했다. KIST 연구진은 이러한 기술적 한계를 극복하기 위해 기존의 연구들을 분석하여 밀리미터 길이의 나노와이어를 정렬시키는 데에 성공하였다. 특정 패턴을 갖는 표면 위에서 나노물질(오산화바나듐, VO5)을 녹이면 액체 방울들로 분리되는데, 이때 특정 방향으로 나노 액체 방울들이 스스로 정렬되는 현상을 이용하여 고도로 균일하고, 정렬된 밀리미터 크기의 단결정 이산화바나듐(VO2) 나노와이어를 성공적으로 형성시켰다. 공동연구팀은 이 현상을 ‘방향성 오스트왈드 라이프닝*’이라고 정의하였다. *오스트왈드 라이프닝 : 사이즈가 큰 파티클의 에너지 상태가 사이즈가 작은 파티클 보다 낮아 사이즈가 작은 파티클은 액체상태로 녹아들어가는 반면 큰 파티클은 점점 더 크기가 성장한다는 이론 상온에서는 반도체인 이산화바나듐은 특정 온도가 되면 금속처럼 저항이 급격하게 감소하는 특성이 있다. KIST 연구팀은 이 특성을 이용하여 고도로 정렬된 밀리미터 크기의 이산화바나듐 나노와이어 변형 센서도 개발하였다. 제작된 변형 센서는 단결정 나노와이어의 특성으로 인해 높은 민감도와 빠른 반응 속도를 갖는다. KIST 최원준 박사는 “이번 성과는 이제까지 알기 어려웠던 산화바나듐 단결정 생성에 대한 이해를 높였을 뿐만 아니라 다양한 종류의 단결정 산화바나듐 나노와이어를 이용한 웨어러블 복합센서 제작에 중요한 계기가 될 것”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민) 지원으로 KIST-UNIST-Ulsan Center (KUUC) 과제와 한국연구재단 및 국토교통과학기술진흥원 사업으로 수행되었다. UNIST, 이화여대와의 공동연구로 진행된 이번 연구결과는 나노소재분야 국제 저널인 ‘Nano Letters’ (IF : 12.28, JCR 분야 상위 : 6.31%) 최신호에 게재되었다. * (논문명) Directional Ostwald Ripening for Producing Aligned Arrays of Nanowires - (제 1저자) 한국과학기술연구원 이혜진 박사((現)울산과학기술원) - (교신저자) 한국과학기술연구원 최원준 책임연구원 - (교신저자) 울산과학기술원 백정민 교수 - (교신저자) 이화여자대학교 김명화 교수 <그림설명> [그림 1] (A) 이산화바나듐 나노와이어 어레이 성장과정 모식도 및 주사전사현미경 이미지 (B) 플렉서블한 이산화바나듐 나노와이어 어레이 제작 방법 모식도 (상단), 플렉서블한 기판인 PDMS에 전사된 이산화바나듐 나노선 어레이에 전극 증착하여 변형센서 제작한 이미지와 변형율에 따른 저항변화율을 측정 (하단)
나노와이어, 원하는 대로 정확하게 배치하고 정렬한다
- 방향성 오스트왈드 라이프닝 원리 이용, 나노와이어 상용화를 위한 숙제 해결 한국과학기술연구원(KIST, 원장 이병권) 광전소재연구단 최원준 박사 주도하에 울산과학기술원(UNIST, 총장 정무영) 백정민 교수, 이화여자대학교(이화여대, 총장 김혜숙) 김명화 교수 공동연구팀은 단결정 이산화바나듐(VO2) 나노와이어를 정확하게 배치 및 정렬하는 공정 기술을 개발했다고 밝혔다. 나노와이어는 단면의 지름이 나노미터 수준인 선 구조를 갖는 물질이다. 전기적으로 뛰어난 특성을 보이며, 표면적이 넓어서 태양전지나 센서에 사용할 경우 효율이 뛰어나다. 또한, 초소형 회로를 제작하는 데에도 쓰일 수 있다. 최근 광전, 에너지 변환, 가스·바이오 센서 등의 분야에 나노와이어를 결합하고 있으며, 세계를 변화시킬 10대 신기술 가운데 하나로 꼽히기도 한다. 하지만, 이러한 많은 장점이 있음에도 나노와이어는 아직 상용화되지 못했다. 