Result
게시물 키워드"KIST"에 대한 4618개의 검색결과를 찾았습니다.
멍게껍질과 탄소나노튜브로 만든 복합섬유, 유해가스 감지하는 웨어러블 센서 만든다
- 후처리 공정 및 촉매 없이 유해가스 감지 센싱기능을 보유한 복합섬유 개발 - 대량생산 및 일반 섬유에 직조 가능, 차세대 웨어러블 센서 활용 기대 한국과학기술연구원(KIST, 원장 이병권) 기능성복합소재연구센터 정현수 박사, 이승기 박사 연구팀은 한국과학기술원(KAIST, 총장 신성철) 정희태 교수 연구팀과의 공동연구를 통해 후처리 공정이 전혀 필요 없고, 연속으로 대량생산이 가능한 섬유형 이산화질소(NO2) 센서를 개발했다고 밝혔다. 최근 웨어러블(wearable) 기기가 일상에 널리 보급된 가운데, 관련 분야의 연구 또한 매우 활발하다. 그중에서도 착용을 통해 상태와 환경을 실시간으로 손쉽게 감지할 수 있는 ‘웨어러블 센서’가 주목을 받고 있다. 웨어러블 센서는 여러 소재와 결합하여 그 모양과 기능을 달리할 수 있는데, 섬유 형태는 유연하며, 일반 섬유에 직조를 할 수 있어 가장 이상적인 플랫폼으로 주목받고 있다. 기존의 섬유 기반 센서 소재들은 대부분 일반 섬유에 전도성 소재와 센서 소재를 혼합하여 코팅하는 방식으로 제작되는데, 저항이 높아 높은 전압이 필요하고 무엇보다 섬유와 코팅되는 소재들의 결합력이 떨어져 내구성에 문제가 많았다. 이를 해결하기 위해 섬유 자체가 전도성을 가지는 그래핀산화물* 섬유가 등장했다. 그러나 그래핀 섬유는 후처리 공정이 필수적이며, 유연성이 많이 저하되고, 공정 및 소재 비용이 많이 소요되어 경제적이지 못하다는 단점이 지적되어왔다. *그래핀산화물(graphene oxide): 흑연의 산화를 이용한 화학적 박리를 통해 얻는 탄소원자로만 이루어진 2차원 평면을 가지는 그래핀의 산화물 형태 KIST 연구진은 버려지는 멍게껍질로부터 나노셀룰로오스**를 추출, 탄소나노튜브***와 결합한 복합섬유를 제조하여 후처리 및 촉매가 필요 없는 이산화질소 센서 소재를 개발했다. 또한, 개발한 복합섬유는 기계적 강도와 유연성을 동시에 보유하고 있어 일반 섬유와 직조가 가능하다. 실제로 연구팀은 복합섬유를 삽입한 직물을 만들어 유해가스인 이산화질소를 감지하는 데 성공했다. ** 나노셀룰로오스(nanocellulose): 녹색 식물, 다양한 형태의 조류 및 난균류의 세포벽을 구성하는 요소로써 지구상에 가장 풍부한 유기 화합물인 셀룰로오스를 나노(10억분의 1) 수준으로 분해한 물질 *** 탄소나노튜브(carbon nanotube): 탄소원자로만 이루어진 원통형의 나노 구조체 특히 이미 산업화되어 있는 일반 습식방사법으로 복합섬유를 연속 생산할 수 있어, 향후 값싼 웨어러블 가스 센서를 상용화하는 데 있어 매우 유리할 것으로 보인다. 연구에 쓰인 소재 가격만으로 연구진이 제조비용을 산출한 결과 섬유 1m당 약 0.01$ (약 10원) 미만의 비용이 드는 것으로 확인되었다. 이 방법으로 제조된 복합섬유는 전도성, 다공성 그리고 이산화질소 가스에 대한 높은 선택성과 감도(ppb 레벨)를 제조단계에서부터 one-step으로 보유하고 있다. KIST 정현수 박사는 “본 연구는 웨어러블 센싱 소재로서 갖춰야 할 기본 물성들을 재료의 복합화를 통해 효율적으로 한 번에 제조할 수 있는 있다는 점에서 매우 중요하다”라고 강조하고 “향후 이산화질소 외에 다른 유해가스 검출용 웨어러블 소재를 경제성 있게 개발하는 데 매진하겠다”라고 밝혔다. 이번 연구는 과학기술정보통신부(장관 유영민) 지원으로 KIST 오픈리서치프로그램과 한국연구재단 나노소재기술개발사업을 통해 수행되었으며, 연구결과는 소재 분야 유명 국제저널인 ‘ACS Nano’(IF: 13.71, JCR 분야 상위: 4.04%)에 최신호에 게재되었으며, KIST는 제조기술에 대한 국내 특허를 출원 완료(2018-0141635) 했다. *(논문명) ‘Continuous Meter-Scale Synthesis of Weavable Tunicate Cellulose/Carbon Nanotube Fibers for High-Performance Wearable Sensors’ - (제 1저자) 한국과학기술원 조수연 박사 - (공저자) 한국과학기술연구원 유하영 연구원(박사과정) - (교신저자) 한국과학기술연구원 정현수 박사, 이승기 박사 / 한국과학기술원 정희태 교수 <그림설명> ▲ (a) 본 연구에서 개발된 TCNF/CNT 복합섬유 연속 방사 공정 모식도(b) 미터스케일생산 제품(c) 복합섬유를 구성하고 있는 마이크로/나노 크기의 기공 구조 이미지 (d) 복합섬유 소재 표면적 분석을 위한 BET 측정 결과 ▲ (a) 본 연구에서 개발된 TCNF/CNT 복합섬유의 유연성 확인을 위한 매듭, 꼬임 구조 형성 이미지 (b) 단일 복합섬유의 강도 확인을 위한 리프팅 테스트 (c) 일반 모직에 직조한 복합섬유(붉은색) 기반 센서 이미지 (d) NO2 가스의 농도에 따른 센서 검출 반응성 그래프
멍게껍질과 탄소나노튜브로 만든 복합섬유, 유해가스 감지하는 웨어러블 센서 만든다
- 후처리 공정 및 촉매 없이 유해가스 감지 센싱기능을 보유한 복합섬유 개발 - 대량생산 및 일반 섬유에 직조 가능, 차세대 웨어러블 센서 활용 기대 한국과학기술연구원(KIST, 원장 이병권) 기능성복합소재연구센터 정현수 박사, 이승기 박사 연구팀은 한국과학기술원(KAIST, 총장 신성철) 정희태 교수 연구팀과의 공동연구를 통해 후처리 공정이 전혀 필요 없고, 연속으로 대량생산이 가능한 섬유형 이산화질소(NO2) 센서를 개발했다고 밝혔다. 최근 웨어러블(wearable) 기기가 일상에 널리 보급된 가운데, 관련 분야의 연구 또한 매우 활발하다. 그중에서도 착용을 통해 상태와 환경을 실시간으로 손쉽게 감지할 수 있는 ‘웨어러블 센서’가 주목을 받고 있다. 웨어러블 센서는 여러 소재와 결합하여 그 모양과 기능을 달리할 수 있는데, 섬유 형태는 유연하며, 일반 섬유에 직조를 할 수 있어 가장 이상적인 플랫폼으로 주목받고 있다. 