Result
게시물 키워드"KIST"에 대한 4620개의 검색결과를 찾았습니다.
고효율·저방전 분리막 개발… 화재 없는 차세대 ESS‘청신호’
- ‘바나듐 레독스 흐름전지’성능 높이는‘PBI’고분자막 초박막화 성공 - 4마이크로미터(μm) 두께 얇은 고분자막, 빠른 방전·용량 감소 막아 화재로부터 안전한 차세대 에너지 저장장치 ‘바나듐 레독스 흐름전지’의 핵심 소재가 국내 연구진에 의해 개발됐다. 한국과학기술연구원(KIST, 원장 이병권)은 수소·연료전지연구단 디억 헨켄스마이어(Dirk Henkensmeier) 박사 연구팀이 기존의 상용 불소계 전해질막보다 우수한 성능의 고분자 전해질막을 개발했다고 밝혔다. 현재 차세대 에너지저장장치(ESS)에 주로 사용되는 리튬이온전지는 출력 용량이 높지만 화재가 잇따르면서 안전성에 대한 우려가 커지고 있다. 소방당국에 따르면 지난 2017년 8월부터 최근까지 국내에서 발생한 ESS 화재 누적건수는 28회에 이르고 있다. 이에 따라 리튬이온전지의 대안으로 부상하고 있는 ‘바나듐 레독스 흐름전지(VRFB)’는 물 기반의 바나듐 전해액이 산화-환원 반응에서 일으키는 전위차로 에너지를 충·방전하는 배터리이다. 대용량화가 가능하고 배터리 수명이 평균 20년 이상으로 긴 데다 특히 화재 위험이 없어 국내와 해외 모두 관련 기술 개발과 장치 도입을 서두르고 있는 상황이다. VRFB 시스템은 화학 반응에 필요한 이온을 통과·전달하는 이온 분리막이 필요하다. 현재 상업화된 불소계 분리막은 화학적 분해에는 안정적이지만 특정 이온을 선택해 전달하는 성능이 낮아 방전 속도가 빨라진다는 단점이 있다. 이런 문제는 분리막을 두껍게 만드는 것으로 해결할 수 있지만, 이온전달 저항도 함께 증가하기 때문에 전압효율이 낮아진다. KIST 연구진은 이전 연구를 통해 폴리벤지이미다졸(PBI) 고분자막을 사용하면 분리막 두께와 이온전도도 사이의 상충 관계를 감소시켜 에너지 저장 시스템 전반의 비용 절감을 유도할 수 있다는 가능성을 발견한 바 있다. 하지만 이런 장점에도 불구하고 PBI의 상용화를 위해서는 낮은 이온전도도를 극복할 얇은 고분자를 어떻게 만들 것인지 후속 연구가 필요했다. 이에 따라 연구팀은 유효면적 저항을 줄이기 위해 다공성 담지체 위에 4μm(마이크로미터) 두께의 얇은 PBI 스프레이 코팅막을 형성하는 기술을 개발하는 데 성공했다. 이렇게 개발된 PBI 고분자막은 서울과학기술대학교 권용재 교수팀과 독일 항공우주센터(German Aerospace Center)를 통해 진행된 물성 평가를 통해 200회 이상의 충·방전 사이클 테스트에서 기존 불소계 상용막보다 안정적인 성능을 나타내는 것으로 확인됐다. KIST 디억 헨켄스마이어 박사는 “자체 방전 테스트에서도 기존 상용 분리막이 적용된 장치가 10.7시간 후 방전된 반면 PBI 막을 적용한 장치는 방전까지 16.4시간이 걸렸다”면서 “국경을 맞대고 있는 유럽과 달리 국가 간 전력거래가 어려운 한국이 고효율의 재생 에너지 저장 시스템을 개발하는 데 도움이 되기를 바란다.”라고 밝혔다. 본 연구는 산업통상자원부와 한국산업기술진흥원, 한국에너지기술평가기획원의 한국-독일 합동 중소기업 연구 프로그램으로 수행되었으며, 연구결과는 「Journal of Membrane Science」 (IF : 7.02, JCR 분야 상위 1.72 %) 최신 호에 출판되었다. * (논문명) Layered composite membranes based on porous PVDF coated with a thin, dense PBI layer for vanadium redox flow batteries - (제 1저자) 한국과학기술연구원 정미나 - (제 1저자) 서울과학기술대학교 이원미 - (교신저자) 한국과학기술연구원 디억 헨켄스마이어 책임연구원 - (교신저자) 서울과학기술대학교 권용재 교수 <그림설명> [그림 1] 100 um 두께 PVDF에 스프레이 코팅된 4μm 두께 PBI 막. 양이온은 PBI를 통과하지만, 바나듐 이온은 통과하지 못한다. (copyright Elsevier, J. Membr. Sci.) [그림 2] 3-셀 스택 실험에서 측정한 전하 효율 및 에너지 효율 (60mA/㎠ 전류 밀도를 가지고 PVDF에 지지된 4μm 두께 PBI 막을 사용한 장치와 나피온 117을 사용한 장치의 비교). [그림 3] 전도도와 면저항 측정 데이터 (14μm 두께의 PBI, PVDF에 지지된 4μm 두께의 PBI, 그리고 나피온 212막의 비교) (copyright Elsevier, J. Membr. Sci.)
