Result
게시물 키워드"KIST"에 대한 4618개의 검색결과를 찾았습니다.
원하는 조직재생치료를 줄기세포 주사 한 방으로 콕!
- 하이드로젤로 줄기세포를 감싸 보호하고, 원하는 대로 분화시키는 기술 개발 한국과학기술연구원(KIST, 원장 이병권) 생체재료연구단 송수창 박사 연구팀은 하이드로젤*로 줄기세포를 잘 감싸서 보호하고, 또, 줄기세포를 원하는 대로 분화시킬 수 있는 줄기세포 주사 기술을 개발했다고 밝혔다. *하이드로젤(Hydrogel) : 용매가 물이거나 물이 기본 성분으로 들어 있는 젤리 모양의 물질 줄기세포는 세포분열을 통한 증식 및 분화과정을 거쳐 자기 자신을 복제하거나 다른 종류의 세포를 생산할 수 있는 특이한 능력을 갖추고 있다. 이러한 능력 덕분에 줄기세포는 세포치료제의 원료로써 난치성, 퇴행성 질환이나 장기재생 등과 관련이 깊은 재생의학 분야에서 많은 주목을 받고 있으며, 미래 의학을 이끌어 나갈 글로벌 차세대 성장 동력으로 부상되고 있다. 기존에 세포치료제로서 개발된 줄기세포는 정맥주사, 복강주사, 치료 부위 직접 주입 등으로 인체 내에 투여되기도 하는데, 이렇게 주입된 치료용 줄기세포들은 그대로 전신에 퍼져 원하는 질환 및 부위에 대한 치료의 효율성이 떨어지는 한계점이 있었다. 또한, 줄기세포들이 체내에 들어오게 되면 험난한 체내 환경과 맞서야 해서 생존율 역시 떨어질 수밖에 없었다. 게다가, 줄기세포를 치료제로 쓰려면 줄기세포를 원하는 대로 분화시켜야 하는데, 줄기세포와 같이 도입된 생체소재에 생리활성기능이 없거나 줄기세포에 단순히 분화 인자를 혼합하는 방법들을 사용할 경우에는 줄기세포를 이용한 조직 맞춤형 치료가 어려웠다. KIST 연구진은 이러한 한계점을 극복하고자 상온에서는 액상 형태였다가 체온에서 빠르게 딱딱한 젤 형태로 변하는 특성을 갖는 하이드로젤로 줄기세포를 감싼 후 주사제재로 사용하였다. 이렇게 개발한 주사의 하이드로젤에는 줄기세포를 원하는 대로 분화시킬 수 있는 생리활성물질들을 자유롭게 도입할 수 있었다. 마치 레고를 조립하는 듯한 방법을 사용하여 생리활성물질들은 하이드로젤에 도입하였는데, 하이드로젤과 다양한 레고 조각(생리활성물질)들의 양과 비율을 손쉽게 조절할 수 있었다. 이에 따라 줄기세포의 생존 및 원하는 분화에 이로운 최적화된 생체 내 환경을 조성하여 조직재생의 효과를 극대화 시켰다. 이를 통하여 체내에서 하이드로젤에 함유된 레고 조각의 조립(생리활성물질의 미세한 조절)에 따라 중간엽 줄기세포의 골, 연골, 지방조직의 재생을 원하는 대로 이루어 냈다. KIST 송수창 박사는 “질환의 종류 혹은 크기에 따라 생리활성물질 종류와 투여량의 변화를 줌으로써 환자 맞춤형 조직재생기술뿐만 아니라 향후 연구를 통하여 면역치료, 항암치료 등으로 적용 범위가 확장될 것”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민) 지원으로 KIST 주요사업으로 수행되었으며, ‘줄기세포 분화조절 기술’과 ‘줄기세포 연골조직 재생환경 최적화’의 연구 결과가 국제학술지인 ‘Biomaterials’(IF : 10.27, JCR 분야 상위 0.96%) 및 ‘Advanced Science’(IF : 15.80, JCR 분야 상위 4.61%) 최신호에 각각 2건이 게재되었다. * (논문명) 3D hydrogel stem cell niche controlled by host-guest interaction affects stem cell fate and survival rate (*Biomaterials) - (제1저자) 한국과학기술연구원 홍기현 연구원 (박사과정) - (교신저자) 한국과학기술연구원 송수창 책임연구원 * (논문명) FineTunable and Injectable 3D Hydrogel for OnDemand Stem Cell Niche (*Advanced Science) - (제1저자) 한국과학기술연구원 홍기현 연구원 (박사과정) - (교신저자) 한국과학기술연구원 송수창 책임연구원 <그림설명> [그림 1] 온도감응성 하이드로젤 및 생리활성물질 조절을 통한 맞춤형 조직재생 [그림 2] 생체 내 줄기세포 생리활성물질 종류 및 투여량 조절
꿈의 인공광합성 기술, 실용화에 한 걸음 더 가까이