나노미터 수준의 회로를 제작하기 위해서는 나노와이어를 정확하게 배치하고, 정렬할 수 있어야 하는데, 아직은 원하는 밀도나 위치를 제어할 수 있는 기술이 없기 때문이다. 나노와이어의 상용화를 위해서는 고도로 균일한 치수로 나노와이어를 생산할 수 있는 공정이 절실했다. KIST 연구진은 이러한 기술적 한계를 극복하기 위해 기존의 연구들을 분석하여 밀리미터 길이의 나노와이어를 정렬시키는 데에 성공하였다. 특정 패턴을 갖는 표면 위에서 나노물질(오산화바나듐, VO5)을 녹이면 액체 방울들로 분리되는데, 이때 특정 방향으로 나노 액체 방울들이 스스로 정렬되는 현상을 이용하여 고도로 균일하고, 정렬된 밀리미터 크기의 단결정 이산화바나듐(VO2) 나노와이어를 성공적으로 형성시켰다. 공동연구팀은 이 현상을 ‘방향성 오스트왈드 라이프닝*’이라고 정의하였다. *오스트왈드 라이프닝 : 사이즈가 큰 파티클의 에너지 상태가 사이즈가 작은 파티클 보다 낮아 사이즈가 작은 파티클은 액체상태로 녹아들어가는 반면 큰 파티클은 점점 더 크기가 성장한다는 이론 상온에서는 반도체인 이산화바나듐은 특정 온도가 되면 금속처럼 저항이 급격하게 감소하는 특성이 있다. KIST 연구팀은 이 특성을 이용하여 고도로 정렬된 밀리미터 크기의 이산화바나듐 나노와이어 변형 센서도 개발하였다. 제작된 변형 센서는 단결정 나노와이어의 특성으로 인해 높은 민감도와 빠른 반응 속도를 갖는다. KIST 최원준 박사는 “이번 성과는 이제까지 알기 어려웠던 산화바나듐 단결정 생성에 대한 이해를 높였을 뿐만 아니라 다양한 종류의 단결정 산화바나듐 나노와이어를 이용한 웨어러블 복합센서 제작에 중요한 계기가 될 것”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민) 지원으로 KIST-UNIST-Ulsan Center (KUUC) 과제와 한국연구재단 및 국토교통과학기술진흥원 사업으로 수행되었다. UNIST, 이화여대와의 공동연구로 진행된 이번 연구결과는 나노소재분야 국제 저널인 ‘Nano Letters’ (IF : 12.28, JCR 분야 상위 : 6.31%) 최신호에 게재되었다. * (논문명) Directional Ostwald Ripening for Producing Aligned Arrays of Nanowires - (제 1저자) 한국과학기술연구원 이혜진 박사((現)울산과학기술원) - (교신저자) 한국과학기술연구원 최원준 책임연구원 - (교신저자) 울산과학기술원 백정민 교수 - (교신저자) 이화여자대학교 김명화 교수 <그림설명> [그림 1] (A) 이산화바나듐 나노와이어 어레이 성장과정 모식도 및 주사전사현미경 이미지 (B) 플렉서블한 이산화바나듐 나노와이어 어레이 제작 방법 모식도 (상단), 플렉서블한 기판인 PDMS에 전사된 이산화바나듐 나노선 어레이에 전극 증착하여 변형센서 제작한 이미지와 변형율에 따른 저항변화율을 측정 (하단)
나노와이어, 원하는 대로 정확하게 배치하고 정렬한다
- 방향성 오스트왈드 라이프닝 원리 이용, 나노와이어 상용화를 위한 숙제 해결 한국과학기술연구원(KIST, 원장 이병권) 광전소재연구단 최원준 박사 주도하에 울산과학기술원(UNIST, 총장 정무영) 백정민 교수, 이화여자대학교(이화여대, 총장 김혜숙) 김명화 교수 공동연구팀은 단결정 이산화바나듐(VO2) 나노와이어를 정확하게 배치 및 정렬하는 공정 기술을 개발했다고 밝혔다. 나노와이어는 단면의 지름이 나노미터 수준인 선 구조를 갖는 물질이다. 전기적으로 뛰어난 특성을 보이며, 표면적이 넓어서 태양전지나 센서에 사용할 경우 효율이 뛰어나다. 또한, 초소형 회로를 제작하는 데에도 쓰일 수 있다. 