Result
게시물 키워드"KIST"에 대한 4618개의 검색결과를 찾았습니다.
신경회로 조절하는 초소형 다기능 브레인 칩 개발
- 생쥐 뇌에 약물전달해 기억회로 조절, 뇌기능 정밀 조절 응용 기대 KIST 조일주 박사 연구팀은 뇌의 여러 부위에서 발생하는 신경신호를 동시에 측정하는 한편 약물이나 빛을 전달할 수 있는 초소형 브레인 칩을 개발했다고 22일 밝혔다. 뇌에 대한 이해를 통해 뇌질환을 정복하거나 뇌기능을 증강시키기 위해서는 뇌에서 발생하는 신호를 세포 하나하나 수준에서 정밀하게 측정해야 한다. 때문에 뇌에 칩을 삽입하거나 비침습적 영상기술로 신경신호를 측정하려는 연구가 활발하다. 이는 감지한 신경신호를 통해 생각을 읽어 동작이나 언어표현 없이도 기계를 움직이고자 하는 뇌-기계 인터페이스 시스템(brain?machine interfaces, BMIs)의 핵심기술이기도 해 더욱 주목받는다. 브레인 칩을 통해 뇌에서 나오는 신호를 읽어 뇌 기능의 이상을 확인하는 것은 가능했으나 반대로 뇌에 신호를 보내는 양방향 소통은 아직 많이 연구되지 않았다. 뇌기능을 제어하기 위해 파킨슨씨병 환자 등을 대상으로 심부자극술을 위한 칩이 사용되고 있으나 뇌 회로의 정밀한 자극이나 뇌신호 변화의 동시 측정은 어려웠다. 연구진은 머리카락 굵기의 아주 얇은(40마이크로미터 두께) 초소형 브레인칩을 개발하고 이를 살아있는 생쥐의 뇌에 삽입하여 생쥐의 기억을 담당하는 해마 부위에 빛과 약물을 전달함으로써 뇌회로를 강화하거나 약화시킬 수 있음을 확인했다. 빛이나 약물 자극으로 기억을 담당하는 신경회로를 제어할 수 있음을 보여준 것이다. 또한 이 과정에서 해마 여러 부위에서 동시다발적으로 발생하는 광범위한 신경신호를 단일 세포수준에서 정밀하게 측정해냈다. 특히 이식시 조직손상이나 감염 가능성과 직결되는 요소인 소형화측면에서 눈에 띄는 성과를 얻었다. 약물이동채널과 광자극을 위한 광도파로(optical waveguide), 전기자극을 위한 전극, 뇌신호 측정전극을 모두 머리카락 굵기의 실리콘 구조체에 집적한 것이다. 기존 탐침 대비 6~8배 가까이 축소된 작은 크기의 탐침 4개와 32개의 전극이 내장되어 신경세포 하나하나로부터 신호를 읽어 들이고 약물이나 빛을 수 초 내 직접 전달했다. 이번 연구결과는 마취된 생쥐에서 이뤄진 것으로 연구진은 향후 깨어있는 생쥐를 대상으로 행동연구를 함께 추진할 계획이다. 조일주 박사는 “뇌기능을 정밀하게 조절할 수 있는 초소형 시스템을 개발한 것”이라며 “향후 기존 뇌회로 연구방법의 한계를 극복하고 뇌 기능 정밀조절 방법을 제시할 수 있을 것으로 기대된다”고 의의를 설명했다. <그림설명> 브레인칩을 구성하고 있는 다기능 탐침 어레이_(좌) 브레인 칩을 구성하고 있는 탐침 어레이의 확대 모습, (우) 광자극, 약물자극, 전기자극 및 신호 측정 기능이 집적된 초소형 브레인칩이 패키징된 모습 다기능 브레인칩의 개념도_4개의 탐침에서 광자극, 약물전달 등의 자극과 신경신호 측정을 통하여 신경세포간의 연결을 확인하는 모습을 보여주는 개념도
불소 첨가된 주석산화물 나노튜브 촉매 담지체 개발, 수소연료전지 내구성 높인다
- 연료전지 내 담지체의 전기화학적 열화 문제 해결, 성능과 안정성 향상 - 비탄소계 금속산화물 담지체의 도입을 통해 장기적 내구성 획기적 개선 최근 수소 전기차가 내연기관 자동차를 대체할 미래 친환경 자동차로서 주목받으며, 그 동력원인 수소연료전지의 성능과 내구성 향상을 위한 연구 또한 활발히 이뤄지고 있다. 한국과학기술연구원(KIST, 원장 이병권) 수소연료전지연구단 김진영 박사팀은 비탄소계 촉매 담지체를 활용하여 수소연료전지의 성능과 안정성을 획기적으로 높일 수 있는 기술을 개발했다. 수소연료전지에는 일반적으로 저온에서도 반응이 우수한 백금 나노촉매(2~5 나노미터(nm, 10억분의 1m) 크기)를 주로 사용한다. 담지체는 촉매의 반응성 및 선택성 등을 향상시키는 물질을 말하는데, 연료전지용 백금 촉매는 촉매 반응을 향상시키는 탄소 담지체에 분포되어 있다. 그러나 기존의 탄소 담지체들은 반복 사용 시 쉽게 부서져 연료전지 성능을 떨어뜨리는 한계를 가지고 있었다. 전기화학적 열화로 인해 담지체가 부서지는 문제를 해결하기 위해 KIST 연구팀은 탄소계가 아닌 비탄소계 소재에서 해답을 찾았다. 비탄소계 금속산화물 소재는 높은 전기 전도도와 전기화학적 처리에도 잘 부서지지 않는 우수한 내부식성을 보이는 것으로 알려져 있다. 비탄소계 금속산화물로 잘 알려진 주석산화물은 우수한 내부식성을 보인다. 하지만 전기전도성이 낮아 다양한 원소를 첨가하여 전기전도도를 높여야만 하고, 장기 구동 시에는 첨가된 원소들이 전기화학적으로 용출되는 현상이 발생하여 오히려 전기전도성이 감소하는 문제가 발생하였다. KIST 김진영 박사팀은 주석산화물에 다양한 양이온과 음이온 원소를 도핑하는 시험을 진행하였으며, 이 중 불소가 전기화학적으로 가장 안정되며 전기전도도도 우수한 최적의 원소임을 밝혀내었다. KIST 연구진은 불소가 첨가된 주석산화물을 나노튜브 형태의 담지체로 연료전지에 적용하여 가속 수명시험을 수행하였다. 