- 고도로 정제된 실험실 조건이 아닌 실제 환경에서도 내구성이 뛰어난 촉매 개발 - 저가의 탄소 소재 촉매를 이용, 이산화탄소로부터 일산화탄소를 고효율 생산 한국과학기술연구원(KIST, 원장 이병권) 국가기반기술연구본부 민병권 박사 연구팀(황윤정?원다혜 박사)은 인공광합성 기술의 실용화에 한 걸음 더 가까이 가기 위해 고도로 정제된 실험실 환경에서 벗어나, 실제 환경에서도 장시간 동안 안정적으로 구동될 수 있는 전기화학 인공광합성 촉매를 개발했다고 밝혔다. 인공광합성 기술은 태양광을 이용하여 지구 온난화의 주범으로 알려진 이산화탄소를 부가가치를 갖는 물질로 전환하여 자원화할 수 있는 에너지·자원 분야의 꿈의 기술이라고 할 수 있다. 인공광합성 기술의 실현을 위해서는 화학적으로 매우 안정된 상태에 있는 이산화탄소를 손쉽게 변환하기 위한 높은 효율을 갖고, 그 효율을 안정적으로 유지할 수 있는 촉매가 필요하다. 이러한 효율과 내구성이 높은 이산화탄소 변환 전기화학 촉매를 개발하기 위해 전 세계적으로 수많은 연구가 진행되고 있다. 하지만 대부분 실험실 환경의 연구에 머무르고 있어 실제 적용까지는 먼 길이 남아 있다. 현재까지 대부분 연구자는 다양한 불순물로부터 생기는 변수를 최소화하기 위해 고도로 정제된 증류수를 사용하여 촉매를 개발해왔다. 하지만 이렇게 개발된 촉매들은 대량 생산을 위한 실제 환경에 적용될 경우 고도로 정제된 실험실 환경과 동등한 성능 및 안정성을 보이기는 힘들다. KIST 연구진은 이 같은 문제점을 극복하기 위해 이산화탄소 변환 전기화학 시스템의 가장 기본 구성 요소인 전해질을 초고순도의 증류수가 아닌, 일상생활에서 가장 쉽게 접할 수 있는 대표적 실용수인 수돗물로 바꾸었다. 또한, 은 촉매를 이용해 수돗물의 성분 중 ‘철’ 성분이 촉매의 성능을 가장 크게 저하한다는 것을 밝혔다. KIST 연구진은 실제 물(수돗물)을 사용하는 환경에서도 내구성을 높이기 위해 촉매를 철 성분으로부터 보호했다. 이를 위해 금속 불순물이 증착되어도 문제가 없도록 탄소나노튜브*에 질소 원소가 함유된 형태의 촉매를 개발하였다. 이 촉매는 고가의 상용 촉매인 은 촉매에 버금가는 이산화탄소 전환 성능을 보였고, 수돗물 환경에서도 20분 이내에 성능이 80% 이상 감소하는 은 촉매와 대비하여, 전례 없는 기록인 120시간 동안 안정적인 성능을 보였다. *탄소나노튜브섬유(carbon nanotube fiber): 탄소만으로 구성된 원통형의 나노 구조체로 구성된 매크로 섬유 KIST 민병권 본부장은 “본 연구는 일반적으로 실험실 연구 과정에서 쉽게 간과할 수 있는 부분이자 개발 기술들이 직면하게 될 실제 적용 환경에 대한 고찰로 시작되었다.”라고 말하며, “본 연구로 밝혀진 내구성 저해 요소와 탄소 기반 촉매의 장시간 내구성 확보 결과를 통해 인공광합성 기술의 실용화 가능성을 더욱 높일 것으로 기대한다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민)의 지원을 받아 KIST 주요사업으로 수행되었으며 연구 결과는 촉매 분야 최고 수준 과학전문지인「Applied Catalysis B: Environmental」 (IF : 14.23, JCR 분야 상위 0.96%) 최신호에 게재되었다. * (논문명) Achieving tolerant CO2 electro-reduction catalyst in real water matrix - (제 1저자) 한국과학기술연구원 원다혜 선임연구원 - (교신저자) 한국과학기술연구원 민병권 책임연구원 - (교신저자) 한국과학기술연구원 황윤정 책임연구원 <그림설명> [그림 1] (위-좌) 태양광과 연계한 전기화학적 이산화탄소 전환 시스템 계략도 (위-우) 개발된 질소 원소가 함유된 탄소나노튜브 촉매 모식도 (아래) 개발된 탄소 촉매의 수돗물 환경 내에서의 120시간 안정한 이산화탄소 전환 성능
꿈의 인공광합성 기술, 실용화에 한 걸음 더 가까이
- 고도로 정제된 실험실 조건이 아닌 실제 환경에서도 내구성이 뛰어난 촉매 개발 - 저가의 탄소 소재 촉매를 이용, 이산화탄소로부터 일산화탄소를 고효율 생산 한국과학기술연구원(KIST, 원장 이병권) 국가기반기술연구본부 민병권 박사 연구팀(황윤정?원다혜 박사)은 인공광합성 기술의 실용화에 한 걸음 더 가까이 가기 위해 고도로 정제된 실험실 환경에서 벗어나, 실제 환경에서도 장시간 동안 안정적으로 구동될 수 있는 전기화학 인공광합성 촉매를 개발했다고 밝혔다. 인공광합성 기술은 태양광을 이용하여 지구 온난화의 주범으로 알려진 이산화탄소를 부가가치를 갖는 물질로 전환하여 자원화할 수 있는 에너지·자원 분야의 꿈의 기술이라고 할 수 있다. 인공광합성 기술의 실현을 위해서는 화학적으로 매우 안정된 상태에 있는 이산화탄소를 손쉽게 변환하기 위한 높은 효율을 갖고, 그 효율을 안정적으로 유지할 수 있는 촉매가 필요하다. 이러한 효율과 내구성이 높은 이산화탄소 변환 전기화학 촉매를 개발하기 위해 전 세계적으로 수많은 연구가 진행되고 있다. 하지만 대부분 실험실 환경의 연구에 머무르고 있어 실제 적용까지는 먼 길이 남아 있다. 현재까지 대부분 연구자는 다양한 불순물로부터 생기는 변수를 최소화하기 위해 고도로 정제된 증류수를 사용하여 촉매를 개발해왔다. 하지만 이렇게 개발된 촉매들은 대량 생산을 위한 실제 환경에 적용될 경우 고도로 정제된 실험실 환경과 동등한 성능 및 안정성을 보이기는 힘들다. KIST 연구진은 이 같은 문제점을 극복하기 위해 이산화탄소 변환 전기화학 시스템의 가장 기본 구성 요소인 전해질을 초고순도의 증류수가 아닌, 일상생활에서 가장 쉽게 접할 수 있는 대표적 실용수인 수돗물로 바꾸었다. 