기존의 섬유 기반 센서 소재들은 대부분 일반 섬유에 전도성 소재와 센서 소재를 혼합하여 코팅하는 방식으로 제작되는데, 저항이 높아 높은 전압이 필요하고 무엇보다 섬유와 코팅되는 소재들의 결합력이 떨어져 내구성에 문제가 많았다. 이를 해결하기 위해 섬유 자체가 전도성을 가지는 그래핀산화물* 섬유가 등장했다. 그러나 그래핀 섬유는 후처리 공정이 필수적이며, 유연성이 많이 저하되고, 공정 및 소재 비용이 많이 소요되어 경제적이지 못하다는 단점이 지적되어왔다. *그래핀산화물(graphene oxide): 흑연의 산화를 이용한 화학적 박리를 통해 얻는 탄소원자로만 이루어진 2차원 평면을 가지는 그래핀의 산화물 형태 KIST 연구진은 버려지는 멍게껍질로부터 나노셀룰로오스**를 추출, 탄소나노튜브***와 결합한 복합섬유를 제조하여 후처리 및 촉매가 필요 없는 이산화질소 센서 소재를 개발했다. 또한, 개발한 복합섬유는 기계적 강도와 유연성을 동시에 보유하고 있어 일반 섬유와 직조가 가능하다. 실제로 연구팀은 복합섬유를 삽입한 직물을 만들어 유해가스인 이산화질소를 감지하는 데 성공했다. ** 나노셀룰로오스(nanocellulose): 녹색 식물, 다양한 형태의 조류 및 난균류의 세포벽을 구성하는 요소로써 지구상에 가장 풍부한 유기 화합물인 셀룰로오스를 나노(10억분의 1) 수준으로 분해한 물질 *** 탄소나노튜브(carbon nanotube): 탄소원자로만 이루어진 원통형의 나노 구조체 특히 이미 산업화되어 있는 일반 습식방사법으로 복합섬유를 연속 생산할 수 있어, 향후 값싼 웨어러블 가스 센서를 상용화하는 데 있어 매우 유리할 것으로 보인다. 연구에 쓰인 소재 가격만으로 연구진이 제조비용을 산출한 결과 섬유 1m당 약 0.01$ (약 10원) 미만의 비용이 드는 것으로 확인되었다. 이 방법으로 제조된 복합섬유는 전도성, 다공성 그리고 이산화질소 가스에 대한 높은 선택성과 감도(ppb 레벨)를 제조단계에서부터 one-step으로 보유하고 있다. KIST 정현수 박사는 “본 연구는 웨어러블 센싱 소재로서 갖춰야 할 기본 물성들을 재료의 복합화를 통해 효율적으로 한 번에 제조할 수 있는 있다는 점에서 매우 중요하다”라고 강조하고 “향후 이산화질소 외에 다른 유해가스 검출용 웨어러블 소재를 경제성 있게 개발하는 데 매진하겠다”라고 밝혔다. 이번 연구는 과학기술정보통신부(장관 유영민) 지원으로 KIST 오픈리서치프로그램과 한국연구재단 나노소재기술개발사업을 통해 수행되었으며, 연구결과는 소재 분야 유명 국제저널인 ‘ACS Nano’(IF: 13.71, JCR 분야 상위: 4.04%)에 최신호에 게재되었으며, KIST는 제조기술에 대한 국내 특허를 출원 완료(2018-0141635) 했다. *(논문명) ‘Continuous Meter-Scale Synthesis of Weavable Tunicate Cellulose/Carbon Nanotube Fibers for High-Performance Wearable Sensors’ - (제 1저자) 한국과학기술원 조수연 박사 - (공저자) 한국과학기술연구원 유하영 연구원(박사과정) - (교신저자) 한국과학기술연구원 정현수 박사, 이승기 박사 / 한국과학기술원 정희태 교수 <그림설명> ▲ (a) 본 연구에서 개발된 TCNF/CNT 복합섬유 연속 방사 공정 모식도(b) 미터스케일생산 제품(c) 복합섬유를 구성하고 있는 마이크로/나노 크기의 기공 구조 이미지 (d) 복합섬유 소재 표면적 분석을 위한 BET 측정 결과 ▲ (a) 본 연구에서 개발된 TCNF/CNT 복합섬유의 유연성 확인을 위한 매듭, 꼬임 구조 형성 이미지 (b) 단일 복합섬유의 강도 확인을 위한 리프팅 테스트 (c) 일반 모직에 직조한 복합섬유(붉은색) 기반 센서 이미지 (d) NO2 가스의 농도에 따른 센서 검출 반응성 그래프
멍게껍질과 탄소나노튜브로 만든 복합섬유, 유해가스 감지하는 웨어러블 센서 만든다
- 후처리 공정 및 촉매 없이 유해가스 감지 센싱기능을 보유한 복합섬유 개발 - 대량생산 및 일반 섬유에 직조 가능, 차세대 웨어러블 센서 활용 기대 한국과학기술연구원(KIST, 원장 이병권) 기능성복합소재연구센터 정현수 박사, 이승기 박사 연구팀은 한국과학기술원(KAIST, 총장 신성철) 정희태 교수 연구팀과의 공동연구를 통해 후처리 공정이 전혀 필요 없고, 연속으로 대량생산이 가능한 섬유형 이산화질소(NO2) 센서를 개발했다고 밝혔다. 최근 웨어러블(wearable) 기기가 일상에 널리 보급된 가운데, 관련 분야의 연구 또한 매우 활발하다. 그중에서도 착용을 통해 상태와 환경을 실시간으로 손쉽게 감지할 수 있는 ‘웨어러블 센서’가 주목을 받고 있다. 웨어러블 센서는 여러 소재와 결합하여 그 모양과 기능을 달리할 수 있는데, 섬유 형태는 유연하며, 일반 섬유에 직조를 할 수 있어 가장 이상적인 플랫폼으로 주목받고 있다. 기존의 섬유 기반 센서 소재들은 대부분 일반 섬유에 전도성 소재와 센서 소재를 혼합하여 코팅하는 방식으로 제작되는데, 저항이 높아 높은 전압이 필요하고 무엇보다 섬유와 코팅되는 소재들의 결합력이 떨어져 내구성에 문제가 많았다. 이를 해결하기 위해 섬유 자체가 전도성을 가지는 그래핀산화물* 섬유가 등장했다. 그러나 그래핀 섬유는 후처리 공정이 필수적이며, 유연성이 많이 저하되고, 공정 및 소재 비용이 많이 소요되어 경제적이지 못하다는 단점이 지적되어왔다. *그래핀산화물(graphene oxide): 흑연의 산화를 이용한 화학적 박리를 통해 얻는 탄소원자로만 이루어진 2차원 평면을 가지는 그래핀의 산화물 형태 KIST 연구진은 버려지는 멍게껍질로부터 나노셀룰로오스**를 추출, 탄소나노튜브***와 결합한 복합섬유를 제조하여 후처리 및 촉매가 필요 없는 이산화질소 센서 소재를 개발했다. 또한, 개발한 복합섬유는 기계적 강도와 유연성을 동시에 보유하고 있어 일반 섬유와 직조가 가능하다. 