최근 광전, 에너지 변환, 가스·바이오 센서 등의 분야에 나노와이어를 결합하고 있으며, 세계를 변화시킬 10대 신기술 가운데 하나로 꼽히기도 한다. 하지만, 이러한 많은 장점이 있음에도 나노와이어는 아직 상용화되지 못했다. 나노미터 수준의 회로를 제작하기 위해서는 나노와이어를 정확하게 배치하고, 정렬할 수 있어야 하는데, 아직은 원하는 밀도나 위치를 제어할 수 있는 기술이 없기 때문이다. 나노와이어의 상용화를 위해서는 고도로 균일한 치수로 나노와이어를 생산할 수 있는 공정이 절실했다. KIST 연구진은 이러한 기술적 한계를 극복하기 위해 기존의 연구들을 분석하여 밀리미터 길이의 나노와이어를 정렬시키는 데에 성공하였다. 특정 패턴을 갖는 표면 위에서 나노물질(오산화바나듐, VO5)을 녹이면 액체 방울들로 분리되는데, 이때 특정 방향으로 나노 액체 방울들이 스스로 정렬되는 현상을 이용하여 고도로 균일하고, 정렬된 밀리미터 크기의 단결정 이산화바나듐(VO2) 나노와이어를 성공적으로 형성시켰다. 공동연구팀은 이 현상을 ‘방향성 오스트왈드 라이프닝*’이라고 정의하였다. *오스트왈드 라이프닝 : 사이즈가 큰 파티클의 에너지 상태가 사이즈가 작은 파티클 보다 낮아 사이즈가 작은 파티클은 액체상태로 녹아들어가는 반면 큰 파티클은 점점 더 크기가 성장한다는 이론 상온에서는 반도체인 이산화바나듐은 특정 온도가 되면 금속처럼 저항이 급격하게 감소하는 특성이 있다. KIST 연구팀은 이 특성을 이용하여 고도로 정렬된 밀리미터 크기의 이산화바나듐 나노와이어 변형 센서도 개발하였다. 제작된 변형 센서는 단결정 나노와이어의 특성으로 인해 높은 민감도와 빠른 반응 속도를 갖는다. KIST 최원준 박사는 “이번 성과는 이제까지 알기 어려웠던 산화바나듐 단결정 생성에 대한 이해를 높였을 뿐만 아니라 다양한 종류의 단결정 산화바나듐 나노와이어를 이용한 웨어러블 복합센서 제작에 중요한 계기가 될 것”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민) 지원으로 KIST-UNIST-Ulsan Center (KUUC) 과제와 한국연구재단 및 국토교통과학기술진흥원 사업으로 수행되었다. UNIST, 이화여대와의 공동연구로 진행된 이번 연구결과는 나노소재분야 국제 저널인 ‘Nano Letters’ (IF : 12.28, JCR 분야 상위 : 6.31%) 최신호에 게재되었다. * (논문명) Directional Ostwald Ripening for Producing Aligned Arrays of Nanowires - (제 1저자) 한국과학기술연구원 이혜진 박사((現)울산과학기술원) - (교신저자) 한국과학기술연구원 최원준 책임연구원 - (교신저자) 울산과학기술원 백정민 교수 - (교신저자) 이화여자대학교 김명화 교수 <그림설명> [그림 1] (A) 이산화바나듐 나노와이어 어레이 성장과정 모식도 및 주사전사현미경 이미지 (B) 플렉서블한 이산화바나듐 나노와이어 어레이 제작 방법 모식도 (상단), 플렉서블한 기판인 PDMS에 전사된 이산화바나듐 나노선 어레이에 전극 증착하여 변형센서 제작한 이미지와 변형율에 따른 저항변화율을 측정 (하단)
나노와이어, 원하는 대로 정확하게 배치하고 정렬한다
