Result
게시물 키워드"KIST"에 대한 4618개의 검색결과를 찾았습니다.
KIST 신(新) 촉매 소재 기술 개발, 지구 온난화 주범인 이산화탄소를 고부가가치 화학원료로
- 구리에 금속산화물 도입, 다양한 탄소화합물을 합성하는 기초 원천 기술 개발 - 계산·화학 모델링 기반으로 에틸렌·에탄올 생성을 위한 최적의 촉매 구조 밝혀 한국과학기술연구원(KIST, 원장 이병권) 청정에너지연구센터 황윤정 박사 연구팀은 한국과학기술원(KAIST, 총장 신성철) 김형준 교수 연구팀과의 공동연구를 통해 온실가스로 알려진 이산화탄소를 전환하여 에틸렌·에탄올 등 산업에서 활용 가능한 탄소화합물을 만들어내는 새로운 전기 촉매 기술을 개발했다고 밝혔다. 이산화탄소, 물과 같은 원료로부터 고부가가치 화학 원료를 직접 생성하는 이산화탄소 전환기술은 경제적 가치 창출뿐만 아니라, 이산화탄소 저감에도 이바지할 수 있어 기후 변화 대응의 핵심기술로 발전할 전망이다. 전기화학적 이산화탄소 전환기술의 경우, 일산화탄소나 포름산만을 선택적으로(95% 이상) 생성하는 고성능 촉매 소재들이 최근 다양하게 개발되었다. 그러나, 훨씬 복잡한 반응으로 알려진 에틸렌·에탄올 등의 탄소가 두 개 이상인 다탄소 화합물을 만드는 기술은 아직 생성전류 선택도*가 40~70% 수준으로 충분한 촉매 기술이 확보되지 못했다. *생성전류 선택도 : 전기화학적으로 이산화탄소 전환할 때 흐른 전류 대비 에틸렌 생성에 사용된 전류의 비율 또한, 현재까지 구리 금속 촉매만이 전기화학적 이산화탄소 전환을 통한 에틸렌 생성이 가능한 유일한 소재로 알려져, 보다 다양한 촉매 소재 설계에 한계점이 있었다. 따라서, 촉매 반응의 이해 및 다양한 탄소화합물을 합성하려는 연구도 더딘 실정이었다. KIST 연구진은 구리 촉매 소재에 ‘세리아’라는 금속산화물을 도입, 나노 계면을 조절함으로써 다탄소 화합물 선택도를 향상시킬 수 있는 신규 촉매 설계 기술을 개발하였다. 균일한 구리 촉매 표면은 다탄소 생성물 합성에 적절치 못하다는 이전의 연구 결과를 바탕으로, 다양한 화합물 만들 수 있도록 이종의 소재를 도입하는 접근법을 사용하였다. 연구진이 도입한 금속산화물 ‘세리아’는 구리와의 계면에서 전자 및 화합물의 교환이 가능하여 촉매 반응에 기여하였다. 구리 나노 입자의 단일 촉매의 경우 에틸렌·에탄올의 생성전류 선택도가 40% 미만이었는데, KIST 연구진이 개발한 촉매는 65%로 높은 생성전류 선택도를 보였다. 또한, KIST 연구진은 계산·화학적 모델링을 통해 계면에서의 촉매 다양성 반응 원인을 규명했다. 특히, 구리와 세리아의 계면 조절을 통해 이산화탄소 전환 생성물의 비율을 조절할 수 있었고, 결과적으로 일산화탄소나 메탄과 같이 탄소가 하나인 화합물에 비해, 에틸렌·에탄올 등의 다탄소 화합물의 비율을 향상시키는 구조를 찾을 수 있었다. KIST 황윤정 박사는 “이산화탄소 전환 생성물의 다양성을 높이는 촉매 소재의 연구가 도전적이지만 새로운 가능성을 제시할 수 있을 것이다.”라고 말하며, “본 연구로 밝혀진 촉매 반응의 이해와 촉매 소재 개발 전략은 다탄소 화합물 합성 성능 향상에 기여하여 이산화탄소 활용 기술의 실용화 가능성을 높일 것으로 기대한다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영)의 지원을 받아 KIST 주요사업 및 기후변화대응기술개발사업(차세대탄소자원화 사업단, 단장 전기원)으로 수행되었으며, 연구 결과는 에너지 분야 최고 수준 과학전문지인 「ACS Energy Letters」 (IF : 16.33, JCR 분야 상위 1.92%) 최신호에 게재되었다. * (논문명) Metal-Oxide Interfaces for Selective Electrochemical C-C Coupling Reactions - (제 1저자) 한국과학기술연구원 이찬우 박사((現)국민대학교 조교수) 한국과학기술원 신승재 박사과정 - (교신저자) 한국과학기술연구원 황윤정 책임연구원, 한국과학기술원 김형준 교수 <그림설명> [그림 1] (좌) 전기화학적 이산화탄소 전환 장치 및 에틸렌, 에탄올 생산 촉매 모식도 (우) 구리, 구리/세륨산화물, 세륨산화물 촉매의 전기화학적 생산 선택도 결과
KIST 신(新) 촉매 소재 기술 개발, 지구 온난화 주범인 이산화탄소를 고부가가치 화학원료로