실제로 연구팀은 복합섬유를 삽입한 직물을 만들어 유해가스인 이산화질소를 감지하는 데 성공했다. ** 나노셀룰로오스(nanocellulose): 녹색 식물, 다양한 형태의 조류 및 난균류의 세포벽을 구성하는 요소로써 지구상에 가장 풍부한 유기 화합물인 셀룰로오스를 나노(10억분의 1) 수준으로 분해한 물질 *** 탄소나노튜브(carbon nanotube): 탄소원자로만 이루어진 원통형의 나노 구조체 특히 이미 산업화되어 있는 일반 습식방사법으로 복합섬유를 연속 생산할 수 있어, 향후 값싼 웨어러블 가스 센서를 상용화하는 데 있어 매우 유리할 것으로 보인다. 연구에 쓰인 소재 가격만으로 연구진이 제조비용을 산출한 결과 섬유 1m당 약 0.01$ (약 10원) 미만의 비용이 드는 것으로 확인되었다. 이 방법으로 제조된 복합섬유는 전도성, 다공성 그리고 이산화질소 가스에 대한 높은 선택성과 감도(ppb 레벨)를 제조단계에서부터 one-step으로 보유하고 있다. KIST 정현수 박사는 “본 연구는 웨어러블 센싱 소재로서 갖춰야 할 기본 물성들을 재료의 복합화를 통해 효율적으로 한 번에 제조할 수 있는 있다는 점에서 매우 중요하다”라고 강조하고 “향후 이산화질소 외에 다른 유해가스 검출용 웨어러블 소재를 경제성 있게 개발하는 데 매진하겠다”라고 밝혔다. 이번 연구는 과학기술정보통신부(장관 유영민) 지원으로 KIST 오픈리서치프로그램과 한국연구재단 나노소재기술개발사업을 통해 수행되었으며, 연구결과는 소재 분야 유명 국제저널인 ‘ACS Nano’(IF: 13.71, JCR 분야 상위: 4.04%)에 최신호에 게재되었으며, KIST는 제조기술에 대한 국내 특허를 출원 완료(2018-0141635) 했다. *(논문명) ‘Continuous Meter-Scale Synthesis of Weavable Tunicate Cellulose/Carbon Nanotube Fibers for High-Performance Wearable Sensors’ - (제 1저자) 한국과학기술원 조수연 박사 - (공저자) 한국과학기술연구원 유하영 연구원(박사과정) - (교신저자) 한국과학기술연구원 정현수 박사, 이승기 박사 / 한국과학기술원 정희태 교수 <그림설명> ▲ (a) 본 연구에서 개발된 TCNF/CNT 복합섬유 연속 방사 공정 모식도(b) 미터스케일생산 제품(c) 복합섬유를 구성하고 있는 마이크로/나노 크기의 기공 구조 이미지 (d) 복합섬유 소재 표면적 분석을 위한 BET 측정 결과 ▲ (a) 본 연구에서 개발된 TCNF/CNT 복합섬유의 유연성 확인을 위한 매듭, 꼬임 구조 형성 이미지 (b) 단일 복합섬유의 강도 확인을 위한 리프팅 테스트 (c) 일반 모직에 직조한 복합섬유(붉은색) 기반 센서 이미지 (d) NO2 가스의 농도에 따른 센서 검출 반응성 그래프
멍게껍질과 탄소나노튜브로 만든 복합섬유, 유해가스 감지하는 웨어러블 센서 만든다
- 후처리 공정 및 촉매 없이 유해가스 감지 센싱기능을 보유한 복합섬유 개발 - 대량생산 및 일반 섬유에 직조 가능, 차세대 웨어러블 센서 활용 기대 한국과학기술연구원(KIST, 원장 이병권) 기능성복합소재연구센터 정현수 박사, 이승기 박사 연구팀은 한국과학기술원(KAIST, 총장 신성철) 정희태 교수 연구팀과의 공동연구를 통해 후처리 공정이 전혀 필요 없고, 연속으로 대량생산이 가능한 섬유형 이산화질소(NO2) 센서를 개발했다고 밝혔다. 최근 웨어러블(wearable) 기기가 일상에 널리 보급된 가운데, 관련 분야의 연구 또한 매우 활발하다. 그중에서도 착용을 통해 상태와 환경을 실시간으로 손쉽게 감지할 수 있는 ‘웨어러블 센서’가 주목을 받고 있다. 웨어러블 센서는 여러 소재와 결합하여 그 모양과 기능을 달리할 수 있는데, 섬유 형태는 유연하며, 일반 섬유에 직조를 할 수 있어 가장 이상적인 플랫폼으로 주목받고 있다. 기존의 섬유 기반 센서 소재들은 대부분 일반 섬유에 전도성 소재와 센서 소재를 혼합하여 코팅하는 방식으로 제작되는데, 저항이 높아 높은 전압이 필요하고 무엇보다 섬유와 코팅되는 소재들의 결합력이 떨어져 내구성에 문제가 많았다. 이를 해결하기 위해 섬유 자체가 전도성을 가지는 그래핀산화물* 섬유가 등장했다. 그러나 그래핀 섬유는 후처리 공정이 필수적이며, 유연성이 많이 저하되고, 공정 및 소재 비용이 많이 소요되어 경제적이지 못하다는 단점이 지적되어왔다. *그래핀산화물(graphene oxide): 흑연의 산화를 이용한 화학적 박리를 통해 얻는 탄소원자로만 이루어진 2차원 평면을 가지는 그래핀의 산화물 형태 KIST 연구진은 버려지는 멍게껍질로부터 나노셀룰로오스**를 추출, 탄소나노튜브***와 결합한 복합섬유를 제조하여 후처리 및 촉매가 필요 없는 이산화질소 센서 소재를 개발했다. 또한, 개발한 복합섬유는 기계적 강도와 유연성을 동시에 보유하고 있어 일반 섬유와 직조가 가능하다. 실제로 연구팀은 복합섬유를 삽입한 직물을 만들어 유해가스인 이산화질소를 감지하는 데 성공했다. ** 나노셀룰로오스(nanocellulose): 녹색 식물, 다양한 형태의 조류 및 난균류의 세포벽을 구성하는 요소로써 지구상에 가장 풍부한 유기 화합물인 셀룰로오스를 나노(10억분의 1) 수준으로 분해한 물질 *** 탄소나노튜브(carbon nanotube): 탄소원자로만 이루어진 원통형의 나노 구조체 특히 이미 산업화되어 있는 일반 습식방사법으로 복합섬유를 연속 생산할 수 있어, 향후 값싼 웨어러블 가스 센서를 상용화하는 데 있어 매우 유리할 것으로 보인다. 연구에 쓰인 소재 가격만으로 연구진이 제조비용을 산출한 결과 섬유 1m당 약 0.01$ (약 10원) 미만의 비용이 드는 것으로 확인되었다. 이 방법으로 제조된 복합섬유는 전도성, 다공성 그리고 이산화질소 가스에 대한 높은 선택성과 감도(ppb 레벨)를 제조단계에서부터 one-step으로 보유하고 있다. KIST 정현수 박사는 “본 연구는 웨어러블 센싱 소재로서 갖춰야 할 기본 물성들을 재료의 복합화를 통해 효율적으로 한 번에 제조할 수 있는 있다는 점에서 매우 중요하다”라고 강조하고 “향후 이산화질소 외에 다른 유해가스 검출용 웨어러블 소재를 경제성 있게 개발하는 데 매진하겠다”라고 밝혔다. 