고효율·저방전 분리막 개발… 화재 없는 차세대 ESS‘청신호’
- ‘바나듐 레독스 흐름전지’성능 높이는‘PBI’고분자막 초박막화 성공 - 4마이크로미터(μm) 두께 얇은 고분자막, 빠른 방전·용량 감소 막아 화재로부터 안전한 차세대 에너지 저장장치 ‘바나듐 레독스 흐름전지’의 핵심 소재가 국내 연구진에 의해 개발됐다. 한국과학기술연구원(KIST, 원장 이병권)은 수소·연료전지연구단 디억 헨켄스마이어(Dirk Henkensmeier) 박사 연구팀이 기존의 상용 불소계 전해질막보다 우수한 성능의 고분자 전해질막을 개발했다고 밝혔다. 현재 차세대 에너지저장장치(ESS)에 주로 사용되는 리튬이온전지는 출력 용량이 높지만 화재가 잇따르면서 안전성에 대한 우려가 커지고 있다. 소방당국에 따르면 지난 2017년 8월부터 최근까지 국내에서 발생한 ESS 화재 누적건수는 28회에 이르고 있다. 이에 따라 리튬이온전지의 대안으로 부상하고 있는 ‘바나듐 레독스 흐름전지(VRFB)’는 물 기반의 바나듐 전해액이 산화-환원 반응에서 일으키는 전위차로 에너지를 충·방전하는 배터리이다. 대용량화가 가능하고 배터리 수명이 평균 20년 이상으로 긴 데다 특히 화재 위험이 없어 국내와 해외 모두 관련 기술 개발과 장치 도입을 서두르고 있는 상황이다. VRFB 시스템은 화학 반응에 필요한 이온을 통과·전달하는 이온 분리막이 필요하다. 현재 상업화된 불소계 분리막은 화학적 분해에는 안정적이지만 특정 이온을 선택해 전달하는 성능이 낮아 방전 속도가 빨라진다는 단점이 있다. 이런 문제는 분리막을 두껍게 만드는 것으로 해결할 수 있지만, 이온전달 저항도 함께 증가하기 때문에 전압효율이 낮아진다. KIST 연구진은 이전 연구를 통해 폴리벤지이미다졸(PBI) 고분자막을 사용하면 분리막 두께와 이온전도도 사이의 상충 관계를 감소시켜 에너지 저장 시스템 전반의 비용 절감을 유도할 수 있다는 가능성을 발견한 바 있다. 하지만 이런 장점에도 불구하고 PBI의 상용화를 위해서는 낮은 이온전도도를 극복할 얇은 고분자를 어떻게 만들 것인지 후속 연구가 필요했다. 이에 따라 연구팀은 유효면적 저항을 줄이기 위해 다공성 담지체 위에 4μm(마이크로미터) 두께의 얇은 PBI 스프레이 코팅막을 형성하는 기술을 개발하는 데 성공했다. 이렇게 개발된 PBI 고분자막은 서울과학기술대학교 권용재 교수팀과 독일 항공우주센터(German Aerospace Center)를 통해 진행된 물성 평가를 통해 200회 이상의 충·방전 사이클 테스트에서 기존 불소계 상용막보다 안정적인 성능을 나타내는 것으로 확인됐다. KIST 디억 헨켄스마이어 박사는 “자체 방전 테스트에서도 기존 상용 분리막이 적용된 장치가 10.7시간 후 방전된 반면 PBI 막을 적용한 장치는 방전까지 16.4시간이 걸렸다”면서 “국경을 맞대고 있는 유럽과 달리 국가 간 전력거래가 어려운 한국이 고효율의 재생 에너지 저장 시스템을 개발하는 데 도움이 되기를 바란다.”라고 밝혔다. 본 연구는 산업통상자원부와 한국산업기술진흥원, 한국에너지기술평가기획원의 한국-독일 합동 중소기업 연구 프로그램으로 수행되었으며, 연구결과는 「Journal of Membrane Science」 (IF : 7.02, JCR 분야 상위 1.72 %) 최신 호에 출판되었다. * (논문명) Layered composite membranes based on porous PVDF coated with a thin, dense PBI layer for vanadium redox flow batteries - (제 1저자) 한국과학기술연구원 정미나 - (제 1저자) 서울과학기술대학교 이원미 - (교신저자) 한국과학기술연구원 디억 헨켄스마이어 책임연구원 - (교신저자) 서울과학기술대학교 권용재 교수 <그림설명> [그림 1] 100 um 두께 PVDF에 스프레이 코팅된 4μm 두께 PBI 막. 양이온은 PBI를 통과하지만, 바나듐 이온은 통과하지 못한다. (copyright Elsevier, J. Membr. Sci.) [그림 2] 3-셀 스택 실험에서 측정한 전하 효율 및 에너지 효율 (60mA/㎠ 전류 밀도를 가지고 PVDF에 지지된 4μm 두께 PBI 막을 사용한 장치와 나피온 117을 사용한 장치의 비교). [그림 3] 전도도와 면저항 측정 데이터 (14μm 두께의 PBI, PVDF에 지지된 4μm 두께의 PBI, 그리고 나피온 212막의 비교) (copyright Elsevier, J. Membr. Sci.)