또한, 은 촉매를 이용해 수돗물의 성분 중 ‘철’ 성분이 촉매의 성능을 가장 크게 저하한다는 것을 밝혔다. KIST 연구진은 실제 물(수돗물)을 사용하는 환경에서도 내구성을 높이기 위해 촉매를 철 성분으로부터 보호했다. 이를 위해 금속 불순물이 증착되어도 문제가 없도록 탄소나노튜브*에 질소 원소가 함유된 형태의 촉매를 개발하였다. 이 촉매는 고가의 상용 촉매인 은 촉매에 버금가는 이산화탄소 전환 성능을 보였고, 수돗물 환경에서도 20분 이내에 성능이 80% 이상 감소하는 은 촉매와 대비하여, 전례 없는 기록인 120시간 동안 안정적인 성능을 보였다. *탄소나노튜브섬유(carbon nanotube fiber): 탄소만으로 구성된 원통형의 나노 구조체로 구성된 매크로 섬유 KIST 민병권 본부장은 “본 연구는 일반적으로 실험실 연구 과정에서 쉽게 간과할 수 있는 부분이자 개발 기술들이 직면하게 될 실제 적용 환경에 대한 고찰로 시작되었다.”라고 말하며, “본 연구로 밝혀진 내구성 저해 요소와 탄소 기반 촉매의 장시간 내구성 확보 결과를 통해 인공광합성 기술의 실용화 가능성을 더욱 높일 것으로 기대한다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민)의 지원을 받아 KIST 주요사업으로 수행되었으며 연구 결과는 촉매 분야 최고 수준 과학전문지인「Applied Catalysis B: Environmental」 (IF : 14.23, JCR 분야 상위 0.96%) 최신호에 게재되었다. * (논문명) Achieving tolerant CO2 electro-reduction catalyst in real water matrix - (제 1저자) 한국과학기술연구원 원다혜 선임연구원 - (교신저자) 한국과학기술연구원 민병권 책임연구원 - (교신저자) 한국과학기술연구원 황윤정 책임연구원 <그림설명> [그림 1] (위-좌) 태양광과 연계한 전기화학적 이산화탄소 전환 시스템 계략도 (위-우) 개발된 질소 원소가 함유된 탄소나노튜브 촉매 모식도 (아래) 개발된 탄소 촉매의 수돗물 환경 내에서의 120시간 안정한 이산화탄소 전환 성능
꿈의 인공광합성 기술, 실용화에 한 걸음 더 가까이
- 고도로 정제된 실험실 조건이 아닌 실제 환경에서도 내구성이 뛰어난 촉매 개발 - 저가의 탄소 소재 촉매를 이용, 이산화탄소로부터 일산화탄소를 고효율 생산 한국과학기술연구원(KIST, 원장 이병권) 국가기반기술연구본부 민병권 박사 연구팀(황윤정?원다혜 박사)은 인공광합성 기술의 실용화에 한 걸음 더 가까이 가기 위해 고도로 정제된 실험실 환경에서 벗어나, 실제 환경에서도 장시간 동안 안정적으로 구동될 수 있는 전기화학 인공광합성 촉매를 개발했다고 밝혔다. 인공광합성 기술은 태양광을 이용하여 지구 온난화의 주범으로 알려진 이산화탄소를 부가가치를 갖는 물질로 전환하여 자원화할 수 있는 에너지·자원 분야의 꿈의 기술이라고 할 수 있다. 인공광합성 기술의 실현을 위해서는 화학적으로 매우 안정된 상태에 있는 이산화탄소를 손쉽게 변환하기 위한 높은 효율을 갖고, 그 효율을 안정적으로 유지할 수 있는 촉매가 필요하다. 이러한 효율과 내구성이 높은 이산화탄소 변환 전기화학 촉매를 개발하기 위해 전 세계적으로 수많은 연구가 진행되고 있다. 하지만 대부분 실험실 환경의 연구에 머무르고 있어 실제 적용까지는 먼 길이 남아 있다. 현재까지 대부분 연구자는 다양한 불순물로부터 생기는 변수를 최소화하기 위해 고도로 정제된 증류수를 사용하여 촉매를 개발해왔다. 하지만 이렇게 개발된 촉매들은 대량 생산을 위한 실제 환경에 적용될 경우 고도로 정제된 실험실 환경과 동등한 성능 및 안정성을 보이기는 힘들다. KIST 연구진은 이 같은 문제점을 극복하기 위해 이산화탄소 변환 전기화학 시스템의 가장 기본 구성 요소인 전해질을 초고순도의 증류수가 아닌, 일상생활에서 가장 쉽게 접할 수 있는 대표적 실용수인 수돗물로 바꾸었다. 또한, 은 촉매를 이용해 수돗물의 성분 중 ‘철’ 성분이 촉매의 성능을 가장 크게 저하한다는 것을 밝혔다. KIST 연구진은 실제 물(수돗물)을 사용하는 환경에서도 내구성을 높이기 위해 촉매를 철 성분으로부터 보호했다. 이를 위해 금속 불순물이 증착되어도 문제가 없도록 탄소나노튜브*에 질소 원소가 함유된 형태의 촉매를 개발하였다. 이 촉매는 고가의 상용 촉매인 은 촉매에 버금가는 이산화탄소 전환 성능을 보였고, 수돗물 환경에서도 20분 이내에 성능이 80% 이상 감소하는 은 촉매와 대비하여, 전례 없는 기록인 120시간 동안 안정적인 성능을 보였다. *탄소나노튜브섬유(carbon nanotube fiber): 탄소만으로 구성된 원통형의 나노 구조체로 구성된 매크로 섬유 KIST 민병권 본부장은 “본 연구는 일반적으로 실험실 연구 과정에서 쉽게 간과할 수 있는 부분이자 개발 기술들이 직면하게 될 실제 적용 환경에 대한 고찰로 시작되었다.”