- 방향성 오스트왈드 라이프닝 원리 이용, 나노와이어 상용화를 위한 숙제 해결 한국과학기술연구원(KIST, 원장 이병권) 광전소재연구단 최원준 박사 주도하에 울산과학기술원(UNIST, 총장 정무영) 백정민 교수, 이화여자대학교(이화여대, 총장 김혜숙) 김명화 교수 공동연구팀은 단결정 이산화바나듐(VO2) 나노와이어를 정확하게 배치 및 정렬하는 공정 기술을 개발했다고 밝혔다. 나노와이어는 단면의 지름이 나노미터 수준인 선 구조를 갖는 물질이다. 전기적으로 뛰어난 특성을 보이며, 표면적이 넓어서 태양전지나 센서에 사용할 경우 효율이 뛰어나다. 또한, 초소형 회로를 제작하는 데에도 쓰일 수 있다. 최근 광전, 에너지 변환, 가스·바이오 센서 등의 분야에 나노와이어를 결합하고 있으며, 세계를 변화시킬 10대 신기술 가운데 하나로 꼽히기도 한다. 하지만, 이러한 많은 장점이 있음에도 나노와이어는 아직 상용화되지 못했다. 나노미터 수준의 회로를 제작하기 위해서는 나노와이어를 정확하게 배치하고, 정렬할 수 있어야 하는데, 아직은 원하는 밀도나 위치를 제어할 수 있는 기술이 없기 때문이다. 나노와이어의 상용화를 위해서는 고도로 균일한 치수로 나노와이어를 생산할 수 있는 공정이 절실했다. KIST 연구진은 이러한 기술적 한계를 극복하기 위해 기존의 연구들을 분석하여 밀리미터 길이의 나노와이어를 정렬시키는 데에 성공하였다. 특정 패턴을 갖는 표면 위에서 나노물질(오산화바나듐, VO5)을 녹이면 액체 방울들로 분리되는데, 이때 특정 방향으로 나노 액체 방울들이 스스로 정렬되는 현상을 이용하여 고도로 균일하고, 정렬된 밀리미터 크기의 단결정 이산화바나듐(VO2) 나노와이어를 성공적으로 형성시켰다. 공동연구팀은 이 현상을 ‘방향성 오스트왈드 라이프닝*’이라고 정의하였다. *오스트왈드 라이프닝 : 사이즈가 큰 파티클의 에너지 상태가 사이즈가 작은 파티클 보다 낮아 사이즈가 작은 파티클은 액체상태로 녹아들어가는 반면 큰 파티클은 점점 더 크기가 성장한다는 이론 상온에서는 반도체인 이산화바나듐은 특정 온도가 되면 금속처럼 저항이 급격하게 감소하는 특성이 있다. KIST 연구팀은 이 특성을 이용하여 고도로 정렬된 밀리미터 크기의 이산화바나듐 나노와이어 변형 센서도 개발하였다. 제작된 변형 센서는 단결정 나노와이어의 특성으로 인해 높은 민감도와 빠른 반응 속도를 갖는다. KIST 최원준 박사는 “이번 성과는 이제까지 알기 어려웠던 산화바나듐 단결정 생성에 대한 이해를 높였을 뿐만 아니라 다양한 종류의 단결정 산화바나듐 나노와이어를 이용한 웨어러블 복합센서 제작에 중요한 계기가 될 것”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민) 지원으로 KIST-UNIST-Ulsan Center (KUUC) 과제와 한국연구재단 및 국토교통과학기술진흥원 사업으로 수행되었다. UNIST, 이화여대와의 공동연구로 진행된 이번 연구결과는 나노소재분야 국제 저널인 ‘Nano Letters’ (IF : 12.28, JCR 분야 상위 : 6.31%) 최신호에 게재되었다. * (논문명) Directional Ostwald Ripening for Producing Aligned Arrays of Nanowires - (제 1저자) 한국과학기술연구원 이혜진 박사((現)울산과학기술원) - (교신저자) 한국과학기술연구원 최원준 책임연구원 - (교신저자) 울산과학기술원 백정민 교수 - (교신저자) 이화여자대학교 김명화 교수 <그림설명> [그림 1] (A) 이산화바나듐 나노와이어 어레이 성장과정 모식도 및 주사전사현미경 이미지 (B) 플렉서블한 이산화바나듐 나노와이어 어레이 제작 방법 모식도 (상단), 플렉서블한 기판인 PDMS에 전사된 이산화바나듐 나노선 어레이에 전극 증착하여 변형센서 제작한 이미지와 변형율에 따른 저항변화율을 측정 (하단)
나노와이어, 원하는 대로 정확하게 배치하고 정렬한다