고효율·저방전 분리막 개발… 화재 없는 차세대 ESS‘청신호’
- ‘바나듐 레독스 흐름전지’성능 높이는‘PBI’고분자막 초박막화 성공 - 4마이크로미터(μm) 두께 얇은 고분자막, 빠른 방전·용량 감소 막아 화재로부터 안전한 차세대 에너지 저장장치 ‘바나듐 레독스 흐름전지’의 핵심 소재가 국내 연구진에 의해 개발됐다. 한국과학기술연구원(KIST, 원장 이병권)은 수소·연료전지연구단 디억 헨켄스마이어(Dirk Henkensmeier) 박사 연구팀이 기존의 상용 불소계 전해질막보다 우수한 성능의 고분자 전해질막을 개발했다고 밝혔다. 현재 차세대 에너지저장장치(ESS)에 주로 사용되는 리튬이온전지는 출력 용량이 높지만 화재가 잇따르면서 안전성에 대한 우려가 커지고 있다. 소방당국에 따르면 지난 2017년 8월부터 최근까지 국내에서 발생한 ESS 화재 누적건수는 28회에 이르고 있다. 이에 따라 리튬이온전지의 대안으로 부상하고 있는 ‘바나듐 레독스 흐름전지(VRFB)’는 물 기반의 바나듐 전해액이 산화-환원 반응에서 일으키는 전위차로 에너지를 충·방전하는 배터리이다. 대용량화가 가능하고 배터리 수명이 평균 20년 이상으로 긴 데다 특히 화재 위험이 없어 국내와 해외 모두 관련 기술 개발과 장치 도입을 서두르고 있는 상황이다. VRFB 시스템은 화학 반응에 필요한 이온을 통과·전달하는 이온 분리막이 필요하다. 현재 상업화된 불소계 분리막은 화학적 분해에는 안정적이지만 특정 이온을 선택해 전달하는 성능이 낮아 방전 속도가 빨라진다는 단점이 있다. 이런 문제는 분리막을 두껍게 만드는 것으로 해결할 수 있지만, 이온전달 저항도 함께 증가하기 때문에 전압효율이 낮아진다. KIST 연구진은 이전 연구를 통해 폴리벤지이미다졸(PBI) 고분자막을 사용하면 분리막 두께와 이온전도도 사이의 상충 관계를 감소시켜 에너지 저장 시스템 전반의 비용 절감을 유도할 수 있다는 가능성을 발견한 바 있다. 하지만 이런 장점에도 불구하고 PBI의 상용화를 위해서는 낮은 이온전도도를 극복할 얇은 고분자를 어떻게 만들 것인지 후속 연구가 필요했다. 이에 따라 연구팀은 유효면적 저항을 줄이기 위해 다공성 담지체 위에 4μm(마이크로미터) 두께의 얇은 PBI 스프레이 코팅막을 형성하는 기술을 개발하는 데 성공했다. 이렇게 개발된 PBI 고분자막은 서울과학기술대학교 권용재 교수팀과 독일 항공우주센터(German Aerospace Center)를 통해 진행된 물성 평가를 통해 200회 이상의 충·방전 사이클 테스트에서 기존 불소계 상용막보다 안정적인 성능을 나타내는 것으로 확인됐다. KIST 디억 헨켄스마이어 박사는 “자체 방전 테스트에서도 기존 상용 분리막이 적용된 장치가 10.7시간 후 방전된 반면 PBI 막을 적용한 장치는 방전까지 16.4시간이 걸렸다”면서 “국경을 맞대고 있는 유럽과 달리 국가 간 전력거래가 어려운 한국이 고효율의 재생 에너지 저장 시스템을 개발하는 데 도움이 되기를 바란다.”라고 밝혔다. 본 연구는 산업통상자원부와 한국산업기술진흥원, 한국에너지기술평가기획원의 한국-독일 합동 중소기업 연구 프로그램으로 수행되었으며, 연구결과는 「Journal of Membrane Science」 (IF : 7.02, JCR 분야 상위 1.72 %) 최신 호에 출판되었다. * (논문명) Layered composite membranes based on porous PVDF coated with a thin, dense PBI layer for vanadium redox flow batteries - (제 1저자) 한국과학기술연구원 정미나 - (제 1저자) 서울과학기술대학교 이원미 - (교신저자) 한국과학기술연구원 디억 헨켄스마이어 책임연구원 - (교신저자) 서울과학기술대학교 권용재 교수 <그림설명> [그림 1] 100 um 두께 PVDF에 스프레이 코팅된 4μm 두께 PBI 막. 양이온은 PBI를 통과하지만, 바나듐 이온은 통과하지 못한다. (copyright Elsevier, J. Membr. Sci.) [그림 2] 3-셀 스택 실험에서 측정한 전하 효율 및 에너지 효율 (60mA/㎠ 전류 밀도를 가지고 PVDF에 지지된 4μm 두께 PBI 막을 사용한 장치와 나피온 117을 사용한 장치의 비교). [그림 3] 전도도와 면저항 측정 데이터 (14μm 두께의 PBI, PVDF에 지지된 4μm 두께의 PBI, 그리고 나피온 212막의 비교) (copyright Elsevier, J. Membr. Sci.)