라고 말하며, “본 연구로 밝혀진 내구성 저해 요소와 탄소 기반 촉매의 장시간 내구성 확보 결과를 통해 인공광합성 기술의 실용화 가능성을 더욱 높일 것으로 기대한다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민)의 지원을 받아 KIST 주요사업으로 수행되었으며 연구 결과는 촉매 분야 최고 수준 과학전문지인「Applied Catalysis B: Environmental」 (IF : 14.23, JCR 분야 상위 0.96%) 최신호에 게재되었다. * (논문명) Achieving tolerant CO2 electro-reduction catalyst in real water matrix - (제 1저자) 한국과학기술연구원 원다혜 선임연구원 - (교신저자) 한국과학기술연구원 민병권 책임연구원 - (교신저자) 한국과학기술연구원 황윤정 책임연구원 <그림설명> [그림 1] (위-좌) 태양광과 연계한 전기화학적 이산화탄소 전환 시스템 계략도 (위-우) 개발된 질소 원소가 함유된 탄소나노튜브 촉매 모식도 (아래) 개발된 탄소 촉매의 수돗물 환경 내에서의 120시간 안정한 이산화탄소 전환 성능
꿈의 인공광합성 기술, 실용화에 한 걸음 더 가까이
- 고도로 정제된 실험실 조건이 아닌 실제 환경에서도 내구성이 뛰어난 촉매 개발 - 저가의 탄소 소재 촉매를 이용, 이산화탄소로부터 일산화탄소를 고효율 생산 한국과학기술연구원(KIST, 원장 이병권) 국가기반기술연구본부 민병권 박사 연구팀(황윤정?원다혜 박사)은 인공광합성 기술의 실용화에 한 걸음 더 가까이 가기 위해 고도로 정제된 실험실 환경에서 벗어나, 실제 환경에서도 장시간 동안 안정적으로 구동될 수 있는 전기화학 인공광합성 촉매를 개발했다고 밝혔다. 인공광합성 기술은 태양광을 이용하여 지구 온난화의 주범으로 알려진 이산화탄소를 부가가치를 갖는 물질로 전환하여 자원화할 수 있는 에너지·자원 분야의 꿈의 기술이라고 할 수 있다. 인공광합성 기술의 실현을 위해서는 화학적으로 매우 안정된 상태에 있는 이산화탄소를 손쉽게 변환하기 위한 높은 효율을 갖고, 그 효율을 안정적으로 유지할 수 있는 촉매가 필요하다. 이러한 효율과 내구성이 높은 이산화탄소 변환 전기화학 촉매를 개발하기 위해 전 세계적으로 수많은 연구가 진행되고 있다. 하지만 대부분 실험실 환경의 연구에 머무르고 있어 실제 적용까지는 먼 길이 남아 있다. 현재까지 대부분 연구자는 다양한 불순물로부터 생기는 변수를 최소화하기 위해 고도로 정제된 증류수를 사용하여 촉매를 개발해왔다. 하지만 이렇게 개발된 촉매들은 대량 생산을 위한 실제 환경에 적용될 경우 고도로 정제된 실험실 환경과 동등한 성능 및 안정성을 보이기는 힘들다. KIST 연구진은 이 같은 문제점을 극복하기 위해 이산화탄소 변환 전기화학 시스템의 가장 기본 구성 요소인 전해질을 초고순도의 증류수가 아닌, 일상생활에서 가장 쉽게 접할 수 있는 대표적 실용수인 수돗물로 바꾸었다. 또한, 은 촉매를 이용해 수돗물의 성분 중 ‘철’ 성분이 촉매의 성능을 가장 크게 저하한다는 것을 밝혔다. KIST 연구진은 실제 물(수돗물)을 사용하는 환경에서도 내구성을 높이기 위해 촉매를 철 성분으로부터 보호했다. 이를 위해 금속 불순물이 증착되어도 문제가 없도록 탄소나노튜브*에 질소 원소가 함유된 형태의 촉매를 개발하였다. 이 촉매는 고가의 상용 촉매인 은 촉매에 버금가는 이산화탄소 전환 성능을 보였고, 수돗물 환경에서도 20분 이내에 성능이 80% 이상 감소하는 은 촉매와 대비하여, 전례 없는 기록인 120시간 동안 안정적인 성능을 보였다. *탄소나노튜브섬유(carbon nanotube fiber): 탄소만으로 구성된 원통형의 나노 구조체로 구성된 매크로 섬유 KIST 민병권 본부장은 “본 연구는 일반적으로 실험실 연구 과정에서 쉽게 간과할 수 있는 부분이자 개발 기술들이 직면하게 될 실제 적용 환경에 대한 고찰로 시작되었다.”라고 말하며, “본 연구로 밝혀진 내구성 저해 요소와 탄소 기반 촉매의 장시간 내구성 확보 결과를 통해 인공광합성 기술의 실용화 가능성을 더욱 높일 것으로 기대한다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민)의 지원을 받아 KIST 주요사업으로 수행되었으며 연구 결과는 촉매 분야 최고 수준 과학전문지인「Applied Catalysis B: Environmental」 (IF : 14.23, JCR 분야 상위 0.96%) 최신호에 게재되었다. * (논문명) Achieving tolerant CO2 electro-reduction catalyst in real water matrix - (제 1저자) 한국과학기술연구원 원다혜 선임연구원 - (교신저자) 한국과학기술연구원 민병권 책임연구원 - (교신저자) 한국과학기술연구원 황윤정 책임연구원 <그림설명> [그림 1] (위-좌) 태양광과 연계한 전기화학적 이산화탄소 전환 시스템 계략도 (위-우) 개발된 질소 원소가 함유된 탄소나노튜브 촉매 모식도 (아래) 개발된 탄소 촉매의 수돗물 환경 내에서의 120시간 안정한 이산화탄소 전환 성능