- 방향성 오스트왈드 라이프닝 원리 이용, 나노와이어 상용화를 위한 숙제 해결 한국과학기술연구원(KIST, 원장 이병권) 광전소재연구단 최원준 박사 주도하에 울산과학기술원(UNIST, 총장 정무영) 백정민 교수, 이화여자대학교(이화여대, 총장 김혜숙) 김명화 교수 공동연구팀은 단결정 이산화바나듐(VO2) 나노와이어를 정확하게 배치 및 정렬하는 공정 기술을 개발했다고 밝혔다. 나노와이어는 단면의 지름이 나노미터 수준인 선 구조를 갖는 물질이다. 전기적으로 뛰어난 특성을 보이며, 표면적이 넓어서 태양전지나 센서에 사용할 경우 효율이 뛰어나다. 또한, 초소형 회로를 제작하는 데에도 쓰일 수 있다. 최근 광전, 에너지 변환, 가스·바이오 센서 등의 분야에 나노와이어를 결합하고 있으며, 세계를 변화시킬 10대 신기술 가운데 하나로 꼽히기도 한다. 하지만, 이러한 많은 장점이 있음에도 나노와이어는 아직 상용화되지 못했다. 나노미터 수준의 회로를 제작하기 위해서는 나노와이어를 정확하게 배치하고, 정렬할 수 있어야 하는데, 아직은 원하는 밀도나 위치를 제어할 수 있는 기술이 없기 때문이다. 나노와이어의 상용화를 위해서는 고도로 균일한 치수로 나노와이어를 생산할 수 있는 공정이 절실했다. KIST 연구진은 이러한 기술적 한계를 극복하기 위해 기존의 연구들을 분석하여 밀리미터 길이의 나노와이어를 정렬시키는 데에 성공하였다. 특정 패턴을 갖는 표면 위에서 나노물질(오산화바나듐, VO5)을 녹이면 액체 방울들로 분리되는데, 이때 특정 방향으로 나노 액체 방울들이 스스로 정렬되는 현상을 이용하여 고도로 균일하고, 정렬된 밀리미터 크기의 단결정 이산화바나듐(VO2) 나노와이어를 성공적으로 형성시켰다. 공동연구팀은 이 현상을 ‘방향성 오스트왈드 라이프닝*’이라고 정의하였다. *오스트왈드 라이프닝 : 사이즈가 큰 파티클의 에너지 상태가 사이즈가 작은 파티클 보다 낮아 사이즈가 작은 파티클은 액체상태로 녹아들어가는 반면 큰 파티클은 점점 더 크기가 성장한다는 이론 상온에서는 반도체인 이산화바나듐은 특정 온도가 되면 금속처럼 저항이 급격하게 감소하는 특성이 있다. KIST 연구팀은 이 특성을 이용하여 고도로 정렬된 밀리미터 크기의 이산화바나듐 나노와이어 변형 센서도 개발하였다. 제작된 변형 센서는 단결정 나노와이어의 특성으로 인해 높은 민감도와 빠른 반응 속도를 갖는다. KIST 최원준 박사는 “이번 성과는 이제까지 알기 어려웠던 산화바나듐 단결정 생성에 대한 이해를 높였을 뿐만 아니라 다양한 종류의 단결정 산화바나듐 나노와이어를 이용한 웨어러블 복합센서 제작에 중요한 계기가 될 것”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민) 지원으로 KIST-UNIST-Ulsan Center (KUUC) 과제와 한국연구재단 및 국토교통과학기술진흥원 사업으로 수행되었다. UNIST, 이화여대와의 공동연구로 진행된 이번 연구결과는 나노소재분야 국제 저널인 ‘Nano Letters’ (IF : 12.28, JCR 분야 상위 : 6.31%) 최신호에 게재되었다. * (논문명) Directional Ostwald Ripening for Producing Aligned Arrays of Nanowires - (제 1저자) 한국과학기술연구원 이혜진 박사((現)울산과학기술원) - (교신저자) 한국과학기술연구원 최원준 책임연구원 - (교신저자) 울산과학기술원 백정민 교수 - (교신저자) 이화여자대학교 김명화 교수 <그림설명> [그림 1] (A) 이산화바나듐 나노와이어 어레이 성장과정 모식도 및 주사전사현미경 이미지 (B) 플렉서블한 이산화바나듐 나노와이어 어레이 제작 방법 모식도 (상단), 플렉서블한 기판인 PDMS에 전사된 이산화바나듐 나노선 어레이에 전극 증착하여 변형센서 제작한 이미지와 변형율에 따른 저항변화율을 측정 (하단)