Result
게시물 키워드"KIST"에 대한 4618개의 검색결과를 찾았습니다.
‘변화무쌍’ 줄기세포, 복합영상으로 추적한다
- 체내 이식된 줄기세포 변화 장기간 추적하는 표지 및 영상획득 기술 개발 - 전분화능 유지와 높은 생체적합성으로 새 줄기세포 치료제 개발 기여 전망 최근 줄기세포가 세계 의과학계 최대의 관심사가 되고 있는 이유는 모든 종류의 기관과 조직으로 분화할 수 있는 전분화능(全分化能, pluripotency) 때문이다. 이론상 줄기세포를 이용하면 근육, 뼈, 장기, 뇌 등 어떤 손상 세포와 조직도 재생 가능하다. 하지만 인체에 이식한 줄기세포의 분화 과정을 적절히 제어하기 어렵다는 점이 한계로 작용해왔다. 이를 해결하기 위해서는 먼저 줄기세포의 생존과 이동, 분포 등을 정확히 파악하는 방법이 필요한 가운데, 국내 연구진이 생체 내 줄기세포의 변화상을 정밀하고 안전하게 추적할 수 있는 신기술을 개발해 관심을 끌고 있다. 한국과학기술연구원(KIST, 원장 이병권) 테라그노시스연구단 김광명 박사팀은 동국대학교 일산병원 신경과 김동억 박사팀과의 공동연구로 인체에 이식한 줄기세포를 추적하는 신개념 줄기세포 표지 및 영상화 기술을 개발했다고 밝혔다. 생체 적합성이 높은 조영제 나노입자를 줄기세포에 결합시켜 장기간 형광영상과 자기공명영상(MRI)의 복합영상으로 모니터링 할 수 있는 기술이다. 줄기세포 치료제의 이동과 분포를 관찰하는 표지(labeling) 및 영상화(imaging) 기술은 최근 줄기세포의 체내 이식 후 변화상을 추적하는 기술로도 주목받고 있다. 하지만 기존의 세포 표지기술은 조영제 또는 조영제가 함유된 나노입자를 줄기세포에 직접 표지하거나 유전자 조작을 통해 영상화가 가능한 세포로 전환해야 하기 때문에 줄기세포 고유의 전분화능과 인체 안전성 저하의 우려가 제기되어 왔다. KIST 연구진은 생체 적합성이 높고 줄기세포의 전분화능에도 영향을 주지 않는 신개념 표지 기술 개발을 위해 당대사공학* 및 생물직교성 무동 클릭화학**을 이용했다. 이를 통해 줄기세포 표면에 안전하게 표지할 수 있는 화학수용체를 만드는 한편, 이와 특이적으로 결합하는 산화철 기반의 복합조영제 나노입자를 개발해 줄기세포의 영상신호를 극대화하는 고감도 복합영상 획득에 성공했다. * 당대사공학(metabolic glycoengineering) : 알킨, 티올, 아자이드 등 다양한 화학 반응기를 세포 표면의 당 단백질에 인공적으로 도입할 수 있는 기술. 세포에 존재하는 당 단백질 합성과정을 이용하기 때문에 세포 독성이 없고 표지 가능한 화학 반응기의 양을 인위적으로 조절할 수 있다. ** 생물직교성 무동 클릭화학(Bioorthogonal copper-free click chemistry) : 아자이드와 알킨기가 구리 촉매 없이 특이적으로 결합되는 현상. 독성이 있는 구리 촉매를 사용하지 않기 때문에 세포나 생체 독성이 없고 기존 반응보다 반응속도가 빠르다. 연구팀은 이 기술을 이용한 뇌졸중 동물모델 실험을 통해 근적외선 형광영상 및 MRI 영상을 통해 14일 간에 걸쳐 장기간 안정적으로 관찰할 수 있었다. 이는 새로 개발된 복합조영제 나노입자 및 줄기세포 표지기술이 줄기세포의 전분화능 손실과 세포 독성 발현을 최소화했기 때문에 가능한 것이다. KIST 김광명 박사는 “이번에 개발한 줄기세포 표지 및 추적기술은 뇌에 이식한 줄기세포의 치료 효과를 고감도 복합영상으로 장기간 추적할 수 있게 하는 기술”이라며 “향후 뇌 질환용 줄기세포 치료제 개발과 효능 예측에 폭넓게 활용될 수 있을 것으로 전망된다”고 밝혔다. 한편 본 연구는 과학기술정보통신부(장관 최기영) 글로벌연구실사업 및 KIST 기관고유사업의 지원으로 수행되었으며, 관련 논문은 연구 성과의 파급력을 인정받아 재료·화학 분야 세계적 권위의 학술지 ‘ACS Nano’ (IF:13.903, JCR 분야 상위 6%) 최신호에 게재되었다. * (논문명) Dual-Modal Imaging-Guided Precise Tracking of Bioorthogonally Labeled Mesenchymal Stem Cells in Mouse Brain Stroke - (제1저자) 한국과학기술연구원 임승호 연구원 - (제1저자) 한국과학기술연구원 윤홍열 박사 - (교신저자) 한국과학기술연구원 김광명 박사 - (교신저자) 동국대학교 의과대학 김동억 박사 <그림설명> [그림 1] 복합조영제 나노입자가 표지된 줄기세포의 추적 영상 기술의 모식도 간편하고 안전한 표지를 위해 당대사공학 및 생물직교성 무동 클릭화학을 이용하여 줄기세포 표면에 인공적으로 표적 가능한 화학수용체 형성 및 고감도 형광/자기공명 영상화를 위한 복합조영제 나노입자 표지기술. 이를 뇌졸중 모델의 뇌에 이식 후 줄기세포의 추적 영상화 모식도 [그림 2] 형광/자기공명 복합 영상을 이용한 줄기세포 추적 영상 당대사공학 및 생물직교성 무동 클릭화학을 이용해 표지된 줄기세포의 생체 내 이식 후 형광/자기공명 복합 영상을 이용한 줄기세포 추적 영상. 줄기세포의 이식 후 시간에 따라 뇌졸중 병변으로 줄기세포의 신호가 이동하는 것을 확인할 수 있음.