이번 연구는 과학기술정보통신부(장관 유영민) 지원으로 KIST 오픈리서치프로그램과 한국연구재단 나노소재기술개발사업을 통해 수행되었으며, 연구결과는 소재 분야 유명 국제저널인 ‘ACS Nano’(IF: 13.71, JCR 분야 상위: 4.04%)에 최신호에 게재되었으며, KIST는 제조기술에 대한 국내 특허를 출원 완료(2018-0141635) 했다. *(논문명) ‘Continuous Meter-Scale Synthesis of Weavable Tunicate Cellulose/Carbon Nanotube Fibers for High-Performance Wearable Sensors’ - (제 1저자) 한국과학기술원 조수연 박사 - (공저자) 한국과학기술연구원 유하영 연구원(박사과정) - (교신저자) 한국과학기술연구원 정현수 박사, 이승기 박사 / 한국과학기술원 정희태 교수 <그림설명> ▲ (a) 본 연구에서 개발된 TCNF/CNT 복합섬유 연속 방사 공정 모식도(b) 미터스케일생산 제품(c) 복합섬유를 구성하고 있는 마이크로/나노 크기의 기공 구조 이미지 (d) 복합섬유 소재 표면적 분석을 위한 BET 측정 결과 ▲ (a) 본 연구에서 개발된 TCNF/CNT 복합섬유의 유연성 확인을 위한 매듭, 꼬임 구조 형성 이미지 (b) 단일 복합섬유의 강도 확인을 위한 리프팅 테스트 (c) 일반 모직에 직조한 복합섬유(붉은색) 기반 센서 이미지 (d) NO2 가스의 농도에 따른 센서 검출 반응성 그래프
멍게껍질과 탄소나노튜브로 만든 복합섬유, 유해가스 감지하는 웨어러블 센서 만든다
- 후처리 공정 및 촉매 없이 유해가스 감지 센싱기능을 보유한 복합섬유 개발 - 대량생산 및 일반 섬유에 직조 가능, 차세대 웨어러블 센서 활용 기대 한국과학기술연구원(KIST, 원장 이병권) 기능성복합소재연구센터 정현수 박사, 이승기 박사 연구팀은 한국과학기술원(KAIST, 총장 신성철) 정희태 교수 연구팀과의 공동연구를 통해 후처리 공정이 전혀 필요 없고, 연속으로 대량생산이 가능한 섬유형 이산화질소(NO2) 센서를 개발했다고 밝혔다. 최근 웨어러블(wearable) 기기가 일상에 널리 보급된 가운데, 관련 분야의 연구 또한 매우 활발하다. 그중에서도 착용을 통해 상태와 환경을 실시간으로 손쉽게 감지할 수 있는 ‘웨어러블 센서’가 주목을 받고 있다. 웨어러블 센서는 여러 소재와 결합하여 그 모양과 기능을 달리할 수 있는데, 섬유 형태는 유연하며, 일반 섬유에 직조를 할 수 있어 가장 이상적인 플랫폼으로 주목받고 있다. 기존의 섬유 기반 센서 소재들은 대부분 일반 섬유에 전도성 소재와 센서 소재를 혼합하여 코팅하는 방식으로 제작되는데, 저항이 높아 높은 전압이 필요하고 무엇보다 섬유와 코팅되는 소재들의 결합력이 떨어져 내구성에 문제가 많았다. 이를 해결하기 위해 섬유 자체가 전도성을 가지는 그래핀산화물* 섬유가 등장했다. 그러나 그래핀 섬유는 후처리 공정이 필수적이며, 유연성이 많이 저하되고, 공정 및 소재 비용이 많이 소요되어 경제적이지 못하다는 단점이 지적되어왔다. *그래핀산화물(graphene oxide): 흑연의 산화를 이용한 화학적 박리를 통해 얻는 탄소원자로만 이루어진 2차원 평면을 가지는 그래핀의 산화물 형태 KIST 연구진은 버려지는 멍게껍질로부터 나노셀룰로오스**를 추출, 탄소나노튜브***와 결합한 복합섬유를 제조하여 후처리 및 촉매가 필요 없는 이산화질소 센서 소재를 개발했다. 또한, 개발한 복합섬유는 기계적 강도와 유연성을 동시에 보유하고 있어 일반 섬유와 직조가 가능하다. 실제로 연구팀은 복합섬유를 삽입한 직물을 만들어 유해가스인 이산화질소를 감지하는 데 성공했다. ** 나노셀룰로오스(nanocellulose): 녹색 식물, 다양한 형태의 조류 및 난균류의 세포벽을 구성하는 요소로써 지구상에 가장 풍부한 유기 화합물인 셀룰로오스를 나노(10억분의 1) 수준으로 분해한 물질 *** 탄소나노튜브(carbon nanotube): 탄소원자로만 이루어진 원통형의 나노 구조체 특히 이미 산업화되어 있는 일반 습식방사법으로 복합섬유를 연속 생산할 수 있어, 향후 값싼 웨어러블 가스 센서를 상용화하는 데 있어 매우 유리할 것으로 보인다. 연구에 쓰인 소재 가격만으로 연구진이 제조비용을 산출한 결과 섬유 1m당 약 0.01$ (약 10원) 미만의 비용이 드는 것으로 확인되었다. 이 방법으로 제조된 복합섬유는 전도성, 다공성 그리고 이산화질소 가스에 대한 높은 선택성과 감도(ppb 레벨)를 제조단계에서부터 one-step으로 보유하고 있다. KIST 정현수 박사는 “본 연구는 웨어러블 센싱 소재로서 갖춰야 할 기본 물성들을 재료의 복합화를 통해 효율적으로 한 번에 제조할 수 있는 있다는 점에서 매우 중요하다”라고 강조하고 “향후 이산화질소 외에 다른 유해가스 검출용 웨어러블 소재를 경제성 있게 개발하는 데 매진하겠다”라고 밝혔다. 이번 연구는 과학기술정보통신부(장관 유영민) 지원으로 KIST 오픈리서치프로그램과 한국연구재단 나노소재기술개발사업을 통해 수행되었으며, 연구결과는 소재 분야 유명 국제저널인 ‘ACS Nano’(IF: 13.71, JCR 분야 상위: 4.04%)에 최신호에 게재되었으며, KIST는 제조기술에 대한 국내 특허를 출원 완료(2018-0141635) 했다. *(논문명) ‘Continuous Meter-Scale Synthesis of Weavable Tunicate Cellulose/Carbon Nanotube Fibers for High-Performance Wearable Sensors’ - (제 1저자) 한국과학기술원 조수연 박사 - (공저자) 한국과학기술연구원 유하영 연구원(박사과정) - (교신저자) 한국과학기술연구원 정현수 박사, 이승기 박사 / 한국과학기술원 정희태 교수 <그림설명> ▲ (a) 본 연구에서 개발된 TCNF/CNT 복합섬유 연속 방사 공정 모식도(b) 미터스케일생산 제품(c) 복합섬유를 구성하고 있는 마이크로/나노 크기의 기공 구조 이미지 (d) 복합섬유 소재 표면적 분석을 위한 BET 측정 결과 ▲ (a) 본 연구에서 개발된 TCNF/CNT 복합섬유의 유연성 확인을 위한 매듭, 꼬임 구조 형성 이미지 (b) 단일 복합섬유의 강도 확인을 위한 리프팅 테스트 (c) 일반 모직에 직조한 복합섬유(붉은색) 기반 센서 이미지 (d) NO2 가스의 농도에 따른 센서 검출 반응성 그래프