시험 결과, 기존의 탄소 담지체 연료전지는 최대출력밀도가 70%나 감소한 반면, 불소가 도핑된 주석산화물 담지체의 경우에는 최대출력밀도가 7%만 감소하는 최고의 성능 특성을 보였다. KIST 수소연료전지연구단 김진영 박사는 “기존의 탄소계 담지체 소재의 내부식성 문제를 극복하기 위해 비탄소계 소재를 도입하여 우수한 결과를 낼 수 있었다”고 말하며, “우수한 성능의 불소 도핑 주석산화물은 향후 수소연료전지의 촉매 담지체 뿐만 아니라 수전해와 같이 촉매 담지체가 사용되기 어려운 분야에서도 이를 대체할 수 있는 소재로 활용 가능할 것”이라고 밝혔다. 본 연구는 과학기술정보통신부에서 지원하는 KIST 기관고유사업과 한국연구재단에서 지원하는 기후변화대응 기술개발사업으로 수행되었으며, 연구결과는 ‘Nano Energy’ (IF : 15.548,JCR 상위분야 4.452%) 최신호에 온라인 게재되었다. * (논문명) High-performance Corrosion-resistant Fluorine-doped Tin Oxide as an Alternative to Carbon Support in Electrodes for PEM Fuel Cells - (제1저자) 한국과학기술연구원 김종민 박사 (Post Doc.) 한국과학기술연구원 이여진 석박통합과정 - (교신저자) 한국과학기술연구원 김진영 책임연구원 <그림설명> 그림 1. 본 연구팀에서 개발한 불소가 도핑된 주석산화물나노튜브 촉매담지체 개발 모식도 그림 2. (상) 다양한 도펀트를 갖는 주석계산화물의 전기화학적 부식테스트 후 도펀트 용출량의 측정을 통해 가장 안정한 불소 도펀트 스크리닝 단계. (하) 고분자전해질연료전지에서 열화테스트 전 후의 탄소담지체 기반 상용백금촉매 (Pt/C)및 불소가 도핑된 주석산화물 기반 백금촉매 (Pt/FTO) 성능 비교 평가.
불소 첨가된 주석산화물 나노튜브 촉매 담지체 개발, 수소연료전지 내구성 높인다
- 연료전지 내 담지체의 전기화학적 열화 문제 해결, 성능과 안정성 향상 - 비탄소계 금속산화물 담지체의 도입을 통해 장기적 내구성 획기적 개선 최근 수소 전기차가 내연기관 자동차를 대체할 미래 친환경 자동차로서 주목받으며, 그 동력원인 수소연료전지의 성능과 내구성 향상을 위한 연구 또한 활발히 이뤄지고 있다. 한국과학기술연구원(KIST, 원장 이병권) 수소연료전지연구단 김진영 박사팀은 비탄소계 촉매 담지체를 활용하여 수소연료전지의 성능과 안정성을 획기적으로 높일 수 있는 기술을 개발했다. 수소연료전지에는 일반적으로 저온에서도 반응이 우수한 백금 나노촉매(2~5 나노미터(nm, 10억분의 1m) 크기)를 주로 사용한다. 담지체는 촉매의 반응성 및 선택성 등을 향상시키는 물질을 말하는데, 연료전지용 백금 촉매는 촉매 반응을 향상시키는 탄소 담지체에 분포되어 있다. 그러나 기존의 탄소 담지체들은 반복 사용 시 쉽게 부서져 연료전지 성능을 떨어뜨리는 한계를 가지고 있었다. 전기화학적 열화로 인해 담지체가 부서지는 문제를 해결하기 위해 KIST 연구팀은 탄소계가 아닌 비탄소계 소재에서 해답을 찾았다. 비탄소계 금속산화물 소재는 높은 전기 전도도와 전기화학적 처리에도 잘 부서지지 않는 우수한 내부식성을 보이는 것으로 알려져 있다. 비탄소계 금속산화물로 잘 알려진 주석산화물은 우수한 내부식성을 보인다. 하지만 전기전도성이 낮아 다양한 원소를 첨가하여 전기전도도를 높여야만 하고, 장기 구동 시에는 첨가된 원소들이 전기화학적으로 용출되는 현상이 발생하여 오히려 전기전도성이 감소하는 문제가 발생하였다. KIST 김진영 박사팀은 주석산화물에 다양한 양이온과 음이온 원소를 도핑하는 시험을 진행하였으며, 이 중 불소가 전기화학적으로 가장 안정되며 전기전도도도 우수한 최적의 원소임을 밝혀내었다. KIST 연구진은 불소가 첨가된 주석산화물을 나노튜브 형태의 담지체로 연료전지에 적용하여 가속 수명시험을 수행하였다. 시험 결과, 기존의 탄소 담지체 연료전지는 최대출력밀도가 70%나 감소한 반면, 불소가 도핑된 주석산화물 담지체의 경우에는 최대출력밀도가 7%만 감소하는 최고의 성능 특성을 보였다. KIST 수소연료전지연구단 김진영 박사는 “기존의 탄소계 담지체 소재의 내부식성 문제를 극복하기 위해 비탄소계 소재를 도입하여 우수한 결과를 낼 수 있었다”고 말하며, “우수한 성능의 불소 도핑 주석산화물은 향후 수소연료전지의 촉매 담지체 뿐만 아니라 수전해와 같이 촉매 담지체가 사용되기 어려운 분야에서도 이를 대체할 수 있는 소재로 활용 가능할 것”이라고 밝혔다. 