‘변화무쌍’ 줄기세포, 복합영상으로 추적한다
- 체내 이식된 줄기세포 변화 장기간 추적하는 표지 및 영상획득 기술 개발 - 전분화능 유지와 높은 생체적합성으로 새 줄기세포 치료제 개발 기여 전망 최근 줄기세포가 세계 의과학계 최대의 관심사가 되고 있는 이유는 모든 종류의 기관과 조직으로 분화할 수 있는 전분화능(全分化能, pluripotency) 때문이다. 이론상 줄기세포를 이용하면 근육, 뼈, 장기, 뇌 등 어떤 손상 세포와 조직도 재생 가능하다. 하지만 인체에 이식한 줄기세포의 분화 과정을 적절히 제어하기 어렵다는 점이 한계로 작용해왔다. 이를 해결하기 위해서는 먼저 줄기세포의 생존과 이동, 분포 등을 정확히 파악하는 방법이 필요한 가운데, 국내 연구진이 생체 내 줄기세포의 변화상을 정밀하고 안전하게 추적할 수 있는 신기술을 개발해 관심을 끌고 있다. 한국과학기술연구원(KIST, 원장 이병권) 테라그노시스연구단 김광명 박사팀은 동국대학교 일산병원 신경과 김동억 박사팀과의 공동연구로 인체에 이식한 줄기세포를 추적하는 신개념 줄기세포 표지 및 영상화 기술을 개발했다고 밝혔다. 생체 적합성이 높은 조영제 나노입자를 줄기세포에 결합시켜 장기간 형광영상과 자기공명영상(MRI)의 복합영상으로 모니터링 할 수 있는 기술이다. 줄기세포 치료제의 이동과 분포를 관찰하는 표지(labeling) 및 영상화(imaging) 기술은 최근 줄기세포의 체내 이식 후 변화상을 추적하는 기술로도 주목받고 있다. 하지만 기존의 세포 표지기술은 조영제 또는 조영제가 함유된 나노입자를 줄기세포에 직접 표지하거나 유전자 조작을 통해 영상화가 가능한 세포로 전환해야 하기 때문에 줄기세포 고유의 전분화능과 인체 안전성 저하의 우려가 제기되어 왔다. KIST 연구진은 생체 적합성이 높고 줄기세포의 전분화능에도 영향을 주지 않는 신개념 표지 기술 개발을 위해 당대사공학* 및 생물직교성 무동 클릭화학**을 이용했다. 이를 통해 줄기세포 표면에 안전하게 표지할 수 있는 화학수용체를 만드는 한편, 이와 특이적으로 결합하는 산화철 기반의 복합조영제 나노입자를 개발해 줄기세포의 영상신호를 극대화하는 고감도 복합영상 획득에 성공했다. * 당대사공학(metabolic glycoengineering) : 알킨, 티올, 아자이드 등 다양한 화학 반응기를 세포 표면의 당 단백질에 인공적으로 도입할 수 있는 기술. 세포에 존재하는 당 단백질 합성과정을 이용하기 때문에 세포 독성이 없고 표지 가능한 화학 반응기의 양을 인위적으로 조절할 수 있다. ** 생물직교성 무동 클릭화학(Bioorthogonal copper-free click chemistry) : 아자이드와 알킨기가 구리 촉매 없이 특이적으로 결합되는 현상. 독성이 있는 구리 촉매를 사용하지 않기 때문에 세포나 생체 독성이 없고 기존 반응보다 반응속도가 빠르다. 연구팀은 이 기술을 이용한 뇌졸중 동물모델 실험을 통해 근적외선 형광영상 및 MRI 영상을 통해 14일 간에 걸쳐 장기간 안정적으로 관찰할 수 있었다. 이는 새로 개발된 복합조영제 나노입자 및 줄기세포 표지기술이 줄기세포의 전분화능 손실과 세포 독성 발현을 최소화했기 때문에 가능한 것이다. KIST 김광명 박사는 “이번에 개발한 줄기세포 표지 및 추적기술은 뇌에 이식한 줄기세포의 치료 효과를 고감도 복합영상으로 장기간 추적할 수 있게 하는 기술”이라며 “향후 뇌 질환용 줄기세포 치료제 개발과 효능 예측에 폭넓게 활용될 수 있을 것으로 전망된다”고 밝혔다. 한편 본 연구는 과학기술정보통신부(장관 최기영) 글로벌연구실사업 및 KIST 기관고유사업의 지원으로 수행되었으며, 관련 논문은 연구 성과의 파급력을 인정받아 재료·화학 분야 세계적 권위의 학술지 ‘ACS Nano’ (IF:13.903, JCR 분야 상위 6%) 최신호에 게재되었다. * (논문명) Dual-Modal Imaging-Guided Precise Tracking of Bioorthogonally Labeled Mesenchymal Stem Cells in Mouse Brain Stroke - (제1저자) 한국과학기술연구원 임승호 연구원 - (제1저자) 한국과학기술연구원 윤홍열 박사 - (교신저자) 한국과학기술연구원 김광명 박사 - (교신저자) 동국대학교 의과대학 김동억 박사 <그림설명> [그림 1] 복합조영제 나노입자가 표지된 줄기세포의 추적 영상 기술의 모식도 간편하고 안전한 표지를 위해 당대사공학 및 생물직교성 무동 클릭화학을 이용하여 줄기세포 표면에 인공적으로 표적 가능한 화학수용체 형성 및 고감도 형광/자기공명 영상화를 위한 복합조영제 나노입자 표지기술. 이를 뇌졸중 모델의 뇌에 이식 후 줄기세포의 추적 영상화 모식도 [그림 2] 형광/자기공명 복합 영상을 이용한 줄기세포 추적 영상 당대사공학 및 생물직교성 무동 클릭화학을 이용해 표지된 줄기세포의 생체 내 이식 후 형광/자기공명 복합 영상을 이용한 줄기세포 추적 영상. 줄기세포의 이식 후 시간에 따라 뇌졸중 병변으로 줄기세포의 신호가 이동하는 것을 확인할 수 있음.