멍게껍질과 탄소나노튜브로 만든 복합섬유, 유해가스 감지하는 웨어러블 센서 만든다
- 후처리 공정 및 촉매 없이 유해가스 감지 센싱기능을 보유한 복합섬유 개발 - 대량생산 및 일반 섬유에 직조 가능, 차세대 웨어러블 센서 활용 기대 한국과학기술연구원(KIST, 원장 이병권) 기능성복합소재연구센터 정현수 박사, 이승기 박사 연구팀은 한국과학기술원(KAIST, 총장 신성철) 정희태 교수 연구팀과의 공동연구를 통해 후처리 공정이 전혀 필요 없고, 연속으로 대량생산이 가능한 섬유형 이산화질소(NO2) 센서를 개발했다고 밝혔다. 최근 웨어러블(wearable) 기기가 일상에 널리 보급된 가운데, 관련 분야의 연구 또한 매우 활발하다. 그중에서도 착용을 통해 상태와 환경을 실시간으로 손쉽게 감지할 수 있는 ‘웨어러블 센서’가 주목을 받고 있다. 웨어러블 센서는 여러 소재와 결합하여 그 모양과 기능을 달리할 수 있는데, 섬유 형태는 유연하며, 일반 섬유에 직조를 할 수 있어 가장 이상적인 플랫폼으로 주목받고 있다. 기존의 섬유 기반 센서 소재들은 대부분 일반 섬유에 전도성 소재와 센서 소재를 혼합하여 코팅하는 방식으로 제작되는데, 저항이 높아 높은 전압이 필요하고 무엇보다 섬유와 코팅되는 소재들의 결합력이 떨어져 내구성에 문제가 많았다. 이를 해결하기 위해 섬유 자체가 전도성을 가지는 그래핀산화물* 섬유가 등장했다. 그러나 그래핀 섬유는 후처리 공정이 필수적이며, 유연성이 많이 저하되고, 공정 및 소재 비용이 많이 소요되어 경제적이지 못하다는 단점이 지적되어왔다. *그래핀산화물(graphene oxide): 흑연의 산화를 이용한 화학적 박리를 통해 얻는 탄소원자로만 이루어진 2차원 평면을 가지는 그래핀의 산화물 형태 KIST 연구진은 버려지는 멍게껍질로부터 나노셀룰로오스**를 추출, 탄소나노튜브***와 결합한 복합섬유를 제조하여 후처리 및 촉매가 필요 없는 이산화질소 센서 소재를 개발했다. 또한, 개발한 복합섬유는 기계적 강도와 유연성을 동시에 보유하고 있어 일반 섬유와 직조가 가능하다. 실제로 연구팀은 복합섬유를 삽입한 직물을 만들어 유해가스인 이산화질소를 감지하는 데 성공했다. ** 나노셀룰로오스(nanocellulose): 녹색 식물, 다양한 형태의 조류 및 난균류의 세포벽을 구성하는 요소로써 지구상에 가장 풍부한 유기 화합물인 셀룰로오스를 나노(10억분의 1) 수준으로 분해한 물질 *** 탄소나노튜브(carbon nanotube): 탄소원자로만 이루어진 원통형의 나노 구조체 특히 이미 산업화되어 있는 일반 습식방사법으로 복합섬유를 연속 생산할 수 있어, 향후 값싼 웨어러블 가스 센서를 상용화하는 데 있어 매우 유리할 것으로 보인다. 연구에 쓰인 소재 가격만으로 연구진이 제조비용을 산출한 결과 섬유 1m당 약 0.01$ (약 10원) 미만의 비용이 드는 것으로 확인되었다. 이 방법으로 제조된 복합섬유는 전도성, 다공성 그리고 이산화질소 가스에 대한 높은 선택성과 감도(ppb 레벨)를 제조단계에서부터 one-step으로 보유하고 있다. KIST 정현수 박사는 “본 연구는 웨어러블 센싱 소재로서 갖춰야 할 기본 물성들을 재료의 복합화를 통해 효율적으로 한 번에 제조할 수 있는 있다는 점에서 매우 중요하다”라고 강조하고 “향후 이산화질소 외에 다른 유해가스 검출용 웨어러블 소재를 경제성 있게 개발하는 데 매진하겠다”라고 밝혔다. 이번 연구는 과학기술정보통신부(장관 유영민) 지원으로 KIST 오픈리서치프로그램과 한국연구재단 나노소재기술개발사업을 통해 수행되었으며, 연구결과는 소재 분야 유명 국제저널인 ‘ACS Nano’(IF: 13.71, JCR 분야 상위: 4.04%)에 최신호에 게재되었으며, KIST는 제조기술에 대한 국내 특허를 출원 완료(2018-0141635) 했다. *(논문명) ‘Continuous Meter-Scale Synthesis of Weavable Tunicate Cellulose/Carbon Nanotube Fibers for High-Performance Wearable Sensors’ - (제 1저자) 한국과학기술원 조수연 박사 - (공저자) 한국과학기술연구원 유하영 연구원(박사과정) - (교신저자) 한국과학기술연구원 정현수 박사, 이승기 박사 / 한국과학기술원 정희태 교수 <그림설명> ▲ (a) 본 연구에서 개발된 TCNF/CNT 복합섬유 연속 방사 공정 모식도(b) 미터스케일생산 제품(c) 복합섬유를 구성하고 있는 마이크로/나노 크기의 기공 구조 이미지 (d) 복합섬유 소재 표면적 분석을 위한 BET 측정 결과 ▲ (a) 본 연구에서 개발된 TCNF/CNT 복합섬유의 유연성 확인을 위한 매듭, 꼬임 구조 형성 이미지 (b) 단일 복합섬유의 강도 확인을 위한 리프팅 테스트 (c) 일반 모직에 직조한 복합섬유(붉은색) 기반 센서 이미지 (d) NO2 가스의 농도에 따른 센서 검출 반응성 그래프
멍게껍질과 탄소나노튜브로 만든 복합섬유, 유해가스 감지하는 웨어러블 센서 만든다