고효율·저방전 분리막 개발… 화재 없는 차세대 ESS‘청신호’
- ‘바나듐 레독스 흐름전지’성능 높이는‘PBI’고분자막 초박막화 성공 - 4마이크로미터(μm) 두께 얇은 고분자막, 빠른 방전·용량 감소 막아 화재로부터 안전한 차세대 에너지 저장장치 ‘바나듐 레독스 흐름전지’의 핵심 소재가 국내 연구진에 의해 개발됐다. 한국과학기술연구원(KIST, 원장 이병권)은 수소·연료전지연구단 디억 헨켄스마이어(Dirk Henkensmeier) 박사 연구팀이 기존의 상용 불소계 전해질막보다 우수한 성능의 고분자 전해질막을 개발했다고 밝혔다. 현재 차세대 에너지저장장치(ESS)에 주로 사용되는 리튬이온전지는 출력 용량이 높지만 화재가 잇따르면서 안전성에 대한 우려가 커지고 있다. 소방당국에 따르면 지난 2017년 8월부터 최근까지 국내에서 발생한 ESS 화재 누적건수는 28회에 이르고 있다. 이에 따라 리튬이온전지의 대안으로 부상하고 있는 ‘바나듐 레독스 흐름전지(VRFB)’는 물 기반의 바나듐 전해액이 산화-환원 반응에서 일으키는 전위차로 에너지를 충·방전하는 배터리이다. 대용량화가 가능하고 배터리 수명이 평균 20년 이상으로 긴 데다 특히 화재 위험이 없어 국내와 해외 모두 관련 기술 개발과 장치 도입을 서두르고 있는 상황이다. VRFB 시스템은 화학 반응에 필요한 이온을 통과·전달하는 이온 분리막이 필요하다. 현재 상업화된 불소계 분리막은 화학적 분해에는 안정적이지만 특정 이온을 선택해 전달하는 성능이 낮아 방전 속도가 빨라진다는 단점이 있다. 이런 문제는 분리막을 두껍게 만드는 것으로 해결할 수 있지만, 이온전달 저항도 함께 증가하기 때문에 전압효율이 낮아진다. KIST 연구진은 이전 연구를 통해 폴리벤지이미다졸(PBI) 고분자막을 사용하면 분리막 두께와 이온전도도 사이의 상충 관계를 감소시켜 에너지 저장 시스템 전반의 비용 절감을 유도할 수 있다는 가능성을 발견한 바 있다. 하지만 이런 장점에도 불구하고 PBI의 상용화를 위해서는 낮은 이온전도도를 극복할 얇은 고분자를 어떻게 만들 것인지 후속 연구가 필요했다. 이에 따라 연구팀은 유효면적 저항을 줄이기 위해 다공성 담지체 위에 4μm(마이크로미터) 두께의 얇은 PBI 스프레이 코팅막을 형성하는 기술을 개발하는 데 성공했다. 이렇게 개발된 PBI 고분자막은 서울과학기술대학교 권용재 교수팀과 독일 항공우주센터(German Aerospace Center)를 통해 진행된 물성 평가를 통해 200회 이상의 충·방전 사이클 테스트에서 기존 불소계 상용막보다 안정적인 성능을 나타내는 것으로 확인됐다. KIST 디억 헨켄스마이어 박사는 “자체 방전 테스트에서도 기존 상용 분리막이 적용된 장치가 10.7시간 후 방전된 반면 PBI 막을 적용한 장치는 방전까지 16.4시간이 걸렸다”면서 “국경을 맞대고 있는 유럽과 달리 국가 간 전력거래가 어려운 한국이 고효율의 재생 에너지 저장 시스템을 개발하는 데 도움이 되기를 바란다.”라고 밝혔다. 본 연구는 산업통상자원부와 한국산업기술진흥원, 한국에너지기술평가기획원의 한국-독일 합동 중소기업 연구 프로그램으로 수행되었으며, 연구결과는 「Journal of Membrane Science」 (IF : 7.02, JCR 분야 상위 1.72 %) 최신 호에 출판되었다. * (논문명) Layered composite membranes based on porous PVDF coated with a thin, dense PBI layer for vanadium redox flow batteries - (제 1저자) 한국과학기술연구원 정미나 - (제 1저자) 서울과학기술대학교 이원미 - (교신저자) 한국과학기술연구원 디억 헨켄스마이어 책임연구원 - (교신저자) 서울과학기술대학교 권용재 교수 <그림설명> [그림 1] 100 um 두께 PVDF에 스프레이 코팅된 4μm 두께 PBI 막. 양이온은 PBI를 통과하지만, 바나듐 이온은 통과하지 못한다. (copyright Elsevier, J. Membr. Sci.) [그림 2] 3-셀 스택 실험에서 측정한 전하 효율 및 에너지 효율 (60mA/㎠ 전류 밀도를 가지고 PVDF에 지지된 4μm 두께 PBI 막을 사용한 장치와 나피온 117을 사용한 장치의 비교). [그림 3] 전도도와 면저항 측정 데이터 (14μm 두께의 PBI, PVDF에 지지된 4μm 두께의 PBI, 그리고 나피온 212막의 비교) (copyright Elsevier, J. Membr. Sci.)