‘변화무쌍’ 줄기세포, 복합영상으로 추적한다
- 체내 이식된 줄기세포 변화 장기간 추적하는 표지 및 영상획득 기술 개발 - 전분화능 유지와 높은 생체적합성으로 새 줄기세포 치료제 개발 기여 전망 최근 줄기세포가 세계 의과학계 최대의 관심사가 되고 있는 이유는 모든 종류의 기관과 조직으로 분화할 수 있는 전분화능(全分化能, pluripotency) 때문이다. 이론상 줄기세포를 이용하면 근육, 뼈, 장기, 뇌 등 어떤 손상 세포와 조직도 재생 가능하다. 하지만 인체에 이식한 줄기세포의 분화 과정을 적절히 제어하기 어렵다는 점이 한계로 작용해왔다. 이를 해결하기 위해서는 먼저 줄기세포의 생존과 이동, 분포 등을 정확히 파악하는 방법이 필요한 가운데, 국내 연구진이 생체 내 줄기세포의 변화상을 정밀하고 안전하게 추적할 수 있는 신기술을 개발해 관심을 끌고 있다. 한국과학기술연구원(KIST, 원장 이병권) 테라그노시스연구단 김광명 박사팀은 동국대학교 일산병원 신경과 김동억 박사팀과의 공동연구로 인체에 이식한 줄기세포를 추적하는 신개념 줄기세포 표지 및 영상화 기술을 개발했다고 밝혔다. 생체 적합성이 높은 조영제 나노입자를 줄기세포에 결합시켜 장기간 형광영상과 자기공명영상(MRI)의 복합영상으로 모니터링 할 수 있는 기술이다. 줄기세포 치료제의 이동과 분포를 관찰하는 표지(labeling) 및 영상화(imaging) 기술은 최근 줄기세포의 체내 이식 후 변화상을 추적하는 기술로도 주목받고 있다. 하지만 기존의 세포 표지기술은 조영제 또는 조영제가 함유된 나노입자를 줄기세포에 직접 표지하거나 유전자 조작을 통해 영상화가 가능한 세포로 전환해야 하기 때문에 줄기세포 고유의 전분화능과 인체 안전성 저하의 우려가 제기되어 왔다. KIST 연구진은 생체 적합성이 높고 줄기세포의 전분화능에도 영향을 주지 않는 신개념 표지 기술 개발을 위해 당대사공학* 및 생물직교성 무동 클릭화학**을 이용했다. 이를 통해 줄기세포 표면에 안전하게 표지할 수 있는 화학수용체를 만드는 한편, 이와 특이적으로 결합하는 산화철 기반의 복합조영제 나노입자를 개발해 줄기세포의 영상신호를 극대화하는 고감도 복합영상 획득에 성공했다. * 당대사공학(metabolic glycoengineering) : 알킨, 티올, 아자이드 등 다양한 화학 반응기를 세포 표면의 당 단백질에 인공적으로 도입할 수 있는 기술. 세포에 존재하는 당 단백질 합성과정을 이용하기 때문에 세포 독성이 없고 표지 가능한 화학 반응기의 양을 인위적으로 조절할 수 있다. ** 생물직교성 무동 클릭화학(Bioorthogonal copper-free click chemistry) : 아자이드와 알킨기가 구리 촉매 없이 특이적으로 결합되는 현상. 독성이 있는 구리 촉매를 사용하지 않기 때문에 세포나 생체 독성이 없고 기존 반응보다 반응속도가 빠르다. 연구팀은 이 기술을 이용한 뇌졸중 동물모델 실험을 통해 근적외선 형광영상 및 MRI 영상을 통해 14일 간에 걸쳐 장기간 안정적으로 관찰할 수 있었다. 이는 새로 개발된 복합조영제 나노입자 및 줄기세포 표지기술이 줄기세포의 전분화능 손실과 세포 독성 발현을 최소화했기 때문에 가능한 것이다. KIST 김광명 박사는 “이번에 개발한 줄기세포 표지 및 추적기술은 뇌에 이식한 줄기세포의 치료 효과를 고감도 복합영상으로 장기간 추적할 수 있게 하는 기술”이라며 “향후 뇌 질환용 줄기세포 치료제 개발과 효능 예측에 폭넓게 활용될 수 있을 것으로 전망된다”고 밝혔다. 한편 본 연구는 과학기술정보통신부(장관 최기영) 글로벌연구실사업 및 KIST 기관고유사업의 지원으로 수행되었으며, 관련 논문은 연구 성과의 파급력을 인정받아 재료·화학 분야 세계적 권위의 학술지 ‘ACS Nano’ (IF:13.903, JCR 분야 상위 6%) 최신호에 게재되었다. * (논문명) Dual-Modal Imaging-Guided Precise Tracking of Bioorthogonally Labeled Mesenchymal Stem Cells in Mouse Brain Stroke - (제1저자) 한국과학기술연구원 임승호 연구원 - (제1저자) 한국과학기술연구원 윤홍열 박사 - (교신저자) 한국과학기술연구원 김광명 박사 - (교신저자) 동국대학교 의과대학 김동억 박사 <그림설명> [그림 1] 복합조영제 나노입자가 표지된 줄기세포의 추적 영상 기술의 모식도 간편하고 안전한 표지를 위해 당대사공학 및 생물직교성 무동 클릭화학을 이용하여 줄기세포 표면에 인공적으로 표적 가능한 화학수용체 형성 및 고감도 형광/자기공명 영상화를 위한 복합조영제 나노입자 표지기술. 이를 뇌졸중 모델의 뇌에 이식 후 줄기세포의 추적 영상화 모식도 [그림 2] 형광/자기공명 복합 영상을 이용한 줄기세포 추적 영상 당대사공학 및 생물직교성 무동 클릭화학을 이용해 표지된 줄기세포의 생체 내 이식 후 형광/자기공명 복합 영상을 이용한 줄기세포 추적 영상. 줄기세포의 이식 후 시간에 따라 뇌졸중 병변으로 줄기세포의 신호가 이동하는 것을 확인할 수 있음.
‘변화무쌍’ 줄기세포, 복합영상으로 추적한다
- 체내 이식된 줄기세포 변화 장기간 추적하는 표지 및 영상획득 기술 개발 - 전분화능 유지와 높은 생체적합성으로 새 줄기세포 치료제 개발 기여 전망 최근 줄기세포가 세계 의과학계 최대의 관심사가 되고 있는 이유는 모든 종류의 기관과 조직으로 분화할 수 있는 전분화능(全分化能, pluripotency) 때문이다. 이론상 줄기세포를 이용하면 근육, 뼈, 장기, 뇌 등 어떤 손상 세포와 조직도 재생 가능하다. 하지만 인체에 이식한 줄기세포의 분화 과정을 적절히 제어하기 어렵다는 점이 한계로 작용해왔다. 이를 해결하기 위해서는 먼저 줄기세포의 생존과 이동, 분포 등을 정확히 파악하는 방법이 필요한 가운데, 국내 연구진이 생체 내 줄기세포의 변화상을 정밀하고 안전하게 추적할 수 있는 신기술을 개발해 관심을 끌고 있다. 한국과학기술연구원(KIST, 원장 이병권) 테라그노시스연구단 김광명 박사팀은 동국대학교 일산병원 신경과 김동억 박사팀과의 공동연구로 인체에 이식한 줄기세포를 추적하는 신개념 줄기세포 표지 및 영상화 기술을 개발했다고 밝혔다. 생체 적합성이 높은 조영제 나노입자를 줄기세포에 결합시켜 장기간 형광영상과 자기공명영상(MRI)의 복합영상으로 모니터링 할 수 있는 기술이다. 줄기세포 치료제의 이동과 분포를 관찰하는 표지(labeling) 및 영상화(imaging) 기술은 최근 줄기세포의 체내 이식 후 변화상을 추적하는 기술로도 주목받고 있다. 