꿈의 인공광합성 기술, 실용화에 한 걸음 더 가까이
- 고도로 정제된 실험실 조건이 아닌 실제 환경에서도 내구성이 뛰어난 촉매 개발 - 저가의 탄소 소재 촉매를 이용, 이산화탄소로부터 일산화탄소를 고효율 생산 한국과학기술연구원(KIST, 원장 이병권) 국가기반기술연구본부 민병권 박사 연구팀(황윤정?원다혜 박사)은 인공광합성 기술의 실용화에 한 걸음 더 가까이 가기 위해 고도로 정제된 실험실 환경에서 벗어나, 실제 환경에서도 장시간 동안 안정적으로 구동될 수 있는 전기화학 인공광합성 촉매를 개발했다고 밝혔다. 인공광합성 기술은 태양광을 이용하여 지구 온난화의 주범으로 알려진 이산화탄소를 부가가치를 갖는 물질로 전환하여 자원화할 수 있는 에너지·자원 분야의 꿈의 기술이라고 할 수 있다. 인공광합성 기술의 실현을 위해서는 화학적으로 매우 안정된 상태에 있는 이산화탄소를 손쉽게 변환하기 위한 높은 효율을 갖고, 그 효율을 안정적으로 유지할 수 있는 촉매가 필요하다. 이러한 효율과 내구성이 높은 이산화탄소 변환 전기화학 촉매를 개발하기 위해 전 세계적으로 수많은 연구가 진행되고 있다. 하지만 대부분 실험실 환경의 연구에 머무르고 있어 실제 적용까지는 먼 길이 남아 있다. 현재까지 대부분 연구자는 다양한 불순물로부터 생기는 변수를 최소화하기 위해 고도로 정제된 증류수를 사용하여 촉매를 개발해왔다. 하지만 이렇게 개발된 촉매들은 대량 생산을 위한 실제 환경에 적용될 경우 고도로 정제된 실험실 환경과 동등한 성능 및 안정성을 보이기는 힘들다. KIST 연구진은 이 같은 문제점을 극복하기 위해 이산화탄소 변환 전기화학 시스템의 가장 기본 구성 요소인 전해질을 초고순도의 증류수가 아닌, 일상생활에서 가장 쉽게 접할 수 있는 대표적 실용수인 수돗물로 바꾸었다. 또한, 은 촉매를 이용해 수돗물의 성분 중 ‘철’ 성분이 촉매의 성능을 가장 크게 저하한다는 것을 밝혔다. KIST 연구진은 실제 물(수돗물)을 사용하는 환경에서도 내구성을 높이기 위해 촉매를 철 성분으로부터 보호했다. 이를 위해 금속 불순물이 증착되어도 문제가 없도록 탄소나노튜브*에 질소 원소가 함유된 형태의 촉매를 개발하였다. 이 촉매는 고가의 상용 촉매인 은 촉매에 버금가는 이산화탄소 전환 성능을 보였고, 수돗물 환경에서도 20분 이내에 성능이 80% 이상 감소하는 은 촉매와 대비하여, 전례 없는 기록인 120시간 동안 안정적인 성능을 보였다. *탄소나노튜브섬유(carbon nanotube fiber): 탄소만으로 구성된 원통형의 나노 구조체로 구성된 매크로 섬유 KIST 민병권 본부장은 “본 연구는 일반적으로 실험실 연구 과정에서 쉽게 간과할 수 있는 부분이자 개발 기술들이 직면하게 될 실제 적용 환경에 대한 고찰로 시작되었다.”라고 말하며, “본 연구로 밝혀진 내구성 저해 요소와 탄소 기반 촉매의 장시간 내구성 확보 결과를 통해 인공광합성 기술의 실용화 가능성을 더욱 높일 것으로 기대한다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민)의 지원을 받아 KIST 주요사업으로 수행되었으며 연구 결과는 촉매 분야 최고 수준 과학전문지인「Applied Catalysis B: Environmental」 (IF : 14.23, JCR 분야 상위 0.96%) 최신호에 게재되었다. * (논문명) Achieving tolerant CO2 electro-reduction catalyst in real water matrix - (제 1저자) 한국과학기술연구원 원다혜 선임연구원 - (교신저자) 한국과학기술연구원 민병권 책임연구원 - (교신저자) 한국과학기술연구원 황윤정 책임연구원 <그림설명> [그림 1] (위-좌) 태양광과 연계한 전기화학적 이산화탄소 전환 시스템 계략도 (위-우) 개발된 질소 원소가 함유된 탄소나노튜브 촉매 모식도 (아래) 개발된 탄소 촉매의 수돗물 환경 내에서의 120시간 안정한 이산화탄소 전환 성능
꿈의 인공광합성 기술, 실용화에 한 걸음 더 가까이
- 고도로 정제된 실험실 조건이 아닌 실제 환경에서도 내구성이 뛰어난 촉매 개발 - 저가의 탄소 소재 촉매를 이용, 이산화탄소로부터 일산화탄소를 고효율 생산 한국과학기술연구원(KIST, 원장 이병권) 국가기반기술연구본부 민병권 박사 연구팀(황윤정?원다혜 박사)은 인공광합성 기술의 실용화에 한 걸음 더 가까이 가기 위해 고도로 정제된 실험실 환경에서 벗어나, 실제 환경에서도 장시간 동안 안정적으로 구동될 수 있는 전기화학 인공광합성 촉매를 개발했다고 밝혔다. 인공광합성 기술은 태양광을 이용하여 지구 온난화의 주범으로 알려진 이산화탄소를 부가가치를 갖는 물질로 전환하여 자원화할 수 있는 에너지·자원 분야의 꿈의 기술이라고 할 수 있다. 인공광합성 기술의 실현을 위해서는 화학적으로 매우 안정된 상태에 있는 이산화탄소를 손쉽게 변환하기 위한 높은 효율을 갖고, 그 효율을 안정적으로 유지할 수 있는 촉매가 필요하다. 