본 연구는 과학기술정보통신부에서 지원하는 KIST 기관고유사업과 한국연구재단에서 지원하는 기후변화대응 기술개발사업으로 수행되었으며, 연구결과는 ‘Nano Energy’ (IF : 15.548,JCR 상위분야 4.452%) 최신호에 온라인 게재되었다. * (논문명) High-performance Corrosion-resistant Fluorine-doped Tin Oxide as an Alternative to Carbon Support in Electrodes for PEM Fuel Cells - (제1저자) 한국과학기술연구원 김종민 박사 (Post Doc.) 한국과학기술연구원 이여진 석박통합과정 - (교신저자) 한국과학기술연구원 김진영 책임연구원 <그림설명> 그림 1. 본 연구팀에서 개발한 불소가 도핑된 주석산화물나노튜브 촉매담지체 개발 모식도 그림 2. (상) 다양한 도펀트를 갖는 주석계산화물의 전기화학적 부식테스트 후 도펀트 용출량의 측정을 통해 가장 안정한 불소 도펀트 스크리닝 단계. (하) 고분자전해질연료전지에서 열화테스트 전 후의 탄소담지체 기반 상용백금촉매 (Pt/C)및 불소가 도핑된 주석산화물 기반 백금촉매 (Pt/FTO) 성능 비교 평가.
불소 첨가된 주석산화물 나노튜브 촉매 담지체 개발, 수소연료전지 내구성 높인다
- 연료전지 내 담지체의 전기화학적 열화 문제 해결, 성능과 안정성 향상 - 비탄소계 금속산화물 담지체의 도입을 통해 장기적 내구성 획기적 개선 최근 수소 전기차가 내연기관 자동차를 대체할 미래 친환경 자동차로서 주목받으며, 그 동력원인 수소연료전지의 성능과 내구성 향상을 위한 연구 또한 활발히 이뤄지고 있다. 한국과학기술연구원(KIST, 원장 이병권) 수소연료전지연구단 김진영 박사팀은 비탄소계 촉매 담지체를 활용하여 수소연료전지의 성능과 안정성을 획기적으로 높일 수 있는 기술을 개발했다. 수소연료전지에는 일반적으로 저온에서도 반응이 우수한 백금 나노촉매(2~5 나노미터(nm, 10억분의 1m) 크기)를 주로 사용한다. 담지체는 촉매의 반응성 및 선택성 등을 향상시키는 물질을 말하는데, 연료전지용 백금 촉매는 촉매 반응을 향상시키는 탄소 담지체에 분포되어 있다. 그러나 기존의 탄소 담지체들은 반복 사용 시 쉽게 부서져 연료전지 성능을 떨어뜨리는 한계를 가지고 있었다. 전기화학적 열화로 인해 담지체가 부서지는 문제를 해결하기 위해 KIST 연구팀은 탄소계가 아닌 비탄소계 소재에서 해답을 찾았다. 비탄소계 금속산화물 소재는 높은 전기 전도도와 전기화학적 처리에도 잘 부서지지 않는 우수한 내부식성을 보이는 것으로 알려져 있다. 비탄소계 금속산화물로 잘 알려진 주석산화물은 우수한 내부식성을 보인다. 하지만 전기전도성이 낮아 다양한 원소를 첨가하여 전기전도도를 높여야만 하고, 장기 구동 시에는 첨가된 원소들이 전기화학적으로 용출되는 현상이 발생하여 오히려 전기전도성이 감소하는 문제가 발생하였다. KIST 김진영 박사팀은 주석산화물에 다양한 양이온과 음이온 원소를 도핑하는 시험을 진행하였으며, 이 중 불소가 전기화학적으로 가장 안정되며 전기전도도도 우수한 최적의 원소임을 밝혀내었다. KIST 연구진은 불소가 첨가된 주석산화물을 나노튜브 형태의 담지체로 연료전지에 적용하여 가속 수명시험을 수행하였다. 시험 결과, 기존의 탄소 담지체 연료전지는 최대출력밀도가 70%나 감소한 반면, 불소가 도핑된 주석산화물 담지체의 경우에는 최대출력밀도가 7%만 감소하는 최고의 성능 특성을 보였다. KIST 수소연료전지연구단 김진영 박사는 “기존의 탄소계 담지체 소재의 내부식성 문제를 극복하기 위해 비탄소계 소재를 도입하여 우수한 결과를 낼 수 있었다”고 말하며, “우수한 성능의 불소 도핑 주석산화물은 향후 수소연료전지의 촉매 담지체 뿐만 아니라 수전해와 같이 촉매 담지체가 사용되기 어려운 분야에서도 이를 대체할 수 있는 소재로 활용 가능할 것”이라고 밝혔다. 본 연구는 과학기술정보통신부에서 지원하는 KIST 기관고유사업과 한국연구재단에서 지원하는 기후변화대응 기술개발사업으로 수행되었으며, 연구결과는 ‘Nano Energy’ (IF : 15.548,JCR 상위분야 4.452%) 최신호에 온라인 게재되었다. * (논문명) High-performance Corrosion-resistant Fluorine-doped Tin Oxide as an Alternative to Carbon Support in Electrodes for PEM Fuel Cells - (제1저자) 한국과학기술연구원 김종민 박사 (Post Doc.) 한국과학기술연구원 이여진 석박통합과정 - (교신저자) 한국과학기술연구원 김진영 책임연구원 <그림설명> 그림 1. 본 연구팀에서 개발한 불소가 도핑된 주석산화물나노튜브 촉매담지체 개발 모식도 그림 2. (상) 다양한 도펀트를 갖는 주석계산화물의 전기화학적 부식테스트 후 도펀트 용출량의 측정을 통해 가장 안정한 불소 도펀트 스크리닝 단계. (하) 고분자전해질연료전지에서 열화테스트 전 후의 탄소담지체 기반 상용백금촉매 (Pt/C)및 불소가 도핑된 주석산화물 기반 백금촉매 (Pt/FTO) 성능 비교 평가.