하지만 기존의 세포 표지기술은 조영제 또는 조영제가 함유된 나노입자를 줄기세포에 직접 표지하거나 유전자 조작을 통해 영상화가 가능한 세포로 전환해야 하기 때문에 줄기세포 고유의 전분화능과 인체 안전성 저하의 우려가 제기되어 왔다. KIST 연구진은 생체 적합성이 높고 줄기세포의 전분화능에도 영향을 주지 않는 신개념 표지 기술 개발을 위해 당대사공학* 및 생물직교성 무동 클릭화학**을 이용했다. 이를 통해 줄기세포 표면에 안전하게 표지할 수 있는 화학수용체를 만드는 한편, 이와 특이적으로 결합하는 산화철 기반의 복합조영제 나노입자를 개발해 줄기세포의 영상신호를 극대화하는 고감도 복합영상 획득에 성공했다. * 당대사공학(metabolic glycoengineering) : 알킨, 티올, 아자이드 등 다양한 화학 반응기를 세포 표면의 당 단백질에 인공적으로 도입할 수 있는 기술. 세포에 존재하는 당 단백질 합성과정을 이용하기 때문에 세포 독성이 없고 표지 가능한 화학 반응기의 양을 인위적으로 조절할 수 있다. ** 생물직교성 무동 클릭화학(Bioorthogonal copper-free click chemistry) : 아자이드와 알킨기가 구리 촉매 없이 특이적으로 결합되는 현상. 독성이 있는 구리 촉매를 사용하지 않기 때문에 세포나 생체 독성이 없고 기존 반응보다 반응속도가 빠르다. 연구팀은 이 기술을 이용한 뇌졸중 동물모델 실험을 통해 근적외선 형광영상 및 MRI 영상을 통해 14일 간에 걸쳐 장기간 안정적으로 관찰할 수 있었다. 이는 새로 개발된 복합조영제 나노입자 및 줄기세포 표지기술이 줄기세포의 전분화능 손실과 세포 독성 발현을 최소화했기 때문에 가능한 것이다. KIST 김광명 박사는 “이번에 개발한 줄기세포 표지 및 추적기술은 뇌에 이식한 줄기세포의 치료 효과를 고감도 복합영상으로 장기간 추적할 수 있게 하는 기술”이라며 “향후 뇌 질환용 줄기세포 치료제 개발과 효능 예측에 폭넓게 활용될 수 있을 것으로 전망된다”고 밝혔다. 한편 본 연구는 과학기술정보통신부(장관 최기영) 글로벌연구실사업 및 KIST 기관고유사업의 지원으로 수행되었으며, 관련 논문은 연구 성과의 파급력을 인정받아 재료·화학 분야 세계적 권위의 학술지 ‘ACS Nano’ (IF:13.903, JCR 분야 상위 6%) 최신호에 게재되었다. * (논문명) Dual-Modal Imaging-Guided Precise Tracking of Bioorthogonally Labeled Mesenchymal Stem Cells in Mouse Brain Stroke - (제1저자) 한국과학기술연구원 임승호 연구원 - (제1저자) 한국과학기술연구원 윤홍열 박사 - (교신저자) 한국과학기술연구원 김광명 박사 - (교신저자) 동국대학교 의과대학 김동억 박사 <그림설명> [그림 1] 복합조영제 나노입자가 표지된 줄기세포의 추적 영상 기술의 모식도 간편하고 안전한 표지를 위해 당대사공학 및 생물직교성 무동 클릭화학을 이용하여 줄기세포 표면에 인공적으로 표적 가능한 화학수용체 형성 및 고감도 형광/자기공명 영상화를 위한 복합조영제 나노입자 표지기술. 이를 뇌졸중 모델의 뇌에 이식 후 줄기세포의 추적 영상화 모식도 [그림 2] 형광/자기공명 복합 영상을 이용한 줄기세포 추적 영상 당대사공학 및 생물직교성 무동 클릭화학을 이용해 표지된 줄기세포의 생체 내 이식 후 형광/자기공명 복합 영상을 이용한 줄기세포 추적 영상. 줄기세포의 이식 후 시간에 따라 뇌졸중 병변으로 줄기세포의 신호가 이동하는 것을 확인할 수 있음.
‘변화무쌍’ 줄기세포, 복합영상으로 추적한다
- 체내 이식된 줄기세포 변화 장기간 추적하는 표지 및 영상획득 기술 개발 - 전분화능 유지와 높은 생체적합성으로 새 줄기세포 치료제 개발 기여 전망 최근 줄기세포가 세계 의과학계 최대의 관심사가 되고 있는 이유는 모든 종류의 기관과 조직으로 분화할 수 있는 전분화능(全分化能, pluripotency) 때문이다. 이론상 줄기세포를 이용하면 근육, 뼈, 장기, 뇌 등 어떤 손상 세포와 조직도 재생 가능하다. 하지만 인체에 이식한 줄기세포의 분화 과정을 적절히 제어하기 어렵다는 점이 한계로 작용해왔다. 이를 해결하기 위해서는 먼저 줄기세포의 생존과 이동, 분포 등을 정확히 파악하는 방법이 필요한 가운데, 국내 연구진이 생체 내 줄기세포의 변화상을 정밀하고 안전하게 추적할 수 있는 신기술을 개발해 관심을 끌고 있다. 한국과학기술연구원(KIST, 원장 이병권) 테라그노시스연구단 김광명 박사팀은 동국대학교 일산병원 신경과 김동억 박사팀과의 공동연구로 인체에 이식한 줄기세포를 추적하는 신개념 줄기세포 표지 및 영상화 기술을 개발했다고 밝혔다. 생체 적합성이 높은 조영제 나노입자를 줄기세포에 결합시켜 장기간 형광영상과 자기공명영상(MRI)의 복합영상으로 모니터링 할 수 있는 기술이다. 줄기세포 치료제의 이동과 분포를 관찰하는 표지(labeling) 및 영상화(imaging) 기술은 최근 줄기세포의 체내 이식 후 변화상을 추적하는 기술로도 주목받고 있다. 하지만 기존의 세포 표지기술은 조영제 또는 조영제가 함유된 나노입자를 줄기세포에 직접 표지하거나 유전자 조작을 통해 영상화가 가능한 세포로 전환해야 하기 때문에 줄기세포 고유의 전분화능과 인체 안전성 저하의 우려가 제기되어 왔다. KIST 연구진은 생체 적합성이 높고 줄기세포의 전분화능에도 영향을 주지 않는 신개념 표지 기술 개발을 위해 당대사공학* 및 생물직교성 무동 클릭화학**을 이용했다. 이를 통해 줄기세포 표면에 안전하게 표지할 수 있는 화학수용체를 만드는 한편, 이와 특이적으로 결합하는 산화철 기반의 복합조영제 나노입자를 개발해 줄기세포의 영상신호를 극대화하는 고감도 복합영상 획득에 성공했다. * 당대사공학(metabolic glycoengineering) : 알킨, 티올, 아자이드 등 다양한 화학 반응기를 세포 표면의 당 단백질에 인공적으로 도입할 수 있는 기술. 세포에 존재하는 당 단백질 합성과정을 이용하기 때문에 세포 독성이 없고 표지 가능한 화학 반응기의 양을 인위적으로 조절할 수 있다. ** 생물직교성 무동 클릭화학(Bioorthogonal copper-free click chemistry) : 아자이드와 알킨기가 구리 촉매 없이 특이적으로 결합되는 현상. 독성이 있는 구리 촉매를 사용하지 않기 때문에 세포나 생체 독성이 없고 기존 반응보다 반응속도가 빠르다. 