이러한 효율과 내구성이 높은 이산화탄소 변환 전기화학 촉매를 개발하기 위해 전 세계적으로 수많은 연구가 진행되고 있다. 하지만 대부분 실험실 환경의 연구에 머무르고 있어 실제 적용까지는 먼 길이 남아 있다. 현재까지 대부분 연구자는 다양한 불순물로부터 생기는 변수를 최소화하기 위해 고도로 정제된 증류수를 사용하여 촉매를 개발해왔다. 하지만 이렇게 개발된 촉매들은 대량 생산을 위한 실제 환경에 적용될 경우 고도로 정제된 실험실 환경과 동등한 성능 및 안정성을 보이기는 힘들다. KIST 연구진은 이 같은 문제점을 극복하기 위해 이산화탄소 변환 전기화학 시스템의 가장 기본 구성 요소인 전해질을 초고순도의 증류수가 아닌, 일상생활에서 가장 쉽게 접할 수 있는 대표적 실용수인 수돗물로 바꾸었다. 또한, 은 촉매를 이용해 수돗물의 성분 중 ‘철’ 성분이 촉매의 성능을 가장 크게 저하한다는 것을 밝혔다. KIST 연구진은 실제 물(수돗물)을 사용하는 환경에서도 내구성을 높이기 위해 촉매를 철 성분으로부터 보호했다. 이를 위해 금속 불순물이 증착되어도 문제가 없도록 탄소나노튜브*에 질소 원소가 함유된 형태의 촉매를 개발하였다. 이 촉매는 고가의 상용 촉매인 은 촉매에 버금가는 이산화탄소 전환 성능을 보였고, 수돗물 환경에서도 20분 이내에 성능이 80% 이상 감소하는 은 촉매와 대비하여, 전례 없는 기록인 120시간 동안 안정적인 성능을 보였다. *탄소나노튜브섬유(carbon nanotube fiber): 탄소만으로 구성된 원통형의 나노 구조체로 구성된 매크로 섬유 KIST 민병권 본부장은 “본 연구는 일반적으로 실험실 연구 과정에서 쉽게 간과할 수 있는 부분이자 개발 기술들이 직면하게 될 실제 적용 환경에 대한 고찰로 시작되었다.”라고 말하며, “본 연구로 밝혀진 내구성 저해 요소와 탄소 기반 촉매의 장시간 내구성 확보 결과를 통해 인공광합성 기술의 실용화 가능성을 더욱 높일 것으로 기대한다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민)의 지원을 받아 KIST 주요사업으로 수행되었으며 연구 결과는 촉매 분야 최고 수준 과학전문지인「Applied Catalysis B: Environmental」 (IF : 14.23, JCR 분야 상위 0.96%) 최신호에 게재되었다. * (논문명) Achieving tolerant CO2 electro-reduction catalyst in real water matrix - (제 1저자) 한국과학기술연구원 원다혜 선임연구원 - (교신저자) 한국과학기술연구원 민병권 책임연구원 - (교신저자) 한국과학기술연구원 황윤정 책임연구원 <그림설명> [그림 1] (위-좌) 태양광과 연계한 전기화학적 이산화탄소 전환 시스템 계략도 (위-우) 개발된 질소 원소가 함유된 탄소나노튜브 촉매 모식도 (아래) 개발된 탄소 촉매의 수돗물 환경 내에서의 120시간 안정한 이산화탄소 전환 성능
꿈의 인공광합성 기술, 실용화에 한 걸음 더 가까이
- 고도로 정제된 실험실 조건이 아닌 실제 환경에서도 내구성이 뛰어난 촉매 개발 - 저가의 탄소 소재 촉매를 이용, 이산화탄소로부터 일산화탄소를 고효율 생산 한국과학기술연구원(KIST, 원장 이병권) 국가기반기술연구본부 민병권 박사 연구팀(황윤정?원다혜 박사)은 인공광합성 기술의 실용화에 한 걸음 더 가까이 가기 위해 고도로 정제된 실험실 환경에서 벗어나, 실제 환경에서도 장시간 동안 안정적으로 구동될 수 있는 전기화학 인공광합성 촉매를 개발했다고 밝혔다. 인공광합성 기술은 태양광을 이용하여 지구 온난화의 주범으로 알려진 이산화탄소를 부가가치를 갖는 물질로 전환하여 자원화할 수 있는 에너지·자원 분야의 꿈의 기술이라고 할 수 있다. 인공광합성 기술의 실현을 위해서는 화학적으로 매우 안정된 상태에 있는 이산화탄소를 손쉽게 변환하기 위한 높은 효율을 갖고, 그 효율을 안정적으로 유지할 수 있는 촉매가 필요하다. 이러한 효율과 내구성이 높은 이산화탄소 변환 전기화학 촉매를 개발하기 위해 전 세계적으로 수많은 연구가 진행되고 있다. 하지만 대부분 실험실 환경의 연구에 머무르고 있어 실제 적용까지는 먼 길이 남아 있다. 현재까지 대부분 연구자는 다양한 불순물로부터 생기는 변수를 최소화하기 위해 고도로 정제된 증류수를 사용하여 촉매를 개발해왔다. 하지만 이렇게 개발된 촉매들은 대량 생산을 위한 실제 환경에 적용될 경우 고도로 정제된 실험실 환경과 동등한 성능 및 안정성을 보이기는 힘들다. KIST 연구진은 이 같은 문제점을 극복하기 위해 이산화탄소 변환 전기화학 시스템의 가장 기본 구성 요소인 전해질을 초고순도의 증류수가 아닌, 일상생활에서 가장 쉽게 접할 수 있는 대표적 실용수인 수돗물로 바꾸었다. 