- 구리에 금속산화물 도입, 다양한 탄소화합물을 합성하는 기초 원천 기술 개발 - 계산·화학 모델링 기반으로 에틸렌·에탄올 생성을 위한 최적의 촉매 구조 밝혀 한국과학기술연구원(KIST, 원장 이병권) 청정에너지연구센터 황윤정 박사 연구팀은 한국과학기술원(KAIST, 총장 신성철) 김형준 교수 연구팀과의 공동연구를 통해 온실가스로 알려진 이산화탄소를 전환하여 에틸렌·에탄올 등 산업에서 활용 가능한 탄소화합물을 만들어내는 새로운 전기 촉매 기술을 개발했다고 밝혔다. 이산화탄소, 물과 같은 원료로부터 고부가가치 화학 원료를 직접 생성하는 이산화탄소 전환기술은 경제적 가치 창출뿐만 아니라, 이산화탄소 저감에도 이바지할 수 있어 기후 변화 대응의 핵심기술로 발전할 전망이다. 전기화학적 이산화탄소 전환기술의 경우, 일산화탄소나 포름산만을 선택적으로(95% 이상) 생성하는 고성능 촉매 소재들이 최근 다양하게 개발되었다. 그러나, 훨씬 복잡한 반응으로 알려진 에틸렌·에탄올 등의 탄소가 두 개 이상인 다탄소 화합물을 만드는 기술은 아직 생성전류 선택도*가 40~70% 수준으로 충분한 촉매 기술이 확보되지 못했다. *생성전류 선택도 : 전기화학적으로 이산화탄소 전환할 때 흐른 전류 대비 에틸렌 생성에 사용된 전류의 비율 또한, 현재까지 구리 금속 촉매만이 전기화학적 이산화탄소 전환을 통한 에틸렌 생성이 가능한 유일한 소재로 알려져, 보다 다양한 촉매 소재 설계에 한계점이 있었다. 따라서, 촉매 반응의 이해 및 다양한 탄소화합물을 합성하려는 연구도 더딘 실정이었다. KIST 연구진은 구리 촉매 소재에 ‘세리아’라는 금속산화물을 도입, 나노 계면을 조절함으로써 다탄소 화합물 선택도를 향상시킬 수 있는 신규 촉매 설계 기술을 개발하였다. 균일한 구리 촉매 표면은 다탄소 생성물 합성에 적절치 못하다는 이전의 연구 결과를 바탕으로, 다양한 화합물 만들 수 있도록 이종의 소재를 도입하는 접근법을 사용하였다. 연구진이 도입한 금속산화물 ‘세리아’는 구리와의 계면에서 전자 및 화합물의 교환이 가능하여 촉매 반응에 기여하였다. 구리 나노 입자의 단일 촉매의 경우 에틸렌·에탄올의 생성전류 선택도가 40% 미만이었는데, KIST 연구진이 개발한 촉매는 65%로 높은 생성전류 선택도를 보였다. 또한, KIST 연구진은 계산·화학적 모델링을 통해 계면에서의 촉매 다양성 반응 원인을 규명했다. 특히, 구리와 세리아의 계면 조절을 통해 이산화탄소 전환 생성물의 비율을 조절할 수 있었고, 결과적으로 일산화탄소나 메탄과 같이 탄소가 하나인 화합물에 비해, 에틸렌·에탄올 등의 다탄소 화합물의 비율을 향상시키는 구조를 찾을 수 있었다. KIST 황윤정 박사는 “이산화탄소 전환 생성물의 다양성을 높이는 촉매 소재의 연구가 도전적이지만 새로운 가능성을 제시할 수 있을 것이다.”라고 말하며, “본 연구로 밝혀진 촉매 반응의 이해와 촉매 소재 개발 전략은 다탄소 화합물 합성 성능 향상에 기여하여 이산화탄소 활용 기술의 실용화 가능성을 높일 것으로 기대한다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영)의 지원을 받아 KIST 주요사업 및 기후변화대응기술개발사업(차세대탄소자원화 사업단, 단장 전기원)으로 수행되었으며, 연구 결과는 에너지 분야 최고 수준 과학전문지인 「ACS Energy Letters」 (IF : 16.33, JCR 분야 상위 1.92%) 최신호에 게재되었다. * (논문명) Metal-Oxide Interfaces for Selective Electrochemical C-C Coupling Reactions - (제 1저자) 한국과학기술연구원 이찬우 박사((現)국민대학교 조교수) 한국과학기술원 신승재 박사과정 - (교신저자) 한국과학기술연구원 황윤정 책임연구원, 한국과학기술원 김형준 교수 <그림설명> [그림 1] (좌) 전기화학적 이산화탄소 전환 장치 및 에틸렌, 에탄올 생산 촉매 모식도 (우) 구리, 구리/세륨산화물, 세륨산화물 촉매의 전기화학적 생산 선택도 결과
KIST 신(新) 촉매 소재 기술 개발, 지구 온난화 주범인 이산화탄소를 고부가가치 화학원료로
- 구리에 금속산화물 도입, 다양한 탄소화합물을 합성하는 기초 원천 기술 개발 - 계산·화학 모델링 기반으로 에틸렌·에탄올 생성을 위한 최적의 촉매 구조 밝혀 한국과학기술연구원(KIST, 원장 이병권) 청정에너지연구센터 황윤정 박사 연구팀은 한국과학기술원(KAIST, 총장 신성철) 김형준 교수 연구팀과의 공동연구를 통해 온실가스로 알려진 이산화탄소를 전환하여 에틸렌·에탄올 등 산업에서 활용 가능한 탄소화합물을 만들어내는 새로운 전기 촉매 기술을 개발했다고 밝혔다. 이산화탄소, 물과 같은 원료로부터 고부가가치 화학 원료를 직접 생성하는 이산화탄소 전환기술은 경제적 가치 창출뿐만 아니라, 이산화탄소 저감에도 이바지할 수 있어 기후 변화 대응의 핵심기술로 발전할 전망이다. 전기화학적 이산화탄소 전환기술의 경우, 일산화탄소나 포름산만을 선택적으로(95% 이상) 생성하는 고성능 촉매 소재들이 최근 다양하게 개발되었다. 그러나, 훨씬 복잡한 반응으로 알려진 에틸렌·에탄올 등의 탄소가 두 개 이상인 다탄소 화합물을 만드는 기술은 아직 생성전류 선택도*가 40~70% 수준으로 충분한 촉매 기술이 확보되지 못했다. *생성전류 선택도 : 전기화학적으로 이산화탄소 전환할 때 흐른 전류 대비 에틸렌 생성에 사용된 전류의 비율 또한, 현재까지 구리 금속 촉매만이 전기화학적 이산화탄소 전환을 통한 에틸렌 생성이 가능한 유일한 소재로 알려져, 보다 다양한 촉매 소재 설계에 한계점이 있었다. 따라서, 촉매 반응의 이해 및 다양한 탄소화합물을 합성하려는 연구도 더딘 실정이었다. KIST 연구진은 구리 촉매 소재에 ‘세리아’라는 금속산화물을 도입, 나노 계면을 조절함으로써 다탄소 화합물 선택도를 향상시킬 수 있는 신규 촉매 설계 기술을 개발하였다. 