연구팀은 이 기술을 이용한 뇌졸중 동물모델 실험을 통해 근적외선 형광영상 및 MRI 영상을 통해 14일 간에 걸쳐 장기간 안정적으로 관찰할 수 있었다. 이는 새로 개발된 복합조영제 나노입자 및 줄기세포 표지기술이 줄기세포의 전분화능 손실과 세포 독성 발현을 최소화했기 때문에 가능한 것이다. KIST 김광명 박사는 “이번에 개발한 줄기세포 표지 및 추적기술은 뇌에 이식한 줄기세포의 치료 효과를 고감도 복합영상으로 장기간 추적할 수 있게 하는 기술”이라며 “향후 뇌 질환용 줄기세포 치료제 개발과 효능 예측에 폭넓게 활용될 수 있을 것으로 전망된다”고 밝혔다. 한편 본 연구는 과학기술정보통신부(장관 최기영) 글로벌연구실사업 및 KIST 기관고유사업의 지원으로 수행되었으며, 관련 논문은 연구 성과의 파급력을 인정받아 재료·화학 분야 세계적 권위의 학술지 ‘ACS Nano’ (IF:13.903, JCR 분야 상위 6%) 최신호에 게재되었다. * (논문명) Dual-Modal Imaging-Guided Precise Tracking of Bioorthogonally Labeled Mesenchymal Stem Cells in Mouse Brain Stroke - (제1저자) 한국과학기술연구원 임승호 연구원 - (제1저자) 한국과학기술연구원 윤홍열 박사 - (교신저자) 한국과학기술연구원 김광명 박사 - (교신저자) 동국대학교 의과대학 김동억 박사 <그림설명> [그림 1] 복합조영제 나노입자가 표지된 줄기세포의 추적 영상 기술의 모식도 간편하고 안전한 표지를 위해 당대사공학 및 생물직교성 무동 클릭화학을 이용하여 줄기세포 표면에 인공적으로 표적 가능한 화학수용체 형성 및 고감도 형광/자기공명 영상화를 위한 복합조영제 나노입자 표지기술. 이를 뇌졸중 모델의 뇌에 이식 후 줄기세포의 추적 영상화 모식도 [그림 2] 형광/자기공명 복합 영상을 이용한 줄기세포 추적 영상 당대사공학 및 생물직교성 무동 클릭화학을 이용해 표지된 줄기세포의 생체 내 이식 후 형광/자기공명 복합 영상을 이용한 줄기세포 추적 영상. 줄기세포의 이식 후 시간에 따라 뇌졸중 병변으로 줄기세포의 신호가 이동하는 것을 확인할 수 있음.
폐암세포의 성장을 억제하는 항암물질 개발
- 암의 에너지 대사를 방해, 폐암 세포 성장 저해하는 신규 화합물 발굴 한국과학기술연구원(KIST, 원장 이병권) 화학키노믹스센터 심태보 센터장 연구팀은 암 세포의 에너지 생성을 교란하여 폐암세포의 성장을 저해함으로써 암 억제 효과를 가지는 신규 항암물질을 발굴했다고 밝혔다. 종양세포는 급속한 성장과 분열을 하는데, 일반적인 정상 세포와는 다르게 젖산 발효를 통한 에너지 생성을 선호한다. 종양세포는 당의 대사산물인 피루브산*을 미토콘드리아로 보내지 않고, 젖산염으로 변환하여 에너지를 생산한다. 이는 암과 정상 세포의 큰 차이점 중 하나이기 때문에, 이를 공략하면 정상 세포에 영향을 미치지 않고 선택적으로 암세포를 공격할 수 있다. *피루브산 : 생물체 내에서 포도당이 연소하여 에너지로 변할 때 생기는 중간 물질 KIST 연구진은 ‘피루브산 탈수소효소 키나아제(PDHK)’** 효소의 활동을 저해하는 신규 화합물을 발굴했다. ‘피루브산 탈수소효소 키나아제(PDHK)’ 효소는 당 대사산물인 피루브산이 미토콘드리아로 들어가는 것을 방해함으로써 젖산 발효를 유도하는 효소이다. 이 효소는 위암, 피부암, 폐암 등 다양한 암에서 과발현되는 것으로 알려져 있어, 이 효소의 활동을 방해하면 젖산 발효로 에너지를 생성하는 암세포의 성장을 저해할 수 있다. **피루브산 탈수소효소 키나아제(PDHK) : 피루브산이 산화적 인산화 경로로 들어가는 것을 차단하여 젖산 발효를 유도하는데 기여하는 효소 KIST 연구진은 수많은 효소의 일종인 키나아제*** 중에서 PDHK만을 선택적으로 강하게 저해하는 신규 화합물을 발굴했다. 본 화합물은 기존의 PDHK 저해제보다 폐암과 전립선암 세포의 성장 저해능력과 암세포 사멸 효과가 매우 뛰어나고, 암세포의 미토콘드리아 기능을 저해하고 에너지 생성 방법을 변화시키는 등의 방법으로 항암효과를 보이는 것을 확인하였다. ***키나아제 : 인산전달효소라고 하며 인산기전이효소의 총칭. 또한, KIST 연구진이 개발한 신규 PDHK 저해제는 정상 세포에 영향을 적게 주면서도 암세포만을 선택적으로 공격할 수 있어서, 세포독성 항암제의 부작용을 경감시킬 수 있다. 기존의 세포독성 항암제와 함께 투여하면 폐암 세포의 성장 저해와 세포 사멸 효과를 증가시킬 수 있음을 확인했다. KIST 심태보 박사는 “암 뿐만 아니라, 당뇨와 같이 PDHK 때문에 발생하는 질환들의 치료제에 활용될 수 있다”고 말하며, “아직까지 약물로 승인받은 PDHK 저해제는 전무하기 때문에 ‘first-in-class’ 신약 탐색연구가 성공하게 되면 큰 사회·경제적 파급효과를 가져올 것으로 기대한다.”고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영)의 지원을 받아 KIST 주요사업으로 수행되었으며, 「Journal of Medicinal Chemistry」 (IF: 6.05, JCR 분야 상위 4.09%) 최신호에 게재되었다. * (논문명) Identification of Novel Resorcinol Amide Derivatives as Potent and Specific Pyruvate Dehydrogenase Kinase (PDHK) Inhibitors - (제 1저자) 한국과학기술연구원 조한나 연구원(박사과정) - (제 1저자) 한국과학기술연구원 신인재 연구원(박사과정) - (교신저자) 한국과학기술연구원 심태보 책임연구원 <그림설명> [그림 1] (A) PDHK 저해제의 작용기전, 암세포는 피루브산을 아세틸-coA로 전환하는 PDC 복합체 (E1,E2,E3)를 억제함으로써, 젖산 발효를 유도하는데, 이때 관여하는 효소가 PDHK이다. 본 PDHK저해제는 PDHK의 활성을 저해하여 피루브산이 정상적인 에너지 대사에 사용될 수 있도록 도와준다. (B) 336개의 키나아제들 중에서 본 저해제에 의해서 저해되는 키아나제들을 붉은색 원으로 표시하였다. 본 저해제는 336개 키나아제들 중에서 PDHK1,2,3,4만을 선택적으로 저해한다. (C) 본 PDHK 저해제를 처리한 전립선 암세포주에서 미토콘드리아의 기능 저하가 관찰되었다. 미토콘드리아의 기능이 정상일 때는 JC-1이 monomer (초록색)이 관찰되지 않지만, 미코톤드리아 세포막의 전하가 비정상적으로 변하면 붉은색형광이 관찰된다.