또한, 은 촉매를 이용해 수돗물의 성분 중 ‘철’ 성분이 촉매의 성능을 가장 크게 저하한다는 것을 밝혔다. KIST 연구진은 실제 물(수돗물)을 사용하는 환경에서도 내구성을 높이기 위해 촉매를 철 성분으로부터 보호했다. 이를 위해 금속 불순물이 증착되어도 문제가 없도록 탄소나노튜브*에 질소 원소가 함유된 형태의 촉매를 개발하였다. 이 촉매는 고가의 상용 촉매인 은 촉매에 버금가는 이산화탄소 전환 성능을 보였고, 수돗물 환경에서도 20분 이내에 성능이 80% 이상 감소하는 은 촉매와 대비하여, 전례 없는 기록인 120시간 동안 안정적인 성능을 보였다. *탄소나노튜브섬유(carbon nanotube fiber): 탄소만으로 구성된 원통형의 나노 구조체로 구성된 매크로 섬유 KIST 민병권 본부장은 “본 연구는 일반적으로 실험실 연구 과정에서 쉽게 간과할 수 있는 부분이자 개발 기술들이 직면하게 될 실제 적용 환경에 대한 고찰로 시작되었다.”라고 말하며, “본 연구로 밝혀진 내구성 저해 요소와 탄소 기반 촉매의 장시간 내구성 확보 결과를 통해 인공광합성 기술의 실용화 가능성을 더욱 높일 것으로 기대한다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민)의 지원을 받아 KIST 주요사업으로 수행되었으며 연구 결과는 촉매 분야 최고 수준 과학전문지인「Applied Catalysis B: Environmental」 (IF : 14.23, JCR 분야 상위 0.96%) 최신호에 게재되었다. * (논문명) Achieving tolerant CO2 electro-reduction catalyst in real water matrix - (제 1저자) 한국과학기술연구원 원다혜 선임연구원 - (교신저자) 한국과학기술연구원 민병권 책임연구원 - (교신저자) 한국과학기술연구원 황윤정 책임연구원 <그림설명> [그림 1] (위-좌) 태양광과 연계한 전기화학적 이산화탄소 전환 시스템 계략도 (위-우) 개발된 질소 원소가 함유된 탄소나노튜브 촉매 모식도 (아래) 개발된 탄소 촉매의 수돗물 환경 내에서의 120시간 안정한 이산화탄소 전환 성능
꿈의 인공광합성 기술, 실용화에 한 걸음 더 가까이
- 고도로 정제된 실험실 조건이 아닌 실제 환경에서도 내구성이 뛰어난 촉매 개발 - 저가의 탄소 소재 촉매를 이용, 이산화탄소로부터 일산화탄소를 고효율 생산 한국과학기술연구원(KIST, 원장 이병권) 국가기반기술연구본부 민병권 박사 연구팀(황윤정?원다혜 박사)은 인공광합성 기술의 실용화에 한 걸음 더 가까이 가기 위해 고도로 정제된 실험실 환경에서 벗어나, 실제 환경에서도 장시간 동안 안정적으로 구동될 수 있는 전기화학 인공광합성 촉매를 개발했다고 밝혔다. 인공광합성 기술은 태양광을 이용하여 지구 온난화의 주범으로 알려진 이산화탄소를 부가가치를 갖는 물질로 전환하여 자원화할 수 있는 에너지·자원 분야의 꿈의 기술이라고 할 수 있다. 인공광합성 기술의 실현을 위해서는 화학적으로 매우 안정된 상태에 있는 이산화탄소를 손쉽게 변환하기 위한 높은 효율을 갖고, 그 효율을 안정적으로 유지할 수 있는 촉매가 필요하다. 이러한 효율과 내구성이 높은 이산화탄소 변환 전기화학 촉매를 개발하기 위해 전 세계적으로 수많은 연구가 진행되고 있다. 하지만 대부분 실험실 환경의 연구에 머무르고 있어 실제 적용까지는 먼 길이 남아 있다. 현재까지 대부분 연구자는 다양한 불순물로부터 생기는 변수를 최소화하기 위해 고도로 정제된 증류수를 사용하여 촉매를 개발해왔다. 하지만 이렇게 개발된 촉매들은 대량 생산을 위한 실제 환경에 적용될 경우 고도로 정제된 실험실 환경과 동등한 성능 및 안정성을 보이기는 힘들다. KIST 연구진은 이 같은 문제점을 극복하기 위해 이산화탄소 변환 전기화학 시스템의 가장 기본 구성 요소인 전해질을 초고순도의 증류수가 아닌, 일상생활에서 가장 쉽게 접할 수 있는 대표적 실용수인 수돗물로 바꾸었다. 또한, 은 촉매를 이용해 수돗물의 성분 중 ‘철’ 성분이 촉매의 성능을 가장 크게 저하한다는 것을 밝혔다. KIST 연구진은 실제 물(수돗물)을 사용하는 환경에서도 내구성을 높이기 위해 촉매를 철 성분으로부터 보호했다. 이를 위해 금속 불순물이 증착되어도 문제가 없도록 탄소나노튜브*에 질소 원소가 함유된 형태의 촉매를 개발하였다. 이 촉매는 고가의 상용 촉매인 은 촉매에 버금가는 이산화탄소 전환 성능을 보였고, 수돗물 환경에서도 20분 이내에 성능이 80% 이상 감소하는 은 촉매와 대비하여, 전례 없는 기록인 120시간 동안 안정적인 성능을 보였다. *탄소나노튜브섬유(carbon nanotube fiber): 탄소만으로 구성된 원통형의 나노 구조체로 구성된 매크로 섬유 KIST 민병권 본부장은 “본 연구는 일반적으로 실험실 연구 과정에서 쉽게 간과할 수 있는 부분이자 개발 기술들이 직면하게 될 실제 적용 환경에 대한 고찰로 시작되었다.”