- 후처리 공정 및 촉매 없이 유해가스 감지 센싱기능을 보유한 복합섬유 개발 - 대량생산 및 일반 섬유에 직조 가능, 차세대 웨어러블 센서 활용 기대 한국과학기술연구원(KIST, 원장 이병권) 기능성복합소재연구센터 정현수 박사, 이승기 박사 연구팀은 한국과학기술원(KAIST, 총장 신성철) 정희태 교수 연구팀과의 공동연구를 통해 후처리 공정이 전혀 필요 없고, 연속으로 대량생산이 가능한 섬유형 이산화질소(NO2) 센서를 개발했다고 밝혔다. 최근 웨어러블(wearable) 기기가 일상에 널리 보급된 가운데, 관련 분야의 연구 또한 매우 활발하다. 그중에서도 착용을 통해 상태와 환경을 실시간으로 손쉽게 감지할 수 있는 ‘웨어러블 센서’가 주목을 받고 있다. 웨어러블 센서는 여러 소재와 결합하여 그 모양과 기능을 달리할 수 있는데, 섬유 형태는 유연하며, 일반 섬유에 직조를 할 수 있어 가장 이상적인 플랫폼으로 주목받고 있다. 기존의 섬유 기반 센서 소재들은 대부분 일반 섬유에 전도성 소재와 센서 소재를 혼합하여 코팅하는 방식으로 제작되는데, 저항이 높아 높은 전압이 필요하고 무엇보다 섬유와 코팅되는 소재들의 결합력이 떨어져 내구성에 문제가 많았다. 이를 해결하기 위해 섬유 자체가 전도성을 가지는 그래핀산화물* 섬유가 등장했다. 그러나 그래핀 섬유는 후처리 공정이 필수적이며, 유연성이 많이 저하되고, 공정 및 소재 비용이 많이 소요되어 경제적이지 못하다는 단점이 지적되어왔다. *그래핀산화물(graphene oxide): 흑연의 산화를 이용한 화학적 박리를 통해 얻는 탄소원자로만 이루어진 2차원 평면을 가지는 그래핀의 산화물 형태 KIST 연구진은 버려지는 멍게껍질로부터 나노셀룰로오스**를 추출, 탄소나노튜브***와 결합한 복합섬유를 제조하여 후처리 및 촉매가 필요 없는 이산화질소 센서 소재를 개발했다. 또한, 개발한 복합섬유는 기계적 강도와 유연성을 동시에 보유하고 있어 일반 섬유와 직조가 가능하다. 실제로 연구팀은 복합섬유를 삽입한 직물을 만들어 유해가스인 이산화질소를 감지하는 데 성공했다. ** 나노셀룰로오스(nanocellulose): 녹색 식물, 다양한 형태의 조류 및 난균류의 세포벽을 구성하는 요소로써 지구상에 가장 풍부한 유기 화합물인 셀룰로오스를 나노(10억분의 1) 수준으로 분해한 물질 *** 탄소나노튜브(carbon nanotube): 탄소원자로만 이루어진 원통형의 나노 구조체 특히 이미 산업화되어 있는 일반 습식방사법으로 복합섬유를 연속 생산할 수 있어, 향후 값싼 웨어러블 가스 센서를 상용화하는 데 있어 매우 유리할 것으로 보인다. 연구에 쓰인 소재 가격만으로 연구진이 제조비용을 산출한 결과 섬유 1m당 약 0.01$ (약 10원) 미만의 비용이 드는 것으로 확인되었다. 이 방법으로 제조된 복합섬유는 전도성, 다공성 그리고 이산화질소 가스에 대한 높은 선택성과 감도(ppb 레벨)를 제조단계에서부터 one-step으로 보유하고 있다. KIST 정현수 박사는 “본 연구는 웨어러블 센싱 소재로서 갖춰야 할 기본 물성들을 재료의 복합화를 통해 효율적으로 한 번에 제조할 수 있는 있다는 점에서 매우 중요하다”라고 강조하고 “향후 이산화질소 외에 다른 유해가스 검출용 웨어러블 소재를 경제성 있게 개발하는 데 매진하겠다”라고 밝혔다. 이번 연구는 과학기술정보통신부(장관 유영민) 지원으로 KIST 오픈리서치프로그램과 한국연구재단 나노소재기술개발사업을 통해 수행되었으며, 연구결과는 소재 분야 유명 국제저널인 ‘ACS Nano’(IF: 13.71, JCR 분야 상위: 4.04%)에 최신호에 게재되었으며, KIST는 제조기술에 대한 국내 특허를 출원 완료(2018-0141635) 했다. *(논문명) ‘Continuous Meter-Scale Synthesis of Weavable Tunicate Cellulose/Carbon Nanotube Fibers for High-Performance Wearable Sensors’ - (제 1저자) 한국과학기술원 조수연 박사 - (공저자) 한국과학기술연구원 유하영 연구원(박사과정) - (교신저자) 한국과학기술연구원 정현수 박사, 이승기 박사 / 한국과학기술원 정희태 교수 <그림설명> ▲ (a) 본 연구에서 개발된 TCNF/CNT 복합섬유 연속 방사 공정 모식도(b) 미터스케일생산 제품(c) 복합섬유를 구성하고 있는 마이크로/나노 크기의 기공 구조 이미지 (d) 복합섬유 소재 표면적 분석을 위한 BET 측정 결과 ▲ (a) 본 연구에서 개발된 TCNF/CNT 복합섬유의 유연성 확인을 위한 매듭, 꼬임 구조 형성 이미지 (b) 단일 복합섬유의 강도 확인을 위한 리프팅 테스트 (c) 일반 모직에 직조한 복합섬유(붉은색) 기반 센서 이미지 (d) NO2 가스의 농도에 따른 센서 검출 반응성 그래프
멍게껍질과 탄소나노튜브로 만든 복합섬유, 유해가스 감지하는 웨어러블 센서 만든다
- 후처리 공정 및 촉매 없이 유해가스 감지 센싱기능을 보유한 복합섬유 개발 - 대량생산 및 일반 섬유에 직조 가능, 차세대 웨어러블 센서 활용 기대 한국과학기술연구원(KIST, 원장 이병권) 기능성복합소재연구센터 정현수 박사, 이승기 박사 연구팀은 한국과학기술원(KAIST, 총장 신성철) 정희태 교수 연구팀과의 공동연구를 통해 후처리 공정이 전혀 필요 없고, 연속으로 대량생산이 가능한 섬유형 이산화질소(NO2) 센서를 개발했다고 밝혔다. 최근 웨어러블(wearable) 기기가 일상에 널리 보급된 가운데, 관련 분야의 연구 또한 매우 활발하다. 그중에서도 착용을 통해 상태와 환경을 실시간으로 손쉽게 감지할 수 있는 ‘웨어러블 센서’가 주목을 받고 있다. 웨어러블 센서는 여러 소재와 결합하여 그 모양과 기능을 달리할 수 있는데, 섬유 형태는 유연하며, 일반 섬유에 직조를 할 수 있어 가장 이상적인 플랫폼으로 주목받고 있다. 기존의 섬유 기반 센서 소재들은 대부분 일반 섬유에 전도성 소재와 센서 소재를 혼합하여 코팅하는 방식으로 제작되는데, 저항이 높아 높은 전압이 필요하고 무엇보다 섬유와 코팅되는 소재들의 결합력이 떨어져 내구성에 문제가 많았다. 이를 해결하기 위해 섬유 자체가 전도성을 가지는 그래핀산화물* 섬유가 등장했다. 그러나 그래핀 섬유는 후처리 공정이 필수적이며, 유연성이 많이 저하되고, 공정 및 소재 비용이 많이 소요되어 경제적이지 못하다는 단점이 지적되어왔다. *그래핀산화물(graphene oxide): 흑연의 산화를 이용한 화학적 박리를 통해 얻는 탄소원자로만 이루어진 2차원 평면을 가지는 그래핀의 산화물 형태 KIST 연구진은 버려지는 멍게껍질로부터 나노셀룰로오스**를 추출, 탄소나노튜브***와 결합한 복합섬유를 제조하여 후처리 및 촉매가 필요 없는 이산화질소 센서 소재를 개발했다. 