불소 첨가된 주석산화물 나노튜브 촉매 담지체 개발, 수소연료전지 내구성 높인다
- 연료전지 내 담지체의 전기화학적 열화 문제 해결, 성능과 안정성 향상 - 비탄소계 금속산화물 담지체의 도입을 통해 장기적 내구성 획기적 개선 최근 수소 전기차가 내연기관 자동차를 대체할 미래 친환경 자동차로서 주목받으며, 그 동력원인 수소연료전지의 성능과 내구성 향상을 위한 연구 또한 활발히 이뤄지고 있다. 한국과학기술연구원(KIST, 원장 이병권) 수소연료전지연구단 김진영 박사팀은 비탄소계 촉매 담지체를 활용하여 수소연료전지의 성능과 안정성을 획기적으로 높일 수 있는 기술을 개발했다. 수소연료전지에는 일반적으로 저온에서도 반응이 우수한 백금 나노촉매(2~5 나노미터(nm, 10억분의 1m) 크기)를 주로 사용한다. 담지체는 촉매의 반응성 및 선택성 등을 향상시키는 물질을 말하는데, 연료전지용 백금 촉매는 촉매 반응을 향상시키는 탄소 담지체에 분포되어 있다. 그러나 기존의 탄소 담지체들은 반복 사용 시 쉽게 부서져 연료전지 성능을 떨어뜨리는 한계를 가지고 있었다. 전기화학적 열화로 인해 담지체가 부서지는 문제를 해결하기 위해 KIST 연구팀은 탄소계가 아닌 비탄소계 소재에서 해답을 찾았다. 비탄소계 금속산화물 소재는 높은 전기 전도도와 전기화학적 처리에도 잘 부서지지 않는 우수한 내부식성을 보이는 것으로 알려져 있다. 비탄소계 금속산화물로 잘 알려진 주석산화물은 우수한 내부식성을 보인다. 하지만 전기전도성이 낮아 다양한 원소를 첨가하여 전기전도도를 높여야만 하고, 장기 구동 시에는 첨가된 원소들이 전기화학적으로 용출되는 현상이 발생하여 오히려 전기전도성이 감소하는 문제가 발생하였다. KIST 김진영 박사팀은 주석산화물에 다양한 양이온과 음이온 원소를 도핑하는 시험을 진행하였으며, 이 중 불소가 전기화학적으로 가장 안정되며 전기전도도도 우수한 최적의 원소임을 밝혀내었다. KIST 연구진은 불소가 첨가된 주석산화물을 나노튜브 형태의 담지체로 연료전지에 적용하여 가속 수명시험을 수행하였다. 시험 결과, 기존의 탄소 담지체 연료전지는 최대출력밀도가 70%나 감소한 반면, 불소가 도핑된 주석산화물 담지체의 경우에는 최대출력밀도가 7%만 감소하는 최고의 성능 특성을 보였다. KIST 수소연료전지연구단 김진영 박사는 “기존의 탄소계 담지체 소재의 내부식성 문제를 극복하기 위해 비탄소계 소재를 도입하여 우수한 결과를 낼 수 있었다”고 말하며, “우수한 성능의 불소 도핑 주석산화물은 향후 수소연료전지의 촉매 담지체 뿐만 아니라 수전해와 같이 촉매 담지체가 사용되기 어려운 분야에서도 이를 대체할 수 있는 소재로 활용 가능할 것”이라고 밝혔다. 본 연구는 과학기술정보통신부에서 지원하는 KIST 기관고유사업과 한국연구재단에서 지원하는 기후변화대응 기술개발사업으로 수행되었으며, 연구결과는 ‘Nano Energy’ (IF : 15.548,JCR 상위분야 4.452%) 최신호에 온라인 게재되었다. * (논문명) High-performance Corrosion-resistant Fluorine-doped Tin Oxide as an Alternative to Carbon Support in Electrodes for PEM Fuel Cells - (제1저자) 한국과학기술연구원 김종민 박사 (Post Doc.) 한국과학기술연구원 이여진 석박통합과정 - (교신저자) 한국과학기술연구원 김진영 책임연구원 <그림설명> 그림 1. 본 연구팀에서 개발한 불소가 도핑된 주석산화물나노튜브 촉매담지체 개발 모식도 그림 2. (상) 다양한 도펀트를 갖는 주석계산화물의 전기화학적 부식테스트 후 도펀트 용출량의 측정을 통해 가장 안정한 불소 도펀트 스크리닝 단계. (하) 고분자전해질연료전지에서 열화테스트 전 후의 탄소담지체 기반 상용백금촉매 (Pt/C)및 불소가 도핑된 주석산화물 기반 백금촉매 (Pt/FTO) 성능 비교 평가.