폐암세포의 성장을 억제하는 항암물질 개발
- 암의 에너지 대사를 방해, 폐암 세포 성장 저해하는 신규 화합물 발굴 한국과학기술연구원(KIST, 원장 이병권) 화학키노믹스센터 심태보 센터장 연구팀은 암 세포의 에너지 생성을 교란하여 폐암세포의 성장을 저해함으로써 암 억제 효과를 가지는 신규 항암물질을 발굴했다고 밝혔다. 종양세포는 급속한 성장과 분열을 하는데, 일반적인 정상 세포와는 다르게 젖산 발효를 통한 에너지 생성을 선호한다. 종양세포는 당의 대사산물인 피루브산*을 미토콘드리아로 보내지 않고, 젖산염으로 변환하여 에너지를 생산한다. 이는 암과 정상 세포의 큰 차이점 중 하나이기 때문에, 이를 공략하면 정상 세포에 영향을 미치지 않고 선택적으로 암세포를 공격할 수 있다. *피루브산 : 생물체 내에서 포도당이 연소하여 에너지로 변할 때 생기는 중간 물질 KIST 연구진은 ‘피루브산 탈수소효소 키나아제(PDHK)’** 효소의 활동을 저해하는 신규 화합물을 발굴했다. ‘피루브산 탈수소효소 키나아제(PDHK)’ 효소는 당 대사산물인 피루브산이 미토콘드리아로 들어가는 것을 방해함으로써 젖산 발효를 유도하는 효소이다. 이 효소는 위암, 피부암, 폐암 등 다양한 암에서 과발현되는 것으로 알려져 있어, 이 효소의 활동을 방해하면 젖산 발효로 에너지를 생성하는 암세포의 성장을 저해할 수 있다. **피루브산 탈수소효소 키나아제(PDHK) : 피루브산이 산화적 인산화 경로로 들어가는 것을 차단하여 젖산 발효를 유도하는데 기여하는 효소 KIST 연구진은 수많은 효소의 일종인 키나아제*** 중에서 PDHK만을 선택적으로 강하게 저해하는 신규 화합물을 발굴했다. 본 화합물은 기존의 PDHK 저해제보다 폐암과 전립선암 세포의 성장 저해능력과 암세포 사멸 효과가 매우 뛰어나고, 암세포의 미토콘드리아 기능을 저해하고 에너지 생성 방법을 변화시키는 등의 방법으로 항암효과를 보이는 것을 확인하였다. ***키나아제 : 인산전달효소라고 하며 인산기전이효소의 총칭. 또한, KIST 연구진이 개발한 신규 PDHK 저해제는 정상 세포에 영향을 적게 주면서도 암세포만을 선택적으로 공격할 수 있어서, 세포독성 항암제의 부작용을 경감시킬 수 있다. 기존의 세포독성 항암제와 함께 투여하면 폐암 세포의 성장 저해와 세포 사멸 효과를 증가시킬 수 있음을 확인했다. KIST 심태보 박사는 “암 뿐만 아니라, 당뇨와 같이 PDHK 때문에 발생하는 질환들의 치료제에 활용될 수 있다”고 말하며, “아직까지 약물로 승인받은 PDHK 저해제는 전무하기 때문에 ‘first-in-class’ 신약 탐색연구가 성공하게 되면 큰 사회·경제적 파급효과를 가져올 것으로 기대한다.”고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영)의 지원을 받아 KIST 주요사업으로 수행되었으며, 「Journal of Medicinal Chemistry」 (IF: 6.05, JCR 분야 상위 4.09%) 최신호에 게재되었다. * (논문명) Identification of Novel Resorcinol Amide Derivatives as Potent and Specific Pyruvate Dehydrogenase Kinase (PDHK) Inhibitors - (제 1저자) 한국과학기술연구원 조한나 연구원(박사과정) - (제 1저자) 한국과학기술연구원 신인재 연구원(박사과정) - (교신저자) 한국과학기술연구원 심태보 책임연구원 <그림설명> [그림 1] (A) PDHK 저해제의 작용기전, 암세포는 피루브산을 아세틸-coA로 전환하는 PDC 복합체 (E1,E2,E3)를 억제함으로써, 젖산 발효를 유도하는데, 이때 관여하는 효소가 PDHK이다. 본 PDHK저해제는 PDHK의 활성을 저해하여 피루브산이 정상적인 에너지 대사에 사용될 수 있도록 도와준다. (B) 336개의 키나아제들 중에서 본 저해제에 의해서 저해되는 키아나제들을 붉은색 원으로 표시하였다. 본 저해제는 336개 키나아제들 중에서 PDHK1,2,3,4만을 선택적으로 저해한다. (C) 본 PDHK 저해제를 처리한 전립선 암세포주에서 미토콘드리아의 기능 저하가 관찰되었다. 미토콘드리아의 기능이 정상일 때는 JC-1이 monomer (초록색)이 관찰되지 않지만, 미코톤드리아 세포막의 전하가 비정상적으로 변하면 붉은색형광이 관찰된다.