균일한 구리 촉매 표면은 다탄소 생성물 합성에 적절치 못하다는 이전의 연구 결과를 바탕으로, 다양한 화합물 만들 수 있도록 이종의 소재를 도입하는 접근법을 사용하였다. 연구진이 도입한 금속산화물 ‘세리아’는 구리와의 계면에서 전자 및 화합물의 교환이 가능하여 촉매 반응에 기여하였다. 구리 나노 입자의 단일 촉매의 경우 에틸렌·에탄올의 생성전류 선택도가 40% 미만이었는데, KIST 연구진이 개발한 촉매는 65%로 높은 생성전류 선택도를 보였다. 또한, KIST 연구진은 계산·화학적 모델링을 통해 계면에서의 촉매 다양성 반응 원인을 규명했다. 특히, 구리와 세리아의 계면 조절을 통해 이산화탄소 전환 생성물의 비율을 조절할 수 있었고, 결과적으로 일산화탄소나 메탄과 같이 탄소가 하나인 화합물에 비해, 에틸렌·에탄올 등의 다탄소 화합물의 비율을 향상시키는 구조를 찾을 수 있었다. KIST 황윤정 박사는 “이산화탄소 전환 생성물의 다양성을 높이는 촉매 소재의 연구가 도전적이지만 새로운 가능성을 제시할 수 있을 것이다.”라고 말하며, “본 연구로 밝혀진 촉매 반응의 이해와 촉매 소재 개발 전략은 다탄소 화합물 합성 성능 향상에 기여하여 이산화탄소 활용 기술의 실용화 가능성을 높일 것으로 기대한다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영)의 지원을 받아 KIST 주요사업 및 기후변화대응기술개발사업(차세대탄소자원화 사업단, 단장 전기원)으로 수행되었으며, 연구 결과는 에너지 분야 최고 수준 과학전문지인 「ACS Energy Letters」 (IF : 16.33, JCR 분야 상위 1.92%) 최신호에 게재되었다. * (논문명) Metal-Oxide Interfaces for Selective Electrochemical C-C Coupling Reactions - (제 1저자) 한국과학기술연구원 이찬우 박사((現)국민대학교 조교수) 한국과학기술원 신승재 박사과정 - (교신저자) 한국과학기술연구원 황윤정 책임연구원, 한국과학기술원 김형준 교수 <그림설명> [그림 1] (좌) 전기화학적 이산화탄소 전환 장치 및 에틸렌, 에탄올 생산 촉매 모식도 (우) 구리, 구리/세륨산화물, 세륨산화물 촉매의 전기화학적 생산 선택도 결과
KIST 신(新) 촉매 소재 기술 개발, 지구 온난화 주범인 이산화탄소를 고부가가치 화학원료로
- 구리에 금속산화물 도입, 다양한 탄소화합물을 합성하는 기초 원천 기술 개발 - 계산·화학 모델링 기반으로 에틸렌·에탄올 생성을 위한 최적의 촉매 구조 밝혀 한국과학기술연구원(KIST, 원장 이병권) 청정에너지연구센터 황윤정 박사 연구팀은 한국과학기술원(KAIST, 총장 신성철) 김형준 교수 연구팀과의 공동연구를 통해 온실가스로 알려진 이산화탄소를 전환하여 에틸렌·에탄올 등 산업에서 활용 가능한 탄소화합물을 만들어내는 새로운 전기 촉매 기술을 개발했다고 밝혔다. 이산화탄소, 물과 같은 원료로부터 고부가가치 화학 원료를 직접 생성하는 이산화탄소 전환기술은 경제적 가치 창출뿐만 아니라, 이산화탄소 저감에도 이바지할 수 있어 기후 변화 대응의 핵심기술로 발전할 전망이다. 전기화학적 이산화탄소 전환기술의 경우, 일산화탄소나 포름산만을 선택적으로(95% 이상) 생성하는 고성능 촉매 소재들이 최근 다양하게 개발되었다. 그러나, 훨씬 복잡한 반응으로 알려진 에틸렌·에탄올 등의 탄소가 두 개 이상인 다탄소 화합물을 만드는 기술은 아직 생성전류 선택도*가 40~70% 수준으로 충분한 촉매 기술이 확보되지 못했다. *생성전류 선택도 : 전기화학적으로 이산화탄소 전환할 때 흐른 전류 대비 에틸렌 생성에 사용된 전류의 비율 또한, 현재까지 구리 금속 촉매만이 전기화학적 이산화탄소 전환을 통한 에틸렌 생성이 가능한 유일한 소재로 알려져, 보다 다양한 촉매 소재 설계에 한계점이 있었다. 따라서, 촉매 반응의 이해 및 다양한 탄소화합물을 합성하려는 연구도 더딘 실정이었다. KIST 연구진은 구리 촉매 소재에 ‘세리아’라는 금속산화물을 도입, 나노 계면을 조절함으로써 다탄소 화합물 선택도를 향상시킬 수 있는 신규 촉매 설계 기술을 개발하였다. 균일한 구리 촉매 표면은 다탄소 생성물 합성에 적절치 못하다는 이전의 연구 결과를 바탕으로, 다양한 화합물 만들 수 있도록 이종의 소재를 도입하는 접근법을 사용하였다. 연구진이 도입한 금속산화물 ‘세리아’는 구리와의 계면에서 전자 및 화합물의 교환이 가능하여 촉매 반응에 기여하였다. 구리 나노 입자의 단일 촉매의 경우 에틸렌·에탄올의 생성전류 선택도가 40% 미만이었는데, KIST 연구진이 개발한 촉매는 65%로 높은 생성전류 선택도를 보였다. 또한, KIST 연구진은 계산·화학적 모델링을 통해 계면에서의 촉매 다양성 반응 원인을 규명했다. 특히, 구리와 세리아의 계면 조절을 통해 이산화탄소 전환 생성물의 비율을 조절할 수 있었고, 결과적으로 일산화탄소나 메탄과 같이 탄소가 하나인 화합물에 비해, 에틸렌·에탄올 등의 다탄소 화합물의 비율을 향상시키는 구조를 찾을 수 있었다. KIST 황윤정 박사는 “이산화탄소 전환 생성물의 다양성을 높이는 촉매 소재의 연구가 도전적이지만 새로운 가능성을 제시할 수 있을 것이다.”