불소 첨가된 주석산화물 나노튜브 촉매 담지체 개발, 수소연료전지 내구성 높인다
- 연료전지 내 담지체의 전기화학적 열화 문제 해결, 성능과 안정성 향상 - 비탄소계 금속산화물 담지체의 도입을 통해 장기적 내구성 획기적 개선 최근 수소 전기차가 내연기관 자동차를 대체할 미래 친환경 자동차로서 주목받으며, 그 동력원인 수소연료전지의 성능과 내구성 향상을 위한 연구 또한 활발히 이뤄지고 있다. 한국과학기술연구원(KIST, 원장 이병권) 수소연료전지연구단 김진영 박사팀은 비탄소계 촉매 담지체를 활용하여 수소연료전지의 성능과 안정성을 획기적으로 높일 수 있는 기술을 개발했다. 수소연료전지에는 일반적으로 저온에서도 반응이 우수한 백금 나노촉매(2~5 나노미터(nm, 10억분의 1m) 크기)를 주로 사용한다. 담지체는 촉매의 반응성 및 선택성 등을 향상시키는 물질을 말하는데, 연료전지용 백금 촉매는 촉매 반응을 향상시키는 탄소 담지체에 분포되어 있다. 그러나 기존의 탄소 담지체들은 반복 사용 시 쉽게 부서져 연료전지 성능을 떨어뜨리는 한계를 가지고 있었다. 전기화학적 열화로 인해 담지체가 부서지는 문제를 해결하기 위해 KIST 연구팀은 탄소계가 아닌 비탄소계 소재에서 해답을 찾았다. 비탄소계 금속산화물 소재는 높은 전기 전도도와 전기화학적 처리에도 잘 부서지지 않는 우수한 내부식성을 보이는 것으로 알려져 있다. 비탄소계 금속산화물로 잘 알려진 주석산화물은 우수한 내부식성을 보인다. 하지만 전기전도성이 낮아 다양한 원소를 첨가하여 전기전도도를 높여야만 하고, 장기 구동 시에는 첨가된 원소들이 전기화학적으로 용출되는 현상이 발생하여 오히려 전기전도성이 감소하는 문제가 발생하였다. KIST 김진영 박사팀은 주석산화물에 다양한 양이온과 음이온 원소를 도핑하는 시험을 진행하였으며, 이 중 불소가 전기화학적으로 가장 안정되며 전기전도도도 우수한 최적의 원소임을 밝혀내었다. KIST 연구진은 불소가 첨가된 주석산화물을 나노튜브 형태의 담지체로 연료전지에 적용하여 가속 수명시험을 수행하였다. 시험 결과, 기존의 탄소 담지체 연료전지는 최대출력밀도가 70%나 감소한 반면, 불소가 도핑된 주석산화물 담지체의 경우에는 최대출력밀도가 7%만 감소하는 최고의 성능 특성을 보였다. KIST 수소연료전지연구단 김진영 박사는 “기존의 탄소계 담지체 소재의 내부식성 문제를 극복하기 위해 비탄소계 소재를 도입하여 우수한 결과를 낼 수 있었다”고 말하며, “우수한 성능의 불소 도핑 주석산화물은 향후 수소연료전지의 촉매 담지체 뿐만 아니라 수전해와 같이 촉매 담지체가 사용되기 어려운 분야에서도 이를 대체할 수 있는 소재로 활용 가능할 것”이라고 밝혔다. 본 연구는 과학기술정보통신부에서 지원하는 KIST 기관고유사업과 한국연구재단에서 지원하는 기후변화대응 기술개발사업으로 수행되었으며, 연구결과는 ‘Nano Energy’ (IF : 15.548,JCR 상위분야 4.452%) 최신호에 온라인 게재되었다. * (논문명) High-performance Corrosion-resistant Fluorine-doped Tin Oxide as an Alternative to Carbon Support in Electrodes for PEM Fuel Cells - (제1저자) 한국과학기술연구원 김종민 박사 (Post Doc.) 한국과학기술연구원 이여진 석박통합과정 - (교신저자) 한국과학기술연구원 김진영 책임연구원 <그림설명> 그림 1. 본 연구팀에서 개발한 불소가 도핑된 주석산화물나노튜브 촉매담지체 개발 모식도 그림 2. (상) 다양한 도펀트를 갖는 주석계산화물의 전기화학적 부식테스트 후 도펀트 용출량의 측정을 통해 가장 안정한 불소 도펀트 스크리닝 단계. (하) 고분자전해질연료전지에서 열화테스트 전 후의 탄소담지체 기반 상용백금촉매 (Pt/C)및 불소가 도핑된 주석산화물 기반 백금촉매 (Pt/FTO) 성능 비교 평가.