폐암세포의 성장을 억제하는 항암물질 개발
- 암의 에너지 대사를 방해, 폐암 세포 성장 저해하는 신규 화합물 발굴 한국과학기술연구원(KIST, 원장 이병권) 화학키노믹스센터 심태보 센터장 연구팀은 암 세포의 에너지 생성을 교란하여 폐암세포의 성장을 저해함으로써 암 억제 효과를 가지는 신규 항암물질을 발굴했다고 밝혔다. 종양세포는 급속한 성장과 분열을 하는데, 일반적인 정상 세포와는 다르게 젖산 발효를 통한 에너지 생성을 선호한다. 종양세포는 당의 대사산물인 피루브산*을 미토콘드리아로 보내지 않고, 젖산염으로 변환하여 에너지를 생산한다. 이는 암과 정상 세포의 큰 차이점 중 하나이기 때문에, 이를 공략하면 정상 세포에 영향을 미치지 않고 선택적으로 암세포를 공격할 수 있다. *피루브산 : 생물체 내에서 포도당이 연소하여 에너지로 변할 때 생기는 중간 물질 KIST 연구진은 ‘피루브산 탈수소효소 키나아제(PDHK)’** 효소의 활동을 저해하는 신규 화합물을 발굴했다. ‘피루브산 탈수소효소 키나아제(PDHK)’ 효소는 당 대사산물인 피루브산이 미토콘드리아로 들어가는 것을 방해함으로써 젖산 발효를 유도하는 효소이다. 이 효소는 위암, 피부암, 폐암 등 다양한 암에서 과발현되는 것으로 알려져 있어, 이 효소의 활동을 방해하면 젖산 발효로 에너지를 생성하는 암세포의 성장을 저해할 수 있다. **피루브산 탈수소효소 키나아제(PDHK) : 피루브산이 산화적 인산화 경로로 들어가는 것을 차단하여 젖산 발효를 유도하는데 기여하는 효소 KIST 연구진은 수많은 효소의 일종인 키나아제*** 중에서 PDHK만을 선택적으로 강하게 저해하는 신규 화합물을 발굴했다. 본 화합물은 기존의 PDHK 저해제보다 폐암과 전립선암 세포의 성장 저해능력과 암세포 사멸 효과가 매우 뛰어나고, 암세포의 미토콘드리아 기능을 저해하고 에너지 생성 방법을 변화시키는 등의 방법으로 항암효과를 보이는 것을 확인하였다. ***키나아제 : 인산전달효소라고 하며 인산기전이효소의 총칭. 또한, KIST 연구진이 개발한 신규 PDHK 저해제는 정상 세포에 영향을 적게 주면서도 암세포만을 선택적으로 공격할 수 있어서, 세포독성 항암제의 부작용을 경감시킬 수 있다. 기존의 세포독성 항암제와 함께 투여하면 폐암 세포의 성장 저해와 세포 사멸 효과를 증가시킬 수 있음을 확인했다. KIST 심태보 박사는 “암 뿐만 아니라, 당뇨와 같이 PDHK 때문에 발생하는 질환들의 치료제에 활용될 수 있다”고 말하며, “아직까지 약물로 승인받은 PDHK 저해제는 전무하기 때문에 ‘first-in-class’ 신약 탐색연구가 성공하게 되면 큰 사회·경제적 파급효과를 가져올 것으로 기대한다.”고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영)의 지원을 받아 KIST 주요사업으로 수행되었으며, 「Journal of Medicinal Chemistry」 (IF: 6.05, JCR 분야 상위 4.09%) 최신호에 게재되었다. * (논문명) Identification of Novel Resorcinol Amide Derivatives as Potent and Specific Pyruvate Dehydrogenase Kinase (PDHK) Inhibitors - (제 1저자) 한국과학기술연구원 조한나 연구원(박사과정) - (제 1저자) 한국과학기술연구원 신인재 연구원(박사과정) - (교신저자) 한국과학기술연구원 심태보 책임연구원 <그림설명> [그림 1] (A) PDHK 저해제의 작용기전, 암세포는 피루브산을 아세틸-coA로 전환하는 PDC 복합체 (E1,E2,E3)를 억제함으로써, 젖산 발효를 유도하는데, 이때 관여하는 효소가 PDHK이다. 본 PDHK저해제는 PDHK의 활성을 저해하여 피루브산이 정상적인 에너지 대사에 사용될 수 있도록 도와준다. (B) 336개의 키나아제들 중에서 본 저해제에 의해서 저해되는 키아나제들을 붉은색 원으로 표시하였다. 본 저해제는 336개 키나아제들 중에서 PDHK1,2,3,4만을 선택적으로 저해한다. (C) 본 PDHK 저해제를 처리한 전립선 암세포주에서 미토콘드리아의 기능 저하가 관찰되었다. 미토콘드리아의 기능이 정상일 때는 JC-1이 monomer (초록색)이 관찰되지 않지만, 미코톤드리아 세포막의 전하가 비정상적으로 변하면 붉은색형광이 관찰된다.
폐암세포의 성장을 억제하는 항암물질 개발
- 암의 에너지 대사를 방해, 폐암 세포 성장 저해하는 신규 화합물 발굴 한국과학기술연구원(KIST, 원장 이병권) 화학키노믹스센터 심태보 센터장 연구팀은 암 세포의 에너지 생성을 교란하여 폐암세포의 성장을 저해함으로써 암 억제 효과를 가지는 신규 항암물질을 발굴했다고 밝혔다. 종양세포는 급속한 성장과 분열을 하는데, 일반적인 정상 세포와는 다르게 젖산 발효를 통한 에너지 생성을 선호한다. 종양세포는 당의 대사산물인 피루브산*을 미토콘드리아로 보내지 않고, 젖산염으로 변환하여 에너지를 생산한다. 이는 암과 정상 세포의 큰 차이점 중 하나이기 때문에, 이를 공략하면 정상 세포에 영향을 미치지 않고 선택적으로 암세포를 공격할 수 있다. *피루브산 : 생물체 내에서 포도당이 연소하여 에너지로 변할 때 생기는 중간 물질 KIST 연구진은 ‘피루브산 탈수소효소 키나아제(PDHK)’** 효소의 활동을 저해하는 신규 화합물을 발굴했다. ‘피루브산 탈수소효소 키나아제(PDHK)’ 효소는 당 대사산물인 피루브산이 미토콘드리아로 들어가는 것을 방해함으로써 젖산 발효를 유도하는 효소이다. 이 효소는 위암, 피부암, 폐암 등 다양한 암에서 과발현되는 것으로 알려져 있어, 이 효소의 활동을 방해하면 젖산 발효로 에너지를 생성하는 암세포의 성장을 저해할 수 있다. **피루브산 탈수소효소 키나아제(PDHK) : 피루브산이 산화적 인산화 경로로 들어가는 것을 차단하여 젖산 발효를 유도하는데 기여하는 효소 KIST 연구진은 수많은 효소의 일종인 키나아제*** 중에서 PDHK만을 선택적으로 강하게 저해하는 신규 화합물을 발굴했다. 본 화합물은 기존의 PDHK 저해제보다 폐암과 전립선암 세포의 성장 저해능력과 암세포 사멸 효과가 매우 뛰어나고, 암세포의 미토콘드리아 기능을 저해하고 에너지 생성 방법을 변화시키는 등의 방법으로 항암효과를 보이는 것을 확인하였다. ***키나아제 : 인산전달효소라고 하며 인산기전이효소의 총칭. 또한, KIST 연구진이 개발한 신규 PDHK 저해제는 정상 세포에 영향을 적게 주면서도 암세포만을 선택적으로 공격할 수 있어서, 세포독성 항암제의 부작용을 경감시킬 수 있다. 기존의 세포독성 항암제와 함께 투여하면 폐암 세포의 성장 저해와 세포 사멸 효과를 증가시킬 수 있음을 확인했다. KIST 심태보 박사는 “암 뿐만 아니라, 당뇨와 같이 PDHK 때문에 발생하는 질환들의 치료제에 활용될 수 있다”고 말하며, “아직까지 약물로 승인받은 PDHK 저해제는 전무하기 때문에 ‘first-in-class’ 신약 탐색연구가 성공하게 되면 큰 사회·경제적 파급효과를 가져올 것으로 기대한다.”고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영)의 지원을 받아 KIST 주요사업으로 수행되었으며, 「Journal of Medicinal Chemistry」 (IF: 6.05, JCR 분야 상위 4.09%) 최신호에 게재되었다. * (논문명) Identification of Novel Resorcinol Amide Derivatives as Potent and Specific Pyruvate Dehydrogenase Kinase (PDHK) Inhibitors - (제 1저자) 한국과학기술연구원 조한나 연구원(박사과정) - (제 1저자) 한국과학기술연구원 신인재 연구원(박사과정) - (교신저자) 한국과학기술연구원 심태보 책임연구원 <그림설명> [그림 1] (A) PDHK 저해제의 작용기전, 암세포는 피루브산을 아세틸-coA로 전환하는 PDC 복합체 (E1,E2,E3)를 억제함으로써, 젖산 발효를 유도하는데, 이때 관여하는 효소가 PDHK이다. 본 PDHK저해제는 PDHK의 활성을 저해하여 피루브산이 정상적인 에너지 대사에 사용될 수 있도록 도와준다. (B) 336개의 키나아제들 중에서 본 저해제에 의해서 저해되는 키아나제들을 붉은색 원으로 표시하였다. 본 저해제는 336개 키나아제들 중에서 PDHK1,2,3,4만을 선택적으로 저해한다. (C) 본 PDHK 저해제를 처리한 전립선 암세포주에서 미토콘드리아의 기능 저하가 관찰되었다. 미토콘드리아의 기능이 정상일 때는 JC-1이 monomer (초록색)이 관찰되지 않지만, 미코톤드리아 세포막의 전하가 비정상적으로 변하면 붉은색형광이 관찰된다.