또한, 개발한 복합섬유는 기계적 강도와 유연성을 동시에 보유하고 있어 일반 섬유와 직조가 가능하다. 실제로 연구팀은 복합섬유를 삽입한 직물을 만들어 유해가스인 이산화질소를 감지하는 데 성공했다. ** 나노셀룰로오스(nanocellulose): 녹색 식물, 다양한 형태의 조류 및 난균류의 세포벽을 구성하는 요소로써 지구상에 가장 풍부한 유기 화합물인 셀룰로오스를 나노(10억분의 1) 수준으로 분해한 물질 *** 탄소나노튜브(carbon nanotube): 탄소원자로만 이루어진 원통형의 나노 구조체 특히 이미 산업화되어 있는 일반 습식방사법으로 복합섬유를 연속 생산할 수 있어, 향후 값싼 웨어러블 가스 센서를 상용화하는 데 있어 매우 유리할 것으로 보인다. 연구에 쓰인 소재 가격만으로 연구진이 제조비용을 산출한 결과 섬유 1m당 약 0.01$ (약 10원) 미만의 비용이 드는 것으로 확인되었다. 이 방법으로 제조된 복합섬유는 전도성, 다공성 그리고 이산화질소 가스에 대한 높은 선택성과 감도(ppb 레벨)를 제조단계에서부터 one-step으로 보유하고 있다. KIST 정현수 박사는 “본 연구는 웨어러블 센싱 소재로서 갖춰야 할 기본 물성들을 재료의 복합화를 통해 효율적으로 한 번에 제조할 수 있는 있다는 점에서 매우 중요하다”라고 강조하고 “향후 이산화질소 외에 다른 유해가스 검출용 웨어러블 소재를 경제성 있게 개발하는 데 매진하겠다”라고 밝혔다. 이번 연구는 과학기술정보통신부(장관 유영민) 지원으로 KIST 오픈리서치프로그램과 한국연구재단 나노소재기술개발사업을 통해 수행되었으며, 연구결과는 소재 분야 유명 국제저널인 ‘ACS Nano’(IF: 13.71, JCR 분야 상위: 4.04%)에 최신호에 게재되었으며, KIST는 제조기술에 대한 국내 특허를 출원 완료(2018-0141635) 했다. *(논문명) ‘Continuous Meter-Scale Synthesis of Weavable Tunicate Cellulose/Carbon Nanotube Fibers for High-Performance Wearable Sensors’ - (제 1저자) 한국과학기술원 조수연 박사 - (공저자) 한국과학기술연구원 유하영 연구원(박사과정) - (교신저자) 한국과학기술연구원 정현수 박사, 이승기 박사 / 한국과학기술원 정희태 교수 <그림설명> ▲ (a) 본 연구에서 개발된 TCNF/CNT 복합섬유 연속 방사 공정 모식도(b) 미터스케일생산 제품(c) 복합섬유를 구성하고 있는 마이크로/나노 크기의 기공 구조 이미지 (d) 복합섬유 소재 표면적 분석을 위한 BET 측정 결과 ▲ (a) 본 연구에서 개발된 TCNF/CNT 복합섬유의 유연성 확인을 위한 매듭, 꼬임 구조 형성 이미지 (b) 단일 복합섬유의 강도 확인을 위한 리프팅 테스트 (c) 일반 모직에 직조한 복합섬유(붉은색) 기반 센서 이미지 (d) NO2 가스의 농도에 따른 센서 검출 반응성 그래프
멍게껍질과 탄소나노튜브로 만든 복합섬유, 유해가스 감지하는 웨어러블 센서 만든다
- 후처리 공정 및 촉매 없이 유해가스 감지 센싱기능을 보유한 복합섬유 개발 - 대량생산 및 일반 섬유에 직조 가능, 차세대 웨어러블 센서 활용 기대 한국과학기술연구원(KIST, 원장 이병권) 기능성복합소재연구센터 정현수 박사, 이승기 박사 연구팀은 한국과학기술원(KAIST, 총장 신성철) 정희태 교수 연구팀과의 공동연구를 통해 후처리 공정이 전혀 필요 없고, 연속으로 대량생산이 가능한 섬유형 이산화질소(NO2) 센서를 개발했다고 밝혔다. 최근 웨어러블(wearable) 기기가 일상에 널리 보급된 가운데, 관련 분야의 연구 또한 매우 활발하다. 그중에서도 착용을 통해 상태와 환경을 실시간으로 손쉽게 감지할 수 있는 ‘웨어러블 센서’가 주목을 받고 있다. 웨어러블 센서는 여러 소재와 결합하여 그 모양과 기능을 달리할 수 있는데, 섬유 형태는 유연하며, 일반 섬유에 직조를 할 수 있어 가장 이상적인 플랫폼으로 주목받고 있다. 기존의 섬유 기반 센서 소재들은 대부분 일반 섬유에 전도성 소재와 센서 소재를 혼합하여 코팅하는 방식으로 제작되는데, 저항이 높아 높은 전압이 필요하고 무엇보다 섬유와 코팅되는 소재들의 결합력이 떨어져 내구성에 문제가 많았다. 이를 해결하기 위해 섬유 자체가 전도성을 가지는 그래핀산화물* 섬유가 등장했다. 그러나 그래핀 섬유는 후처리 공정이 필수적이며, 유연성이 많이 저하되고, 공정 및 소재 비용이 많이 소요되어 경제적이지 못하다는 단점이 지적되어왔다. *그래핀산화물(graphene oxide): 흑연의 산화를 이용한 화학적 박리를 통해 얻는 탄소원자로만 이루어진 2차원 평면을 가지는 그래핀의 산화물 형태 KIST 연구진은 버려지는 멍게껍질로부터 나노셀룰로오스**를 추출, 탄소나노튜브***와 결합한 복합섬유를 제조하여 후처리 및 촉매가 필요 없는 이산화질소 센서 소재를 개발했다. 또한, 개발한 복합섬유는 기계적 강도와 유연성을 동시에 보유하고 있어 일반 섬유와 직조가 가능하다. 실제로 연구팀은 복합섬유를 삽입한 직물을 만들어 유해가스인 이산화질소를 감지하는 데 성공했다. ** 나노셀룰로오스(nanocellulose): 녹색 식물, 다양한 형태의 조류 및 난균류의 세포벽을 구성하는 요소로써 지구상에 가장 풍부한 유기 화합물인 셀룰로오스를 나노(10억분의 1) 수준으로 분해한 물질 *** 탄소나노튜브(carbon nanotube): 탄소원자로만 이루어진 원통형의 나노 구조체 특히 이미 산업화되어 있는 일반 습식방사법으로 복합섬유를 연속 생산할 수 있어, 향후 값싼 웨어러블 가스 센서를 상용화하는 데 있어 매우 유리할 것으로 보인다. 연구에 쓰인 소재 가격만으로 연구진이 제조비용을 산출한 결과 섬유 1m당 약 0.01$ (약 10원) 미만의 비용이 드는 것으로 확인되었다. 