불소 첨가된 주석산화물 나노튜브 촉매 담지체 개발, 수소연료전지 내구성 높인다
- 연료전지 내 담지체의 전기화학적 열화 문제 해결, 성능과 안정성 향상 - 비탄소계 금속산화물 담지체의 도입을 통해 장기적 내구성 획기적 개선 최근 수소 전기차가 내연기관 자동차를 대체할 미래 친환경 자동차로서 주목받으며, 그 동력원인 수소연료전지의 성능과 내구성 향상을 위한 연구 또한 활발히 이뤄지고 있다. 한국과학기술연구원(KIST, 원장 이병권) 수소연료전지연구단 김진영 박사팀은 비탄소계 촉매 담지체를 활용하여 수소연료전지의 성능과 안정성을 획기적으로 높일 수 있는 기술을 개발했다. 수소연료전지에는 일반적으로 저온에서도 반응이 우수한 백금 나노촉매(2~5 나노미터(nm, 10억분의 1m) 크기)를 주로 사용한다. 담지체는 촉매의 반응성 및 선택성 등을 향상시키는 물질을 말하는데, 연료전지용 백금 촉매는 촉매 반응을 향상시키는 탄소 담지체에 분포되어 있다. 그러나 기존의 탄소 담지체들은 반복 사용 시 쉽게 부서져 연료전지 성능을 떨어뜨리는 한계를 가지고 있었다. 전기화학적 열화로 인해 담지체가 부서지는 문제를 해결하기 위해 KIST 연구팀은 탄소계가 아닌 비탄소계 소재에서 해답을 찾았다. 비탄소계 금속산화물 소재는 높은 전기 전도도와 전기화학적 처리에도 잘 부서지지 않는 우수한 내부식성을 보이는 것으로 알려져 있다. 비탄소계 금속산화물로 잘 알려진 주석산화물은 우수한 내부식성을 보인다. 하지만 전기전도성이 낮아 다양한 원소를 첨가하여 전기전도도를 높여야만 하고, 장기 구동 시에는 첨가된 원소들이 전기화학적으로 용출되는 현상이 발생하여 오히려 전기전도성이 감소하는 문제가 발생하였다. KIST 김진영 박사팀은 주석산화물에 다양한 양이온과 음이온 원소를 도핑하는 시험을 진행하였으며, 이 중 불소가 전기화학적으로 가장 안정되며 전기전도도도 우수한 최적의 원소임을 밝혀내었다. KIST 연구진은 불소가 첨가된 주석산화물을 나노튜브 형태의 담지체로 연료전지에 적용하여 가속 수명시험을 수행하였다. 시험 결과, 기존의 탄소 담지체 연료전지는 최대출력밀도가 70%나 감소한 반면, 불소가 도핑된 주석산화물 담지체의 경우에는 최대출력밀도가 7%만 감소하는 최고의 성능 특성을 보였다. KIST 수소연료전지연구단 김진영 박사는 “기존의 탄소계 담지체 소재의 내부식성 문제를 극복하기 위해 비탄소계 소재를 도입하여 우수한 결과를 낼 수 있었다”고 말하며, “우수한 성능의 불소 도핑 주석산화물은 향후 수소연료전지의 촉매 담지체 뿐만 아니라 수전해와 같이 촉매 담지체가 사용되기 어려운 분야에서도 이를 대체할 수 있는 소재로 활용 가능할 것”이라고 밝혔다. 본 연구는 과학기술정보통신부에서 지원하는 KIST 기관고유사업과 한국연구재단에서 지원하는 기후변화대응 기술개발사업으로 수행되었으며, 연구결과는 ‘Nano Energy’ (IF : 15.548,JCR 상위분야 4.452%) 최신호에 온라인 게재되었다. * (논문명) High-performance Corrosion-resistant Fluorine-doped Tin Oxide as an Alternative to Carbon Support in Electrodes for PEM Fuel Cells - (제1저자) 한국과학기술연구원 김종민 박사 (Post Doc.) 한국과학기술연구원 이여진 석박통합과정 - (교신저자) 한국과학기술연구원 김진영 책임연구원 <그림설명> 그림 1. 본 연구팀에서 개발한 불소가 도핑된 주석산화물나노튜브 촉매담지체 개발 모식도 그림 2. (상) 다양한 도펀트를 갖는 주석계산화물의 전기화학적 부식테스트 후 도펀트 용출량의 측정을 통해 가장 안정한 불소 도펀트 스크리닝 단계. (하) 고분자전해질연료전지에서 열화테스트 전 후의 탄소담지체 기반 상용백금촉매 (Pt/C)및 불소가 도핑된 주석산화물 기반 백금촉매 (Pt/FTO) 성능 비교 평가.
불소 첨가된 주석산화물 나노튜브 촉매 담지체 개발, 수소연료전지 내구성 높인다
- 연료전지 내 담지체의 전기화학적 열화 문제 해결, 성능과 안정성 향상 - 비탄소계 금속산화물 담지체의 도입을 통해 장기적 내구성 획기적 개선 최근 수소 전기차가 내연기관 자동차를 대체할 미래 친환경 자동차로서 주목받으며, 그 동력원인 수소연료전지의 성능과 내구성 향상을 위한 연구 또한 활발히 이뤄지고 있다. 한국과학기술연구원(KIST, 원장 이병권) 수소연료전지연구단 김진영 박사팀은 비탄소계 촉매 담지체를 활용하여 수소연료전지의 성능과 안정성을 획기적으로 높일 수 있는 기술을 개발했다. 수소연료전지에는 일반적으로 저온에서도 반응이 우수한 백금 나노촉매(2~5 나노미터(nm, 10억분의 1m) 크기)를 주로 사용한다. 담지체는 촉매의 반응성 및 선택성 등을 향상시키는 물질을 말하는데, 연료전지용 백금 촉매는 촉매 반응을 향상시키는 탄소 담지체에 분포되어 있다. 그러나 기존의 탄소 담지체들은 반복 사용 시 쉽게 부서져 연료전지 성능을 떨어뜨리는 한계를 가지고 있었다. 전기화학적 열화로 인해 담지체가 부서지는 문제를 해결하기 위해 KIST 연구팀은 탄소계가 아닌 비탄소계 소재에서 해답을 찾았다. 비탄소계 금속산화물 소재는 높은 전기 전도도와 전기화학적 처리에도 잘 부서지지 않는 우수한 내부식성을 보이는 것으로 알려져 있다. 비탄소계 금속산화물로 잘 알려진 주석산화물은 우수한 내부식성을 보인다. 하지만 전기전도성이 낮아 다양한 원소를 첨가하여 전기전도도를 높여야만 하고, 장기 구동 시에는 첨가된 원소들이 전기화학적으로 용출되는 현상이 발생하여 오히려 전기전도성이 감소하는 문제가 발생하였다. KIST 김진영 박사팀은 주석산화물에 다양한 양이온과 음이온 원소를 도핑하는 시험을 진행하였으며, 이 중 불소가 전기화학적으로 가장 안정되며 전기전도도도 우수한 최적의 원소임을 밝혀내었다. KIST 연구진은 불소가 첨가된 주석산화물을 나노튜브 형태의 담지체로 연료전지에 적용하여 가속 수명시험을 수행하였다. 