라고 말하며, “본 연구로 밝혀진 내구성 저해 요소와 탄소 기반 촉매의 장시간 내구성 확보 결과를 통해 인공광합성 기술의 실용화 가능성을 더욱 높일 것으로 기대한다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민)의 지원을 받아 KIST 주요사업으로 수행되었으며 연구 결과는 촉매 분야 최고 수준 과학전문지인「Applied Catalysis B: Environmental」 (IF : 14.23, JCR 분야 상위 0.96%) 최신호에 게재되었다. * (논문명) Achieving tolerant CO2 electro-reduction catalyst in real water matrix - (제 1저자) 한국과학기술연구원 원다혜 선임연구원 - (교신저자) 한국과학기술연구원 민병권 책임연구원 - (교신저자) 한국과학기술연구원 황윤정 책임연구원 <그림설명> [그림 1] (위-좌) 태양광과 연계한 전기화학적 이산화탄소 전환 시스템 계략도 (위-우) 개발된 질소 원소가 함유된 탄소나노튜브 촉매 모식도 (아래) 개발된 탄소 촉매의 수돗물 환경 내에서의 120시간 안정한 이산화탄소 전환 성능
꿈의 인공광합성 기술, 실용화에 한 걸음 더 가까이
- 고도로 정제된 실험실 조건이 아닌 실제 환경에서도 내구성이 뛰어난 촉매 개발 - 저가의 탄소 소재 촉매를 이용, 이산화탄소로부터 일산화탄소를 고효율 생산 한국과학기술연구원(KIST, 원장 이병권) 국가기반기술연구본부 민병권 박사 연구팀(황윤정?원다혜 박사)은 인공광합성 기술의 실용화에 한 걸음 더 가까이 가기 위해 고도로 정제된 실험실 환경에서 벗어나, 실제 환경에서도 장시간 동안 안정적으로 구동될 수 있는 전기화학 인공광합성 촉매를 개발했다고 밝혔다. 인공광합성 기술은 태양광을 이용하여 지구 온난화의 주범으로 알려진 이산화탄소를 부가가치를 갖는 물질로 전환하여 자원화할 수 있는 에너지·자원 분야의 꿈의 기술이라고 할 수 있다. 인공광합성 기술의 실현을 위해서는 화학적으로 매우 안정된 상태에 있는 이산화탄소를 손쉽게 변환하기 위한 높은 효율을 갖고, 그 효율을 안정적으로 유지할 수 있는 촉매가 필요하다. 이러한 효율과 내구성이 높은 이산화탄소 변환 전기화학 촉매를 개발하기 위해 전 세계적으로 수많은 연구가 진행되고 있다. 하지만 대부분 실험실 환경의 연구에 머무르고 있어 실제 적용까지는 먼 길이 남아 있다. 현재까지 대부분 연구자는 다양한 불순물로부터 생기는 변수를 최소화하기 위해 고도로 정제된 증류수를 사용하여 촉매를 개발해왔다. 하지만 이렇게 개발된 촉매들은 대량 생산을 위한 실제 환경에 적용될 경우 고도로 정제된 실험실 환경과 동등한 성능 및 안정성을 보이기는 힘들다. KIST 연구진은 이 같은 문제점을 극복하기 위해 이산화탄소 변환 전기화학 시스템의 가장 기본 구성 요소인 전해질을 초고순도의 증류수가 아닌, 일상생활에서 가장 쉽게 접할 수 있는 대표적 실용수인 수돗물로 바꾸었다. 또한, 은 촉매를 이용해 수돗물의 성분 중 ‘철’ 성분이 촉매의 성능을 가장 크게 저하한다는 것을 밝혔다. KIST 연구진은 실제 물(수돗물)을 사용하는 환경에서도 내구성을 높이기 위해 촉매를 철 성분으로부터 보호했다. 이를 위해 금속 불순물이 증착되어도 문제가 없도록 탄소나노튜브*에 질소 원소가 함유된 형태의 촉매를 개발하였다. 이 촉매는 고가의 상용 촉매인 은 촉매에 버금가는 이산화탄소 전환 성능을 보였고, 수돗물 환경에서도 20분 이내에 성능이 80% 이상 감소하는 은 촉매와 대비하여, 전례 없는 기록인 120시간 동안 안정적인 성능을 보였다. *탄소나노튜브섬유(carbon nanotube fiber): 탄소만으로 구성된 원통형의 나노 구조체로 구성된 매크로 섬유 KIST 민병권 본부장은 “본 연구는 일반적으로 실험실 연구 과정에서 쉽게 간과할 수 있는 부분이자 개발 기술들이 직면하게 될 실제 적용 환경에 대한 고찰로 시작되었다.”라고 말하며, “본 연구로 밝혀진 내구성 저해 요소와 탄소 기반 촉매의 장시간 내구성 확보 결과를 통해 인공광합성 기술의 실용화 가능성을 더욱 높일 것으로 기대한다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 유영민)의 지원을 받아 KIST 주요사업으로 수행되었으며 연구 결과는 촉매 분야 최고 수준 과학전문지인「Applied Catalysis B: Environmental」 (IF : 14.23, JCR 분야 상위 0.96%) 최신호에 게재되었다. * (논문명) Achieving tolerant CO2 electro-reduction catalyst in real water matrix - (제 1저자) 한국과학기술연구원 원다혜 선임연구원 - (교신저자) 한국과학기술연구원 민병권 책임연구원 - (교신저자) 한국과학기술연구원 황윤정 책임연구원 <그림설명> [그림 1] (위-좌) 태양광과 연계한 전기화학적 이산화탄소 전환 시스템 계략도 (위-우) 개발된 질소 원소가 함유된 탄소나노튜브 촉매 모식도 (아래) 개발된 탄소 촉매의 수돗물 환경 내에서의 120시간 안정한 이산화탄소 전환 성능