라고 말하며, “본 연구로 밝혀진 촉매 반응의 이해와 촉매 소재 개발 전략은 다탄소 화합물 합성 성능 향상에 기여하여 이산화탄소 활용 기술의 실용화 가능성을 높일 것으로 기대한다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영)의 지원을 받아 KIST 주요사업 및 기후변화대응기술개발사업(차세대탄소자원화 사업단, 단장 전기원)으로 수행되었으며, 연구 결과는 에너지 분야 최고 수준 과학전문지인 「ACS Energy Letters」 (IF : 16.33, JCR 분야 상위 1.92%) 최신호에 게재되었다. * (논문명) Metal-Oxide Interfaces for Selective Electrochemical C-C Coupling Reactions - (제 1저자) 한국과학기술연구원 이찬우 박사((現)국민대학교 조교수) 한국과학기술원 신승재 박사과정 - (교신저자) 한국과학기술연구원 황윤정 책임연구원, 한국과학기술원 김형준 교수 <그림설명> [그림 1] (좌) 전기화학적 이산화탄소 전환 장치 및 에틸렌, 에탄올 생산 촉매 모식도 (우) 구리, 구리/세륨산화물, 세륨산화물 촉매의 전기화학적 생산 선택도 결과
KIST 신(新) 촉매 소재 기술 개발, 지구 온난화 주범인 이산화탄소를 고부가가치 화학원료로
- 구리에 금속산화물 도입, 다양한 탄소화합물을 합성하는 기초 원천 기술 개발 - 계산·화학 모델링 기반으로 에틸렌·에탄올 생성을 위한 최적의 촉매 구조 밝혀 한국과학기술연구원(KIST, 원장 이병권) 청정에너지연구센터 황윤정 박사 연구팀은 한국과학기술원(KAIST, 총장 신성철) 김형준 교수 연구팀과의 공동연구를 통해 온실가스로 알려진 이산화탄소를 전환하여 에틸렌·에탄올 등 산업에서 활용 가능한 탄소화합물을 만들어내는 새로운 전기 촉매 기술을 개발했다고 밝혔다. 이산화탄소, 물과 같은 원료로부터 고부가가치 화학 원료를 직접 생성하는 이산화탄소 전환기술은 경제적 가치 창출뿐만 아니라, 이산화탄소 저감에도 이바지할 수 있어 기후 변화 대응의 핵심기술로 발전할 전망이다. 전기화학적 이산화탄소 전환기술의 경우, 일산화탄소나 포름산만을 선택적으로(95% 이상) 생성하는 고성능 촉매 소재들이 최근 다양하게 개발되었다. 그러나, 훨씬 복잡한 반응으로 알려진 에틸렌·에탄올 등의 탄소가 두 개 이상인 다탄소 화합물을 만드는 기술은 아직 생성전류 선택도*가 40~70% 수준으로 충분한 촉매 기술이 확보되지 못했다. *생성전류 선택도 : 전기화학적으로 이산화탄소 전환할 때 흐른 전류 대비 에틸렌 생성에 사용된 전류의 비율 또한, 현재까지 구리 금속 촉매만이 전기화학적 이산화탄소 전환을 통한 에틸렌 생성이 가능한 유일한 소재로 알려져, 보다 다양한 촉매 소재 설계에 한계점이 있었다. 따라서, 촉매 반응의 이해 및 다양한 탄소화합물을 합성하려는 연구도 더딘 실정이었다. KIST 연구진은 구리 촉매 소재에 ‘세리아’라는 금속산화물을 도입, 나노 계면을 조절함으로써 다탄소 화합물 선택도를 향상시킬 수 있는 신규 촉매 설계 기술을 개발하였다. 균일한 구리 촉매 표면은 다탄소 생성물 합성에 적절치 못하다는 이전의 연구 결과를 바탕으로, 다양한 화합물 만들 수 있도록 이종의 소재를 도입하는 접근법을 사용하였다. 연구진이 도입한 금속산화물 ‘세리아’는 구리와의 계면에서 전자 및 화합물의 교환이 가능하여 촉매 반응에 기여하였다. 구리 나노 입자의 단일 촉매의 경우 에틸렌·에탄올의 생성전류 선택도가 40% 미만이었는데, KIST 연구진이 개발한 촉매는 65%로 높은 생성전류 선택도를 보였다. 또한, KIST 연구진은 계산·화학적 모델링을 통해 계면에서의 촉매 다양성 반응 원인을 규명했다. 특히, 구리와 세리아의 계면 조절을 통해 이산화탄소 전환 생성물의 비율을 조절할 수 있었고, 결과적으로 일산화탄소나 메탄과 같이 탄소가 하나인 화합물에 비해, 에틸렌·에탄올 등의 다탄소 화합물의 비율을 향상시키는 구조를 찾을 수 있었다. KIST 황윤정 박사는 “이산화탄소 전환 생성물의 다양성을 높이는 촉매 소재의 연구가 도전적이지만 새로운 가능성을 제시할 수 있을 것이다.”라고 말하며, “본 연구로 밝혀진 촉매 반응의 이해와 촉매 소재 개발 전략은 다탄소 화합물 합성 성능 향상에 기여하여 이산화탄소 활용 기술의 실용화 가능성을 높일 것으로 기대한다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영)의 지원을 받아 KIST 주요사업 및 기후변화대응기술개발사업(차세대탄소자원화 사업단, 단장 전기원)으로 수행되었으며, 연구 결과는 에너지 분야 최고 수준 과학전문지인 「ACS Energy Letters」 (IF : 16.33, JCR 분야 상위 1.92%) 최신호에 게재되었다. * (논문명) Metal-Oxide Interfaces for Selective Electrochemical C-C Coupling Reactions - (제 1저자) 한국과학기술연구원 이찬우 박사((現)국민대학교 조교수) 한국과학기술원 신승재 박사과정 - (교신저자) 한국과학기술연구원 황윤정 책임연구원, 한국과학기술원 김형준 교수 <그림설명> [그림 1] (좌) 전기화학적 이산화탄소 전환 장치 및 에틸렌, 에탄올 생산 촉매 모식도 (우) 구리, 구리/세륨산화물, 세륨산화물 촉매의 전기화학적 생산 선택도 결과