시험 결과, 기존의 탄소 담지체 연료전지는 최대출력밀도가 70%나 감소한 반면, 불소가 도핑된 주석산화물 담지체의 경우에는 최대출력밀도가 7%만 감소하는 최고의 성능 특성을 보였다. KIST 수소연료전지연구단 김진영 박사는 “기존의 탄소계 담지체 소재의 내부식성 문제를 극복하기 위해 비탄소계 소재를 도입하여 우수한 결과를 낼 수 있었다”고 말하며, “우수한 성능의 불소 도핑 주석산화물은 향후 수소연료전지의 촉매 담지체 뿐만 아니라 수전해와 같이 촉매 담지체가 사용되기 어려운 분야에서도 이를 대체할 수 있는 소재로 활용 가능할 것”이라고 밝혔다. 본 연구는 과학기술정보통신부에서 지원하는 KIST 기관고유사업과 한국연구재단에서 지원하는 기후변화대응 기술개발사업으로 수행되었으며, 연구결과는 ‘Nano Energy’ (IF : 15.548,JCR 상위분야 4.452%) 최신호에 온라인 게재되었다. * (논문명) High-performance Corrosion-resistant Fluorine-doped Tin Oxide as an Alternative to Carbon Support in Electrodes for PEM Fuel Cells - (제1저자) 한국과학기술연구원 김종민 박사 (Post Doc.) 한국과학기술연구원 이여진 석박통합과정 - (교신저자) 한국과학기술연구원 김진영 책임연구원 <그림설명> 그림 1. 본 연구팀에서 개발한 불소가 도핑된 주석산화물나노튜브 촉매담지체 개발 모식도 그림 2. (상) 다양한 도펀트를 갖는 주석계산화물의 전기화학적 부식테스트 후 도펀트 용출량의 측정을 통해 가장 안정한 불소 도펀트 스크리닝 단계. (하) 고분자전해질연료전지에서 열화테스트 전 후의 탄소담지체 기반 상용백금촉매 (Pt/C)및 불소가 도핑된 주석산화물 기반 백금촉매 (Pt/FTO) 성능 비교 평가.
불소 첨가된 주석산화물 나노튜브 촉매 담지체 개발, 수소연료전지 내구성 높인다
- 연료전지 내 담지체의 전기화학적 열화 문제 해결, 성능과 안정성 향상 - 비탄소계 금속산화물 담지체의 도입을 통해 장기적 내구성 획기적 개선 최근 수소 전기차가 내연기관 자동차를 대체할 미래 친환경 자동차로서 주목받으며, 그 동력원인 수소연료전지의 성능과 내구성 향상을 위한 연구 또한 활발히 이뤄지고 있다. 한국과학기술연구원(KIST, 원장 이병권) 수소연료전지연구단 김진영 박사팀은 비탄소계 촉매 담지체를 활용하여 수소연료전지의 성능과 안정성을 획기적으로 높일 수 있는 기술을 개발했다. 수소연료전지에는 일반적으로 저온에서도 반응이 우수한 백금 나노촉매(2~5 나노미터(nm, 10억분의 1m) 크기)를 주로 사용한다. 담지체는 촉매의 반응성 및 선택성 등을 향상시키는 물질을 말하는데, 연료전지용 백금 촉매는 촉매 반응을 향상시키는 탄소 담지체에 분포되어 있다. 그러나 기존의 탄소 담지체들은 반복 사용 시 쉽게 부서져 연료전지 성능을 떨어뜨리는 한계를 가지고 있었다. 전기화학적 열화로 인해 담지체가 부서지는 문제를 해결하기 위해 KIST 연구팀은 탄소계가 아닌 비탄소계 소재에서 해답을 찾았다. 비탄소계 금속산화물 소재는 높은 전기 전도도와 전기화학적 처리에도 잘 부서지지 않는 우수한 내부식성을 보이는 것으로 알려져 있다. 비탄소계 금속산화물로 잘 알려진 주석산화물은 우수한 내부식성을 보인다. 하지만 전기전도성이 낮아 다양한 원소를 첨가하여 전기전도도를 높여야만 하고, 장기 구동 시에는 첨가된 원소들이 전기화학적으로 용출되는 현상이 발생하여 오히려 전기전도성이 감소하는 문제가 발생하였다. KIST 김진영 박사팀은 주석산화물에 다양한 양이온과 음이온 원소를 도핑하는 시험을 진행하였으며, 이 중 불소가 전기화학적으로 가장 안정되며 전기전도도도 우수한 최적의 원소임을 밝혀내었다. KIST 연구진은 불소가 첨가된 주석산화물을 나노튜브 형태의 담지체로 연료전지에 적용하여 가속 수명시험을 수행하였다. 시험 결과, 기존의 탄소 담지체 연료전지는 최대출력밀도가 70%나 감소한 반면, 불소가 도핑된 주석산화물 담지체의 경우에는 최대출력밀도가 7%만 감소하는 최고의 성능 특성을 보였다. KIST 수소연료전지연구단 김진영 박사는 “기존의 탄소계 담지체 소재의 내부식성 문제를 극복하기 위해 비탄소계 소재를 도입하여 우수한 결과를 낼 수 있었다”고 말하며, “우수한 성능의 불소 도핑 주석산화물은 향후 수소연료전지의 촉매 담지체 뿐만 아니라 수전해와 같이 촉매 담지체가 사용되기 어려운 분야에서도 이를 대체할 수 있는 소재로 활용 가능할 것”이라고 밝혔다. 본 연구는 과학기술정보통신부에서 지원하는 KIST 기관고유사업과 한국연구재단에서 지원하는 기후변화대응 기술개발사업으로 수행되었으며, 연구결과는 ‘Nano Energy’ (IF : 15.548,JCR 상위분야 4.452%) 최신호에 온라인 게재되었다. * (논문명) High-performance Corrosion-resistant Fluorine-doped Tin Oxide as an Alternative to Carbon Support in Electrodes for PEM Fuel Cells - (제1저자) 한국과학기술연구원 김종민 박사 (Post Doc.) 한국과학기술연구원 이여진 석박통합과정 - (교신저자) 한국과학기술연구원 김진영 책임연구원 <그림설명> 그림 1. 본 연구팀에서 개발한 불소가 도핑된 주석산화물나노튜브 촉매담지체 개발 모식도 그림 2. (상) 다양한 도펀트를 갖는 주석계산화물의 전기화학적 부식테스트 후 도펀트 용출량의 측정을 통해 가장 안정한 불소 도펀트 스크리닝 단계. (하) 고분자전해질연료전지에서 열화테스트 전 후의 탄소담지체 기반 상용백금촉매 (Pt/C)및 불소가 도핑된 주석산화물 기반 백금촉매 (Pt/FTO) 성능 비교 평가.