고효율·저방전 분리막 개발… 화재 없는 차세대 ESS‘청신호’
- ‘바나듐 레독스 흐름전지’성능 높이는‘PBI’고분자막 초박막화 성공 - 4마이크로미터(μm) 두께 얇은 고분자막, 빠른 방전·용량 감소 막아 화재로부터 안전한 차세대 에너지 저장장치 ‘바나듐 레독스 흐름전지’의 핵심 소재가 국내 연구진에 의해 개발됐다. 한국과학기술연구원(KIST, 원장 이병권)은 수소·연료전지연구단 디억 헨켄스마이어(Dirk Henkensmeier) 박사 연구팀이 기존의 상용 불소계 전해질막보다 우수한 성능의 고분자 전해질막을 개발했다고 밝혔다. 현재 차세대 에너지저장장치(ESS)에 주로 사용되는 리튬이온전지는 출력 용량이 높지만 화재가 잇따르면서 안전성에 대한 우려가 커지고 있다. 소방당국에 따르면 지난 2017년 8월부터 최근까지 국내에서 발생한 ESS 화재 누적건수는 28회에 이르고 있다. 이에 따라 리튬이온전지의 대안으로 부상하고 있는 ‘바나듐 레독스 흐름전지(VRFB)’는 물 기반의 바나듐 전해액이 산화-환원 반응에서 일으키는 전위차로 에너지를 충·방전하는 배터리이다. 대용량화가 가능하고 배터리 수명이 평균 20년 이상으로 긴 데다 특히 화재 위험이 없어 국내와 해외 모두 관련 기술 개발과 장치 도입을 서두르고 있는 상황이다. VRFB 시스템은 화학 반응에 필요한 이온을 통과·전달하는 이온 분리막이 필요하다. 현재 상업화된 불소계 분리막은 화학적 분해에는 안정적이지만 특정 이온을 선택해 전달하는 성능이 낮아 방전 속도가 빨라진다는 단점이 있다. 이런 문제는 분리막을 두껍게 만드는 것으로 해결할 수 있지만, 이온전달 저항도 함께 증가하기 때문에 전압효율이 낮아진다. KIST 연구진은 이전 연구를 통해 폴리벤지이미다졸(PBI) 고분자막을 사용하면 분리막 두께와 이온전도도 사이의 상충 관계를 감소시켜 에너지 저장 시스템 전반의 비용 절감을 유도할 수 있다는 가능성을 발견한 바 있다. 하지만 이런 장점에도 불구하고 PBI의 상용화를 위해서는 낮은 이온전도도를 극복할 얇은 고분자를 어떻게 만들 것인지 후속 연구가 필요했다. 이에 따라 연구팀은 유효면적 저항을 줄이기 위해 다공성 담지체 위에 4μm(마이크로미터) 두께의 얇은 PBI 스프레이 코팅막을 형성하는 기술을 개발하는 데 성공했다. 이렇게 개발된 PBI 고분자막은 서울과학기술대학교 권용재 교수팀과 독일 항공우주센터(German Aerospace Center)를 통해 진행된 물성 평가를 통해 200회 이상의 충·방전 사이클 테스트에서 기존 불소계 상용막보다 안정적인 성능을 나타내는 것으로 확인됐다. KIST 디억 헨켄스마이어 박사는 “자체 방전 테스트에서도 기존 상용 분리막이 적용된 장치가 10.7시간 후 방전된 반면 PBI 막을 적용한 장치는 방전까지 16.4시간이 걸렸다”면서 “국경을 맞대고 있는 유럽과 달리 국가 간 전력거래가 어려운 한국이 고효율의 재생 에너지 저장 시스템을 개발하는 데 도움이 되기를 바란다.”라고 밝혔다. 본 연구는 산업통상자원부와 한국산업기술진흥원, 한국에너지기술평가기획원의 한국-독일 합동 중소기업 연구 프로그램으로 수행되었으며, 연구결과는 「Journal of Membrane Science」 (IF : 7.02, JCR 분야 상위 1.72 %) 최신 호에 출판되었다. * (논문명) Layered composite membranes based on porous PVDF coated with a thin, dense PBI layer for vanadium redox flow batteries - (제 1저자) 한국과학기술연구원 정미나 - (제 1저자) 서울과학기술대학교 이원미 - (교신저자) 한국과학기술연구원 디억 헨켄스마이어 책임연구원 - (교신저자) 서울과학기술대학교 권용재 교수 <그림설명> [그림 1] 100 um 두께 PVDF에 스프레이 코팅된 4μm 두께 PBI 막. 양이온은 PBI를 통과하지만, 바나듐 이온은 통과하지 못한다. (copyright Elsevier, J. Membr. Sci.) [그림 2] 3-셀 스택 실험에서 측정한 전하 효율 및 에너지 효율 (60mA/㎠ 전류 밀도를 가지고 PVDF에 지지된 4μm 두께 PBI 막을 사용한 장치와 나피온 117을 사용한 장치의 비교). [그림 3] 전도도와 면저항 측정 데이터 (14μm 두께의 PBI, PVDF에 지지된 4μm 두께의 PBI, 그리고 나피온 212막의 비교) (copyright Elsevier, J. Membr. Sci.)