KIST 신(新) 촉매 소재 기술 개발, 지구 온난화 주범인 이산화탄소를 고부가가치 화학원료로
- 구리에 금속산화물 도입, 다양한 탄소화합물을 합성하는 기초 원천 기술 개발 - 계산·화학 모델링 기반으로 에틸렌·에탄올 생성을 위한 최적의 촉매 구조 밝혀 한국과학기술연구원(KIST, 원장 이병권) 청정에너지연구센터 황윤정 박사 연구팀은 한국과학기술원(KAIST, 총장 신성철) 김형준 교수 연구팀과의 공동연구를 통해 온실가스로 알려진 이산화탄소를 전환하여 에틸렌·에탄올 등 산업에서 활용 가능한 탄소화합물을 만들어내는 새로운 전기 촉매 기술을 개발했다고 밝혔다. 이산화탄소, 물과 같은 원료로부터 고부가가치 화학 원료를 직접 생성하는 이산화탄소 전환기술은 경제적 가치 창출뿐만 아니라, 이산화탄소 저감에도 이바지할 수 있어 기후 변화 대응의 핵심기술로 발전할 전망이다. 전기화학적 이산화탄소 전환기술의 경우, 일산화탄소나 포름산만을 선택적으로(95% 이상) 생성하는 고성능 촉매 소재들이 최근 다양하게 개발되었다. 그러나, 훨씬 복잡한 반응으로 알려진 에틸렌·에탄올 등의 탄소가 두 개 이상인 다탄소 화합물을 만드는 기술은 아직 생성전류 선택도*가 40~70% 수준으로 충분한 촉매 기술이 확보되지 못했다. *생성전류 선택도 : 전기화학적으로 이산화탄소 전환할 때 흐른 전류 대비 에틸렌 생성에 사용된 전류의 비율 또한, 현재까지 구리 금속 촉매만이 전기화학적 이산화탄소 전환을 통한 에틸렌 생성이 가능한 유일한 소재로 알려져, 보다 다양한 촉매 소재 설계에 한계점이 있었다. 따라서, 촉매 반응의 이해 및 다양한 탄소화합물을 합성하려는 연구도 더딘 실정이었다. KIST 연구진은 구리 촉매 소재에 ‘세리아’라는 금속산화물을 도입, 나노 계면을 조절함으로써 다탄소 화합물 선택도를 향상시킬 수 있는 신규 촉매 설계 기술을 개발하였다. 균일한 구리 촉매 표면은 다탄소 생성물 합성에 적절치 못하다는 이전의 연구 결과를 바탕으로, 다양한 화합물 만들 수 있도록 이종의 소재를 도입하는 접근법을 사용하였다. 연구진이 도입한 금속산화물 ‘세리아’는 구리와의 계면에서 전자 및 화합물의 교환이 가능하여 촉매 반응에 기여하였다. 구리 나노 입자의 단일 촉매의 경우 에틸렌·에탄올의 생성전류 선택도가 40% 미만이었는데, KIST 연구진이 개발한 촉매는 65%로 높은 생성전류 선택도를 보였다. 또한, KIST 연구진은 계산·화학적 모델링을 통해 계면에서의 촉매 다양성 반응 원인을 규명했다. 특히, 구리와 세리아의 계면 조절을 통해 이산화탄소 전환 생성물의 비율을 조절할 수 있었고, 결과적으로 일산화탄소나 메탄과 같이 탄소가 하나인 화합물에 비해, 에틸렌·에탄올 등의 다탄소 화합물의 비율을 향상시키는 구조를 찾을 수 있었다. KIST 황윤정 박사는 “이산화탄소 전환 생성물의 다양성을 높이는 촉매 소재의 연구가 도전적이지만 새로운 가능성을 제시할 수 있을 것이다.”라고 말하며, “본 연구로 밝혀진 촉매 반응의 이해와 촉매 소재 개발 전략은 다탄소 화합물 합성 성능 향상에 기여하여 이산화탄소 활용 기술의 실용화 가능성을 높일 것으로 기대한다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영)의 지원을 받아 KIST 주요사업 및 기후변화대응기술개발사업(차세대탄소자원화 사업단, 단장 전기원)으로 수행되었으며, 연구 결과는 에너지 분야 최고 수준 과학전문지인 「ACS Energy Letters」 (IF : 16.33, JCR 분야 상위 1.92%) 최신호에 게재되었다. * (논문명) Metal-Oxide Interfaces for Selective Electrochemical C-C Coupling Reactions - (제 1저자) 한국과학기술연구원 이찬우 박사((現)국민대학교 조교수) 한국과학기술원 신승재 박사과정 - (교신저자) 한국과학기술연구원 황윤정 책임연구원, 한국과학기술원 김형준 교수 <그림설명> [그림 1] (좌) 전기화학적 이산화탄소 전환 장치 및 에틸렌, 에탄올 생산 촉매 모식도 (우) 구리, 구리/세륨산화물, 세륨산화물 촉매의 전기화학적 생산 선택도 결과
수소전기차 핵심소재인 연료전지, KIST 연구진이 개발한 고성능 분리막으로 국산화 앞당긴다