불소 첨가된 주석산화물 나노튜브 촉매 담지체 개발, 수소연료전지 내구성 높인다
- 연료전지 내 담지체의 전기화학적 열화 문제 해결, 성능과 안정성 향상 - 비탄소계 금속산화물 담지체의 도입을 통해 장기적 내구성 획기적 개선 최근 수소 전기차가 내연기관 자동차를 대체할 미래 친환경 자동차로서 주목받으며, 그 동력원인 수소연료전지의 성능과 내구성 향상을 위한 연구 또한 활발히 이뤄지고 있다. 한국과학기술연구원(KIST, 원장 이병권) 수소연료전지연구단 김진영 박사팀은 비탄소계 촉매 담지체를 활용하여 수소연료전지의 성능과 안정성을 획기적으로 높일 수 있는 기술을 개발했다. 수소연료전지에는 일반적으로 저온에서도 반응이 우수한 백금 나노촉매(2~5 나노미터(nm, 10억분의 1m) 크기)를 주로 사용한다. 담지체는 촉매의 반응성 및 선택성 등을 향상시키는 물질을 말하는데, 연료전지용 백금 촉매는 촉매 반응을 향상시키는 탄소 담지체에 분포되어 있다. 그러나 기존의 탄소 담지체들은 반복 사용 시 쉽게 부서져 연료전지 성능을 떨어뜨리는 한계를 가지고 있었다. 전기화학적 열화로 인해 담지체가 부서지는 문제를 해결하기 위해 KIST 연구팀은 탄소계가 아닌 비탄소계 소재에서 해답을 찾았다. 비탄소계 금속산화물 소재는 높은 전기 전도도와 전기화학적 처리에도 잘 부서지지 않는 우수한 내부식성을 보이는 것으로 알려져 있다. 비탄소계 금속산화물로 잘 알려진 주석산화물은 우수한 내부식성을 보인다. 하지만 전기전도성이 낮아 다양한 원소를 첨가하여 전기전도도를 높여야만 하고, 장기 구동 시에는 첨가된 원소들이 전기화학적으로 용출되는 현상이 발생하여 오히려 전기전도성이 감소하는 문제가 발생하였다. KIST 김진영 박사팀은 주석산화물에 다양한 양이온과 음이온 원소를 도핑하는 시험을 진행하였으며, 이 중 불소가 전기화학적으로 가장 안정되며 전기전도도도 우수한 최적의 원소임을 밝혀내었다. KIST 연구진은 불소가 첨가된 주석산화물을 나노튜브 형태의 담지체로 연료전지에 적용하여 가속 수명시험을 수행하였다. 시험 결과, 기존의 탄소 담지체 연료전지는 최대출력밀도가 70%나 감소한 반면, 불소가 도핑된 주석산화물 담지체의 경우에는 최대출력밀도가 7%만 감소하는 최고의 성능 특성을 보였다. KIST 수소연료전지연구단 김진영 박사는 “기존의 탄소계 담지체 소재의 내부식성 문제를 극복하기 위해 비탄소계 소재를 도입하여 우수한 결과를 낼 수 있었다”고 말하며, “우수한 성능의 불소 도핑 주석산화물은 향후 수소연료전지의 촉매 담지체 뿐만 아니라 수전해와 같이 촉매 담지체가 사용되기 어려운 분야에서도 이를 대체할 수 있는 소재로 활용 가능할 것”이라고 밝혔다. 본 연구는 과학기술정보통신부에서 지원하는 KIST 기관고유사업과 한국연구재단에서 지원하는 기후변화대응 기술개발사업으로 수행되었으며, 연구결과는 ‘Nano Energy’ (IF : 15.548,JCR 상위분야 4.452%) 최신호에 온라인 게재되었다. * (논문명) High-performance Corrosion-resistant Fluorine-doped Tin Oxide as an Alternative to Carbon Support in Electrodes for PEM Fuel Cells - (제1저자) 한국과학기술연구원 김종민 박사 (Post Doc.) 한국과학기술연구원 이여진 석박통합과정 - (교신저자) 한국과학기술연구원 김진영 책임연구원 <그림설명> 그림 1. 본 연구팀에서 개발한 불소가 도핑된 주석산화물나노튜브 촉매담지체 개발 모식도 그림 2. (상) 다양한 도펀트를 갖는 주석계산화물의 전기화학적 부식테스트 후 도펀트 용출량의 측정을 통해 가장 안정한 불소 도펀트 스크리닝 단계. (하) 고분자전해질연료전지에서 열화테스트 전 후의 탄소담지체 기반 상용백금촉매 (Pt/C)및 불소가 도핑된 주석산화물 기반 백금촉매 (Pt/FTO) 성능 비교 평가.