고효율·저방전 분리막 개발… 화재 없는 차세대 ESS‘청신호’
- ‘바나듐 레독스 흐름전지’성능 높이는‘PBI’고분자막 초박막화 성공 - 4마이크로미터(μm) 두께 얇은 고분자막, 빠른 방전·용량 감소 막아 화재로부터 안전한 차세대 에너지 저장장치 ‘바나듐 레독스 흐름전지’의 핵심 소재가 국내 연구진에 의해 개발됐다. 한국과학기술연구원(KIST, 원장 이병권)은 수소·연료전지연구단 디억 헨켄스마이어(Dirk Henkensmeier) 박사 연구팀이 기존의 상용 불소계 전해질막보다 우수한 성능의 고분자 전해질막을 개발했다고 밝혔다. 현재 차세대 에너지저장장치(ESS)에 주로 사용되는 리튬이온전지는 출력 용량이 높지만 화재가 잇따르면서 안전성에 대한 우려가 커지고 있다. 소방당국에 따르면 지난 2017년 8월부터 최근까지 국내에서 발생한 ESS 화재 누적건수는 28회에 이르고 있다. 이에 따라 리튬이온전지의 대안으로 부상하고 있는 ‘바나듐 레독스 흐름전지(VRFB)’는 물 기반의 바나듐 전해액이 산화-환원 반응에서 일으키는 전위차로 에너지를 충·방전하는 배터리이다. 대용량화가 가능하고 배터리 수명이 평균 20년 이상으로 긴 데다 특히 화재 위험이 없어 국내와 해외 모두 관련 기술 개발과 장치 도입을 서두르고 있는 상황이다. VRFB 시스템은 화학 반응에 필요한 이온을 통과·전달하는 이온 분리막이 필요하다. 현재 상업화된 불소계 분리막은 화학적 분해에는 안정적이지만 특정 이온을 선택해 전달하는 성능이 낮아 방전 속도가 빨라진다는 단점이 있다. 이런 문제는 분리막을 두껍게 만드는 것으로 해결할 수 있지만, 이온전달 저항도 함께 증가하기 때문에 전압효율이 낮아진다. KIST 연구진은 이전 연구를 통해 폴리벤지이미다졸(PBI) 고분자막을 사용하면 분리막 두께와 이온전도도 사이의 상충 관계를 감소시켜 에너지 저장 시스템 전반의 비용 절감을 유도할 수 있다는 가능성을 발견한 바 있다. 하지만 이런 장점에도 불구하고 PBI의 상용화를 위해서는 낮은 이온전도도를 극복할 얇은 고분자를 어떻게 만들 것인지 후속 연구가 필요했다. 이에 따라 연구팀은 유효면적 저항을 줄이기 위해 다공성 담지체 위에 4μm(마이크로미터) 두께의 얇은 PBI 스프레이 코팅막을 형성하는 기술을 개발하는 데 성공했다. 이렇게 개발된 PBI 고분자막은 서울과학기술대학교 권용재 교수팀과 독일 항공우주센터(German Aerospace Center)를 통해 진행된 물성 평가를 통해 200회 이상의 충·방전 사이클 테스트에서 기존 불소계 상용막보다 안정적인 성능을 나타내는 것으로 확인됐다. KIST 디억 헨켄스마이어 박사는 “자체 방전 테스트에서도 기존 상용 분리막이 적용된 장치가 10.7시간 후 방전된 반면 PBI 막을 적용한 장치는 방전까지 16.4시간이 걸렸다”면서 “국경을 맞대고 있는 유럽과 달리 국가 간 전력거래가 어려운 한국이 고효율의 재생 에너지 저장 시스템을 개발하는 데 도움이 되기를 바란다.”라고 밝혔다. 본 연구는 산업통상자원부와 한국산업기술진흥원, 한국에너지기술평가기획원의 한국-독일 합동 중소기업 연구 프로그램으로 수행되었으며, 연구결과는 「Journal of Membrane Science」 (IF : 7.02, JCR 분야 상위 1.72 %) 최신 호에 출판되었다. * (논문명) Layered composite membranes based on porous PVDF coated with a thin, dense PBI layer for vanadium redox flow batteries - (제 1저자) 한국과학기술연구원 정미나 - (제 1저자) 서울과학기술대학교 이원미 - (교신저자) 한국과학기술연구원 디억 헨켄스마이어 책임연구원 - (교신저자) 서울과학기술대학교 권용재 교수 <그림설명> [그림 1] 100 um 두께 PVDF에 스프레이 코팅된 4μm 두께 PBI 막. 양이온은 PBI를 통과하지만, 바나듐 이온은 통과하지 못한다. (copyright Elsevier, J. Membr. Sci.) [그림 2] 3-셀 스택 실험에서 측정한 전하 효율 및 에너지 효율 (60mA/㎠ 전류 밀도를 가지고 PVDF에 지지된 4μm 두께 PBI 막을 사용한 장치와 나피온 117을 사용한 장치의 비교). [그림 3] 전도도와 면저항 측정 데이터 (14μm 두께의 PBI, PVDF에 지지된 4μm 두께의 PBI, 그리고 나피온 212막의 비교) (copyright Elsevier, J. Membr. Sci.)