- 열 경화를 통해 고성능의 새로운 고분자막(파라-폴리벤즈이미다졸) 개발 - 기존 전해질막보다 44% 높은 성능과 63% 낮은 전압손실 보여 한국과학기술연구원(KIST, 원장 이병권) 수소·연료전지연구단 헨켄스마이어 디억 박사팀은 “고온형 고분자 전해질 연료전지(HT-PEMFC)”*의 핵심소재인 전해질막의 성능을 크게 높였다고 밝혔다. *고온형 고분자 전해질막 연료전지(High Temperature - Polymer Electrolyte Membrane Fuel Cell, HT-PEMFC) : 연료전지 장치 중, 이온전도성 고분자막을 이온전달 전해질로 사용하는 연료전지 연료전지는 100℃ 이하의 온도에서 작동되는 저온형과 160~180℃의 온도에서 작동되는 고온형으로 나뉜다. 이중 고온형 연료전지는 작동 시 발생되는 열을 그냥 버리지 않고, 메탄올과 같은 연료를 수소로 변환시키는 공정에 사용하여 수소를 생산하고, 이 수소를 다시 연료전지 에너지원으로 재사용할 수 있다. 가격이 저렴하면서도 운반, 보관, 취급이 쉬운 메탄올은 수소변환 시 이산화탄소를 배출하지 않는다. 이러한 메탄올 개질기와 결합된 고온 연료전지는 발전기에 사용하면 기존의 디젤 발전기보다 이산화탄소 발생을 65%가량 줄일 수 있는 큰 장점이 있다. 고온형 연료전지가 널리 상용화되기 위해서는 높은 전력밀도와 긴 내구성이 필요하다. 보통 고온형 연료전지에는 이온전도도를 높이기 위해 인산이 첨가된 폴리벤즈이미다졸(PBI, PolyBenzImidazole)**계 전해질막이 사용된다. 그러나 기존의 폴리벤즈이미다졸계 분리막은 연료전지가 작동되는 고온에서 인산에 용해되는 심각한 문제가 있었다. **PBI(폴리벤즈이미다졸, PolyBenzImidazole) : 열적, 화학적인 안정성이 매우 뛰어나 방화복이나 우주복 등에 쓰이는 고분자 재료 KIST 연구진은 고분자막의 안정성과 전도성을 획기적으로 개선하기 위해, 설폰산기***를 폴리벤즈이미다졸에 부착시킨 후 열을 가해, 고온에서 부서지지 않는 단단한 고분자막을 만들었다. KIST 연구팀이 개발한 새로운 분리막은 160˚C의 인산에서도 용해되지 않았으며, 기존의 다른 분리막보다 44% 더 높은 전도성과 전력밀도를 보였다. 또한 시간에 따른 전압감소도 63% 더 낮아 우수한 내구성을 보여주었다. ***설폰산기 : 황산 분자에서 하이드록시기가 떨어져 나간 구조의 원자단 KIST 헨켄스마이어 디억 박사는 “고온용 고분자 전해질막은 수소전기차용 연료전지의 핵심소재이나 기술적인 장벽이 높아 현재는 소수의 국가에서만 생산 가능한 실정이다.”라고 말하며, “이번 연구결과를 통해 전해질막의 국산화에 크게 기여할 수 있을 것”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 수행된 KIST 주요사업과 덴마크 혁신 기금/한국 녹색 기술 센터가 지원한 KD 연료전지 프로젝트로 수행되었으며, 「Journal of Membrane Science」 (IF: 7.02, JCR 분야 상위 1.72%) 최신호에 게재되었다. * (논문명) Thermally crosslinked sulfonated polybenzimidazole membranes and their performance in high temperature polymer electrolyte fuel cells - (제 1저자) 한국과학기술연구원 N. Nambi Krishnan 박사후연구원 - (교신저자) 한국과학기술연구원 Dirk Henkensmeier 책임연구원 <그림설명> [그림 1] 160 ℃에서 85 중량 % 인산 용액에 가열된 고분자막. 맨오른쪽이 이번 개발된 고분자막으로, 용해되지 않았다. [그림 2] (a) MS-p-PBI (b) 열경화 된 c-MS-p-PBI를 사용한 고온연료전지의 작동 시간에 따른 성능 곡선
수소전기차 핵심소재인 연료전지, KIST 연구진이 개발한 고성능 분리막으로 국산화 앞당긴다
- 열 경화를 통해 고성능의 새로운 고분자막(파라-폴리벤즈이미다졸) 개발 - 기존 전해질막보다 44% 높은 성능과 63% 낮은 전압손실 보여 한국과학기술연구원(KIST, 원장 이병권) 수소·연료전지연구단 헨켄스마이어 디억 박사팀은 “고온형 고분자 전해질 연료전지(HT-PEMFC)”*의 핵심소재인 전해질막의 성능을 크게 높였다고 밝혔다. *고온형 고분자 전해질막 연료전지(High Temperature - Polymer Electrolyte Membrane Fuel Cell, HT-PEMFC) : 연료전지 장치 중, 이온전도성 고분자막을 이온전달 전해질로 사용하는 연료전지 연료전지는 100℃ 이하의 온도에서 작동되는 저온형과 160~180℃의 온도에서 작동되는 고온형으로 나뉜다. 이중 고온형 연료전지는 작동 시 발생되는 열을 그냥 버리지 않고, 메탄올과 같은 연료를 수소로 변환시키는 공정에 사용하여 수소를 생산하고, 이 수소를 다시 연료전지 에너지원으로 재사용할 수 있다. 가격이 저렴하면서도 운반, 보관, 취급이 쉬운 메탄올은 수소변환 시 이산화탄소를 배출하지 않는다. 이러한 메탄올 개질기와 결합된 고온 연료전지는 발전기에 사용하면 기존의 디젤 발전기보다 이산화탄소 발생을 65%가량 줄일 수 있는 큰 장점이 있다. 고온형 연료전지가 널리 상용화되기 위해서는 높은 전력밀도와 긴 내구성이 필요하다. 보통 고온형 연료전지에는 이온전도도를 높이기 위해 인산이 첨가된 폴리벤즈이미다졸(PBI, PolyBenzImidazole)**계 전해질막이 사용된다. 