이 방법으로 제조된 복합섬유는 전도성, 다공성 그리고 이산화질소 가스에 대한 높은 선택성과 감도(ppb 레벨)를 제조단계에서부터 one-step으로 보유하고 있다. KIST 정현수 박사는 “본 연구는 웨어러블 센싱 소재로서 갖춰야 할 기본 물성들을 재료의 복합화를 통해 효율적으로 한 번에 제조할 수 있는 있다는 점에서 매우 중요하다”라고 강조하고 “향후 이산화질소 외에 다른 유해가스 검출용 웨어러블 소재를 경제성 있게 개발하는 데 매진하겠다”라고 밝혔다. 이번 연구는 과학기술정보통신부(장관 유영민) 지원으로 KIST 오픈리서치프로그램과 한국연구재단 나노소재기술개발사업을 통해 수행되었으며, 연구결과는 소재 분야 유명 국제저널인 ‘ACS Nano’(IF: 13.71, JCR 분야 상위: 4.04%)에 최신호에 게재되었으며, KIST는 제조기술에 대한 국내 특허를 출원 완료(2018-0141635) 했다. *(논문명) ‘Continuous Meter-Scale Synthesis of Weavable Tunicate Cellulose/Carbon Nanotube Fibers for High-Performance Wearable Sensors’ - (제 1저자) 한국과학기술원 조수연 박사 - (공저자) 한국과학기술연구원 유하영 연구원(박사과정) - (교신저자) 한국과학기술연구원 정현수 박사, 이승기 박사 / 한국과학기술원 정희태 교수 <그림설명> ▲ (a) 본 연구에서 개발된 TCNF/CNT 복합섬유 연속 방사 공정 모식도(b) 미터스케일생산 제품(c) 복합섬유를 구성하고 있는 마이크로/나노 크기의 기공 구조 이미지 (d) 복합섬유 소재 표면적 분석을 위한 BET 측정 결과 ▲ (a) 본 연구에서 개발된 TCNF/CNT 복합섬유의 유연성 확인을 위한 매듭, 꼬임 구조 형성 이미지 (b) 단일 복합섬유의 강도 확인을 위한 리프팅 테스트 (c) 일반 모직에 직조한 복합섬유(붉은색) 기반 센서 이미지 (d) NO2 가스의 농도에 따른 센서 검출 반응성 그래프
벌레를 이용하여 장 건강에 좋은 특효약 개발한다
- ‘예쁜꼬마선충’ 벌레를 이용하여 장 질환 치료용 천연물 발굴 성공 - 장 건강 효능을 빠르게 탐색, 향후 바이오제품 개발에 기여할 것 한국과학기술연구원(KIST, 원장 이병권) 강릉분원 천연물연구소(분원장 하성도) 천연물인포매틱스연구센터 강경수 박사팀은 ‘예쁜꼬마선충’이라는 벌레를 이용하여 장질환 개선효능을 빠르게 평가할 수 있는 기술을 개발하는데 성공하였으며, 이 기술을 활용하여 장 질환 개선에 좋은 천연물 후보물질을 발굴하는데 성공하였다. ‘예쁜꼬마선충(Caenorhabditis elegans)’은 흙에 서식하는 1 밀리미터 정도 크기의 투명한 벌레로 900여개의 체세포와 300여개의 신경세포, 2만 여개의 유전자로 구성되어 있다. 꼬마선충의 유전자 중 40%가 인간에게 보존되어 있는 것으로 밝혀져 세포 사멸, 노화 등의 생물학적 기작이 인간에게도 적용될 수 있다고 알려졌다. 장누수 증후군, 염증성 장질환과 같은 만성 장 질환을 개선·치료하는 식의약품을 개발하기 위해서는 다양한 물질들의 장 질환 치료 효능과 잠재적 독성을 빠르게 검증할 수 있는 기술이 필수적이다. 이를 위해서는 환자를 대상으로 하는 최종적 단계인 임상시험 전에, 전임상시험이라 불리는 사람을 대체하는 포유동물을 대상으로 효능평가와 독성실험을 거치게 된다. 이러한 전임상 실험 과정에서 쥐, 토끼, 개와 돼지 같은 포유동물의 희생은 불가피하며, 많은 연구개발 비용이 소요된다. KIST 강경수 박사팀은 포유동물 대신 ‘예쁜꼬마선충’이라는 벌레를 이용하여 장 질환 개선효능을 평가하는 방법을 개발하는 데 성공하였다. 벌레에게 장 건강을 나쁘게 하는 유해한 장내균을 먹이면 벌레의 장관 투과도가 크게 나빠지며, 수명이 급격히 줄어들게 된다. 이때 장 건강에 도움을 줄 수 있는 여러 가지 식품이나 천연물 소재를 함께 먹인 다음 벌레의 장 건강이 얼마나 잘 회복되는지 관찰함으로써 장 질환 개선 효능 평가가 가능하다. KIST 연구진은 벌레를 이용한 장 질환 평가 기술을 이용하여 브로콜리, 케일, 배추 등의 채소의 소화과정에서 만들어지는 천연물 대사물질인 <3,3'-다이인돌릴메탄>이 장누수 증후군과 염증성 장질환 개선 효능이 있는 것을 밝혀냈다. KIST 강경수 박사팀은 이러한 예쁜꼬마선충을 이용한 장 건강 평가법을 이용하여 장내 마이크로바이옴을 구성하는 다양한 장내미생물과 인체 질병, 건강과의 상관관계를 연구하는데 활용할 계획이다. 또한 향후 한반도 자생식물 유래의 천연물 신물질과 유익한 프로바이오틱스 유산균을 이용하여 장 건강을 개선하고, 건강수명을 늘려줄 수 있는 건강기능식품, 신약후보물질 등 다양한 바이오소재 개발에 나설 계획이다. 연구진은 이번 연구결과를 통해 포유동물의 희생을 최소화하여 동물연구윤리를 지켜나가고, 꼭 필요한 포유동물 실험에 집중함으로써 연구의 효율성을 획기적으로 높일 수 있을 것으로 기대한다고 밝혔다. KIST 강경수 박사는 “예쁜꼬마선충이라는 벌레는 사람과 비슷한 소화기관과 유전자를 가지고 있어서, 향후 다양한 장내 미생물과 인체질병과의 상관관계를 구명하는 기초연구뿐만 아니라 장 질환 개선용 식의약품의 개발과 같은 산업원천 기술로도 요긴하게 쓰일 수 있다.”고 설명하였다. 본 연구는 과학기술정보통신부(장관 유영민) 지원으로 KIST기관고유사업인 ‘천연물유래 광반응 신물질 개발’ 사업과 ‘천연물-마이크로바이옴 상호작용 연구’ 사업을 통해 수행되었으며, 연구결과는 미국 화학회가 발간하는 국제 학술지인 ‘Journal of Agricultural and Food Chemistry(농업식품화학회지)’ (IF: 3.412, JCR 분야 상위 2.632%) 최신호에 속표지(Supplementary Cover) 논문으로 게재되었다. * (논문명) 3,3'-Diindolylmethane Improves Intestinal Permeability Dysfunction in Cultured Human Intestinal Cells and the Model Animal Caenorhabditis elegans. - (제1저자) 한국과학기술연구원 김주연 연구원 - (교신저자) 한국과학기술연구원 강경수 선임연구원 <그림설명>