고효율·저방전 분리막 개발… 화재 없는 차세대 ESS‘청신호’
- ‘바나듐 레독스 흐름전지’성능 높이는‘PBI’고분자막 초박막화 성공 - 4마이크로미터(μm) 두께 얇은 고분자막, 빠른 방전·용량 감소 막아 화재로부터 안전한 차세대 에너지 저장장치 ‘바나듐 레독스 흐름전지’의 핵심 소재가 국내 연구진에 의해 개발됐다. 한국과학기술연구원(KIST, 원장 이병권)은 수소·연료전지연구단 디억 헨켄스마이어(Dirk Henkensmeier) 박사 연구팀이 기존의 상용 불소계 전해질막보다 우수한 성능의 고분자 전해질막을 개발했다고 밝혔다. 현재 차세대 에너지저장장치(ESS)에 주로 사용되는 리튬이온전지는 출력 용량이 높지만 화재가 잇따르면서 안전성에 대한 우려가 커지고 있다. 소방당국에 따르면 지난 2017년 8월부터 최근까지 국내에서 발생한 ESS 화재 누적건수는 28회에 이르고 있다. 이에 따라 리튬이온전지의 대안으로 부상하고 있는 ‘바나듐 레독스 흐름전지(VRFB)’는 물 기반의 바나듐 전해액이 산화-환원 반응에서 일으키는 전위차로 에너지를 충·방전하는 배터리이다. 대용량화가 가능하고 배터리 수명이 평균 20년 이상으로 긴 데다 특히 화재 위험이 없어 국내와 해외 모두 관련 기술 개발과 장치 도입을 서두르고 있는 상황이다. VRFB 시스템은 화학 반응에 필요한 이온을 통과·전달하는 이온 분리막이 필요하다. 현재 상업화된 불소계 분리막은 화학적 분해에는 안정적이지만 특정 이온을 선택해 전달하는 성능이 낮아 방전 속도가 빨라진다는 단점이 있다. 이런 문제는 분리막을 두껍게 만드는 것으로 해결할 수 있지만, 이온전달 저항도 함께 증가하기 때문에 전압효율이 낮아진다. KIST 연구진은 이전 연구를 통해 폴리벤지이미다졸(PBI) 고분자막을 사용하면 분리막 두께와 이온전도도 사이의 상충 관계를 감소시켜 에너지 저장 시스템 전반의 비용 절감을 유도할 수 있다는 가능성을 발견한 바 있다. 하지만 이런 장점에도 불구하고 PBI의 상용화를 위해서는 낮은 이온전도도를 극복할 얇은 고분자를 어떻게 만들 것인지 후속 연구가 필요했다. 이에 따라 연구팀은 유효면적 저항을 줄이기 위해 다공성 담지체 위에 4μm(마이크로미터) 두께의 얇은 PBI 스프레이 코팅막을 형성하는 기술을 개발하는 데 성공했다. 이렇게 개발된 PBI 고분자막은 서울과학기술대학교 권용재 교수팀과 독일 항공우주센터(German Aerospace Center)를 통해 진행된 물성 평가를 통해 200회 이상의 충·방전 사이클 테스트에서 기존 불소계 상용막보다 안정적인 성능을 나타내는 것으로 확인됐다. KIST 디억 헨켄스마이어 박사는 “자체 방전 테스트에서도 기존 상용 분리막이 적용된 장치가 10.7시간 후 방전된 반면 PBI 막을 적용한 장치는 방전까지 16.4시간이 걸렸다”면서 “국경을 맞대고 있는 유럽과 달리 국가 간 전력거래가 어려운 한국이 고효율의 재생 에너지 저장 시스템을 개발하는 데 도움이 되기를 바란다.”라고 밝혔다. 본 연구는 산업통상자원부와 한국산업기술진흥원, 한국에너지기술평가기획원의 한국-독일 합동 중소기업 연구 프로그램으로 수행되었으며, 연구결과는 「Journal of Membrane Science」 (IF : 7.02, JCR 분야 상위 1.72 %) 최신 호에 출판되었다. * (논문명) Layered composite membranes based on porous PVDF coated with a thin, dense PBI layer for vanadium redox flow batteries - (제 1저자) 한국과학기술연구원 정미나 - (제 1저자) 서울과학기술대학교 이원미 - (교신저자) 한국과학기술연구원 디억 헨켄스마이어 책임연구원 - (교신저자) 서울과학기술대학교 권용재 교수 <그림설명> [그림 1] 100 um 두께 PVDF에 스프레이 코팅된 4μm 두께 PBI 막. 양이온은 PBI를 통과하지만, 바나듐 이온은 통과하지 못한다. (copyright Elsevier, J. Membr. Sci.) [그림 2] 3-셀 스택 실험에서 측정한 전하 효율 및 에너지 효율 (60mA/㎠ 전류 밀도를 가지고 PVDF에 지지된 4μm 두께 PBI 막을 사용한 장치와 나피온 117을 사용한 장치의 비교). [그림 3] 전도도와 면저항 측정 데이터 (14μm 두께의 PBI, PVDF에 지지된 4μm 두께의 PBI, 그리고 나피온 212막의 비교) (copyright Elsevier, J. Membr. Sci.)