그러나 기존의 폴리벤즈이미다졸계 분리막은 연료전지가 작동되는 고온에서 인산에 용해되는 심각한 문제가 있었다. **PBI(폴리벤즈이미다졸, PolyBenzImidazole) : 열적, 화학적인 안정성이 매우 뛰어나 방화복이나 우주복 등에 쓰이는 고분자 재료 KIST 연구진은 고분자막의 안정성과 전도성을 획기적으로 개선하기 위해, 설폰산기***를 폴리벤즈이미다졸에 부착시킨 후 열을 가해, 고온에서 부서지지 않는 단단한 고분자막을 만들었다. KIST 연구팀이 개발한 새로운 분리막은 160˚C의 인산에서도 용해되지 않았으며, 기존의 다른 분리막보다 44% 더 높은 전도성과 전력밀도를 보였다. 또한 시간에 따른 전압감소도 63% 더 낮아 우수한 내구성을 보여주었다. ***설폰산기 : 황산 분자에서 하이드록시기가 떨어져 나간 구조의 원자단 KIST 헨켄스마이어 디억 박사는 “고온용 고분자 전해질막은 수소전기차용 연료전지의 핵심소재이나 기술적인 장벽이 높아 현재는 소수의 국가에서만 생산 가능한 실정이다.”라고 말하며, “이번 연구결과를 통해 전해질막의 국산화에 크게 기여할 수 있을 것”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 수행된 KIST 주요사업과 덴마크 혁신 기금/한국 녹색 기술 센터가 지원한 KD 연료전지 프로젝트로 수행되었으며, 「Journal of Membrane Science」 (IF: 7.02, JCR 분야 상위 1.72%) 최신호에 게재되었다. * (논문명) Thermally crosslinked sulfonated polybenzimidazole membranes and their performance in high temperature polymer electrolyte fuel cells - (제 1저자) 한국과학기술연구원 N. Nambi Krishnan 박사후연구원 - (교신저자) 한국과학기술연구원 Dirk Henkensmeier 책임연구원 <그림설명> [그림 1] 160 ℃에서 85 중량 % 인산 용액에 가열된 고분자막. 맨오른쪽이 이번 개발된 고분자막으로, 용해되지 않았다. [그림 2] (a) MS-p-PBI (b) 열경화 된 c-MS-p-PBI를 사용한 고온연료전지의 작동 시간에 따른 성능 곡선
수소전기차 핵심소재인 연료전지, KIST 연구진이 개발한 고성능 분리막으로 국산화 앞당긴다
- 열 경화를 통해 고성능의 새로운 고분자막(파라-폴리벤즈이미다졸) 개발 - 기존 전해질막보다 44% 높은 성능과 63% 낮은 전압손실 보여 한국과학기술연구원(KIST, 원장 이병권) 수소·연료전지연구단 헨켄스마이어 디억 박사팀은 “고온형 고분자 전해질 연료전지(HT-PEMFC)”*의 핵심소재인 전해질막의 성능을 크게 높였다고 밝혔다. *고온형 고분자 전해질막 연료전지(High Temperature - Polymer Electrolyte Membrane Fuel Cell, HT-PEMFC) : 연료전지 장치 중, 이온전도성 고분자막을 이온전달 전해질로 사용하는 연료전지 연료전지는 100℃ 이하의 온도에서 작동되는 저온형과 160~180℃의 온도에서 작동되는 고온형으로 나뉜다. 이중 고온형 연료전지는 작동 시 발생되는 열을 그냥 버리지 않고, 메탄올과 같은 연료를 수소로 변환시키는 공정에 사용하여 수소를 생산하고, 이 수소를 다시 연료전지 에너지원으로 재사용할 수 있다. 가격이 저렴하면서도 운반, 보관, 취급이 쉬운 메탄올은 수소변환 시 이산화탄소를 배출하지 않는다. 이러한 메탄올 개질기와 결합된 고온 연료전지는 발전기에 사용하면 기존의 디젤 발전기보다 이산화탄소 발생을 65%가량 줄일 수 있는 큰 장점이 있다. 고온형 연료전지가 널리 상용화되기 위해서는 높은 전력밀도와 긴 내구성이 필요하다. 보통 고온형 연료전지에는 이온전도도를 높이기 위해 인산이 첨가된 폴리벤즈이미다졸(PBI, PolyBenzImidazole)**계 전해질막이 사용된다. 그러나 기존의 폴리벤즈이미다졸계 분리막은 연료전지가 작동되는 고온에서 인산에 용해되는 심각한 문제가 있었다. **PBI(폴리벤즈이미다졸, PolyBenzImidazole) : 열적, 화학적인 안정성이 매우 뛰어나 방화복이나 우주복 등에 쓰이는 고분자 재료 KIST 연구진은 고분자막의 안정성과 전도성을 획기적으로 개선하기 위해, 설폰산기***를 폴리벤즈이미다졸에 부착시킨 후 열을 가해, 고온에서 부서지지 않는 단단한 고분자막을 만들었다. KIST 연구팀이 개발한 새로운 분리막은 160˚C의 인산에서도 용해되지 않았으며, 기존의 다른 분리막보다 44% 더 높은 전도성과 전력밀도를 보였다. 또한 시간에 따른 전압감소도 63% 더 낮아 우수한 내구성을 보여주었다. ***설폰산기 : 황산 분자에서 하이드록시기가 떨어져 나간 구조의 원자단 KIST 헨켄스마이어 디억 박사는 “고온용 고분자 전해질막은 수소전기차용 연료전지의 핵심소재이나 기술적인 장벽이 높아 현재는 소수의 국가에서만 생산 가능한 실정이다.”