폐암세포의 성장을 억제하는 항암물질 개발
- 암의 에너지 대사를 방해, 폐암 세포 성장 저해하는 신규 화합물 발굴 한국과학기술연구원(KIST, 원장 이병권) 화학키노믹스센터 심태보 센터장 연구팀은 암 세포의 에너지 생성을 교란하여 폐암세포의 성장을 저해함으로써 암 억제 효과를 가지는 신규 항암물질을 발굴했다고 밝혔다. 종양세포는 급속한 성장과 분열을 하는데, 일반적인 정상 세포와는 다르게 젖산 발효를 통한 에너지 생성을 선호한다. 종양세포는 당의 대사산물인 피루브산*을 미토콘드리아로 보내지 않고, 젖산염으로 변환하여 에너지를 생산한다. 이는 암과 정상 세포의 큰 차이점 중 하나이기 때문에, 이를 공략하면 정상 세포에 영향을 미치지 않고 선택적으로 암세포를 공격할 수 있다. *피루브산 : 생물체 내에서 포도당이 연소하여 에너지로 변할 때 생기는 중간 물질 KIST 연구진은 ‘피루브산 탈수소효소 키나아제(PDHK)’** 효소의 활동을 저해하는 신규 화합물을 발굴했다. ‘피루브산 탈수소효소 키나아제(PDHK)’ 효소는 당 대사산물인 피루브산이 미토콘드리아로 들어가는 것을 방해함으로써 젖산 발효를 유도하는 효소이다. 이 효소는 위암, 피부암, 폐암 등 다양한 암에서 과발현되는 것으로 알려져 있어, 이 효소의 활동을 방해하면 젖산 발효로 에너지를 생성하는 암세포의 성장을 저해할 수 있다. **피루브산 탈수소효소 키나아제(PDHK) : 피루브산이 산화적 인산화 경로로 들어가는 것을 차단하여 젖산 발효를 유도하는데 기여하는 효소 KIST 연구진은 수많은 효소의 일종인 키나아제*** 중에서 PDHK만을 선택적으로 강하게 저해하는 신규 화합물을 발굴했다. 본 화합물은 기존의 PDHK 저해제보다 폐암과 전립선암 세포의 성장 저해능력과 암세포 사멸 효과가 매우 뛰어나고, 암세포의 미토콘드리아 기능을 저해하고 에너지 생성 방법을 변화시키는 등의 방법으로 항암효과를 보이는 것을 확인하였다. ***키나아제 : 인산전달효소라고 하며 인산기전이효소의 총칭. 또한, KIST 연구진이 개발한 신규 PDHK 저해제는 정상 세포에 영향을 적게 주면서도 암세포만을 선택적으로 공격할 수 있어서, 세포독성 항암제의 부작용을 경감시킬 수 있다. 기존의 세포독성 항암제와 함께 투여하면 폐암 세포의 성장 저해와 세포 사멸 효과를 증가시킬 수 있음을 확인했다. KIST 심태보 박사는 “암 뿐만 아니라, 당뇨와 같이 PDHK 때문에 발생하는 질환들의 치료제에 활용될 수 있다”고 말하며, “아직까지 약물로 승인받은 PDHK 저해제는 전무하기 때문에 ‘first-in-class’ 신약 탐색연구가 성공하게 되면 큰 사회·경제적 파급효과를 가져올 것으로 기대한다.”고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영)의 지원을 받아 KIST 주요사업으로 수행되었으며, 「Journal of Medicinal Chemistry」 (IF: 6.05, JCR 분야 상위 4.09%) 최신호에 게재되었다. * (논문명) Identification of Novel Resorcinol Amide Derivatives as Potent and Specific Pyruvate Dehydrogenase Kinase (PDHK) Inhibitors - (제 1저자) 한국과학기술연구원 조한나 연구원(박사과정) - (제 1저자) 한국과학기술연구원 신인재 연구원(박사과정) - (교신저자) 한국과학기술연구원 심태보 책임연구원 <그림설명> [그림 1] (A) PDHK 저해제의 작용기전, 암세포는 피루브산을 아세틸-coA로 전환하는 PDC 복합체 (E1,E2,E3)를 억제함으로써, 젖산 발효를 유도하는데, 이때 관여하는 효소가 PDHK이다. 본 PDHK저해제는 PDHK의 활성을 저해하여 피루브산이 정상적인 에너지 대사에 사용될 수 있도록 도와준다. (B) 336개의 키나아제들 중에서 본 저해제에 의해서 저해되는 키아나제들을 붉은색 원으로 표시하였다. 본 저해제는 336개 키나아제들 중에서 PDHK1,2,3,4만을 선택적으로 저해한다. (C) 본 PDHK 저해제를 처리한 전립선 암세포주에서 미토콘드리아의 기능 저하가 관찰되었다. 미토콘드리아의 기능이 정상일 때는 JC-1이 monomer (초록색)이 관찰되지 않지만, 미코톤드리아 세포막의 전하가 비정상적으로 변하면 붉은색형광이 관찰된다.