라고 말하며, “이번 연구결과를 통해 전해질막의 국산화에 크게 기여할 수 있을 것”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 수행된 KIST 주요사업과 덴마크 혁신 기금/한국 녹색 기술 센터가 지원한 KD 연료전지 프로젝트로 수행되었으며, 「Journal of Membrane Science」 (IF: 7.02, JCR 분야 상위 1.72%) 최신호에 게재되었다. * (논문명) Thermally crosslinked sulfonated polybenzimidazole membranes and their performance in high temperature polymer electrolyte fuel cells - (제 1저자) 한국과학기술연구원 N. Nambi Krishnan 박사후연구원 - (교신저자) 한국과학기술연구원 Dirk Henkensmeier 책임연구원 <그림설명> [그림 1] 160 ℃에서 85 중량 % 인산 용액에 가열된 고분자막. 맨오른쪽이 이번 개발된 고분자막으로, 용해되지 않았다. [그림 2] (a) MS-p-PBI (b) 열경화 된 c-MS-p-PBI를 사용한 고온연료전지의 작동 시간에 따른 성능 곡선
수소전기차 핵심소재인 연료전지, KIST 연구진이 개발한 고성능 분리막으로 국산화 앞당긴다
- 열 경화를 통해 고성능의 새로운 고분자막(파라-폴리벤즈이미다졸) 개발 - 기존 전해질막보다 44% 높은 성능과 63% 낮은 전압손실 보여 한국과학기술연구원(KIST, 원장 이병권) 수소·연료전지연구단 헨켄스마이어 디억 박사팀은 “고온형 고분자 전해질 연료전지(HT-PEMFC)”*의 핵심소재인 전해질막의 성능을 크게 높였다고 밝혔다. *고온형 고분자 전해질막 연료전지(High Temperature - Polymer Electrolyte Membrane Fuel Cell, HT-PEMFC) : 연료전지 장치 중, 이온전도성 고분자막을 이온전달 전해질로 사용하는 연료전지 연료전지는 100℃ 이하의 온도에서 작동되는 저온형과 160~180℃의 온도에서 작동되는 고온형으로 나뉜다. 이중 고온형 연료전지는 작동 시 발생되는 열을 그냥 버리지 않고, 메탄올과 같은 연료를 수소로 변환시키는 공정에 사용하여 수소를 생산하고, 이 수소를 다시 연료전지 에너지원으로 재사용할 수 있다. 가격이 저렴하면서도 운반, 보관, 취급이 쉬운 메탄올은 수소변환 시 이산화탄소를 배출하지 않는다. 이러한 메탄올 개질기와 결합된 고온 연료전지는 발전기에 사용하면 기존의 디젤 발전기보다 이산화탄소 발생을 65%가량 줄일 수 있는 큰 장점이 있다. 고온형 연료전지가 널리 상용화되기 위해서는 높은 전력밀도와 긴 내구성이 필요하다. 보통 고온형 연료전지에는 이온전도도를 높이기 위해 인산이 첨가된 폴리벤즈이미다졸(PBI, PolyBenzImidazole)**계 전해질막이 사용된다. 그러나 기존의 폴리벤즈이미다졸계 분리막은 연료전지가 작동되는 고온에서 인산에 용해되는 심각한 문제가 있었다. **PBI(폴리벤즈이미다졸, PolyBenzImidazole) : 열적, 화학적인 안정성이 매우 뛰어나 방화복이나 우주복 등에 쓰이는 고분자 재료 KIST 연구진은 고분자막의 안정성과 전도성을 획기적으로 개선하기 위해, 설폰산기***를 폴리벤즈이미다졸에 부착시킨 후 열을 가해, 고온에서 부서지지 않는 단단한 고분자막을 만들었다. KIST 연구팀이 개발한 새로운 분리막은 160˚C의 인산에서도 용해되지 않았으며, 기존의 다른 분리막보다 44% 더 높은 전도성과 전력밀도를 보였다. 또한 시간에 따른 전압감소도 63% 더 낮아 우수한 내구성을 보여주었다. ***설폰산기 : 황산 분자에서 하이드록시기가 떨어져 나간 구조의 원자단 KIST 헨켄스마이어 디억 박사는 “고온용 고분자 전해질막은 수소전기차용 연료전지의 핵심소재이나 기술적인 장벽이 높아 현재는 소수의 국가에서만 생산 가능한 실정이다.”라고 말하며, “이번 연구결과를 통해 전해질막의 국산화에 크게 기여할 수 있을 것”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 수행된 KIST 주요사업과 덴마크 혁신 기금/한국 녹색 기술 센터가 지원한 KD 연료전지 프로젝트로 수행되었으며, 「Journal of Membrane Science」 (IF: 7.02, JCR 분야 상위 1.72%) 최신호에 게재되었다. * (논문명) Thermally crosslinked sulfonated polybenzimidazole membranes and their performance in high temperature polymer electrolyte fuel cells - (제 1저자) 한국과학기술연구원 N. Nambi Krishnan 박사후연구원 - (교신저자) 한국과학기술연구원 Dirk Henkensmeier 책임연구원 <그림설명> [그림 1] 160 ℃에서 85 중량 % 인산 용액에 가열된 고분자막. 맨오른쪽이 이번 개발된 고분자막으로, 용해되지 않았다. [그림 2] (a) MS-p-PBI (b) 열경화 된 c-MS-p-PBI를 사용한 고온연료전지의 작동 시간에 따른 성능 곡선