2019년도 부패방지시책 평가 결과 안내
□ 추진배경 ○ 국민권익위원회 부패방지시책 평가를 받지 않는 산하기관 대상으로 기관별 부패취약분야 근절 노력 등을 평가하여 청렴도 수준 제고 □ 평가결과 ○ 한국과학기술연구원(KIST) : 2등급 첨부 : 2019년도 부패방지시책 평가 결과 1부. 끝.
KIST-(주)동아ST, 신규 치매 치료제 개발을 위한 기술이전 및 공동연구 협약식 개최
- 국가과학기술연구회(NST) 융합연구사업으로 창출한 대형 기술이전 성과 - 신규 알츠하이머성 치매치료제 연구성과로 글로벌 신약 개발 기대 한국과학기술연구원(KIST, 원장 이병권)은 11일(수) KIST 서울 본원에서 ㈜ 동아ST(대표이사 엄대식)와 신규 치매 치료제 개발을 위한 기술이전 및 공동 연구 개발 협약식을 개최했다고 밝혔다. 이번 양 기관의 협약식에서는, KIST 치매DTC융합연구단(단장 배애님)의 ‘타우 단백질 응집 저해 기반 치매 치료제 개발 기술’의 기술이전을 통해 ㈜동아ST와 공동 개발을 추진하고, 글로벌 경쟁력 있는 신규 치매 치료제 개발을 위한 공동 연구 계획을 발표하였다. KIST 연구진은 알츠하이머성 치매 진행에 있어 기존에 잘 알려진 베타아밀로이드 응집에 비해 타우 단백질의 응집이 인지기능저하 진행정도와 더 밀접한 상관관계가 있음에 주목했다. 최근 타우 단백질 응집에 대한 학계의 관심이 증가되고 있는데, 이번 양 기관의 기술이전 및 공동 연구개발 착수는 선제적이고 경쟁력 있는 신규 치매 치료제 개발의 가능성을 시사한다는 점에서 큰 주목을 받고 있다. KIST 배애님 박사팀은 KIST 김윤경, 임상민, 임성수 박사팀과의 공동연구를 통해 타우 단백질의 응집 초기단계에서 응집형성을 모니터링 할 수 있는 ‘Tau-BiFC’ (Tau-Bimolecular Fluorescence Complementation) 기술*을 독자적으로 개발하여 세포모델과 생쥐모델에 각각 적용 가능하도록 발전시켰다. 또한, 연구진은 이 기술을 활용해 효율적인 약물 스크리닝 및 효능 평가를 가능하게 하여 타우 단백질 응집 표적 물질군을 발굴, 다양한 실험을 통해 기존 대조 약물 대비 효능과 독성 면에서 탁월한 효과를 확인했다. 발굴된 타우 단백질 응집 표적 물질은 유전자 변형 치매동물 모델에서도 뛰어난 인지기능 개선효과를 보였다. 양 기관은 향후 공동 연구개발을 통해, 빠른 시일 안에 비임상 시험을 진행하고 글로벌 치매 치료제로의 신약 가치 창출을 극대화하는 방안들을 마련해 다각도로 추진할 계획이라고 밝혔다. 본 기술이전의 기술료는 선급금 10억 원이며 개발 및 임상진행에 따른 마일스톤이 책정되었다. KIST 치매DTC융합연구단사업은 치매 관련 통합 솔루션 개발을 목적으로 국가과학기술연구회(NST, 이사장 원광연) 산하 각 분야 전문 출연(연) 연구팀으로 구성되었으며, 지난 4년간의 연구를 통해 신규 치매 치료제 개발을 위한 큰 초석을 마련한 바 있다.
미래로 향하는 e-케미컬 기술, 가격경쟁력 확보 전략 찾았다
- 현 시장가격과도 경쟁이 가능한 인공광합성 기술 제안 - 인공지능기술과 자동 공정설계기법을 적용한 경제성평가 방법론 개발 한국과학기술연구원(KIST, 원장 이병권) 국가기반기술연구본부 이웅, 오형석, 나종걸 박사 연구팀은 꿈의 미래 기술이라고 할 수 있는 인공광합성 기술 분야의 실용화에 가장 높은 장벽으로 여겨지던 낮은 경제성 문제를 해결할 수 있는 기술을 개발했다고 밝혔다. e-케미컬 기술은 지구온난화의 원인이 되는 이산화탄소를 대량 흡수하는 동시에 청정에너지 및 부가가치를 갖는 화학 원료를 대량 생산할 수 있어 주목받고 있다. 특히 에틸렌, 알콜 등 석유화학제품의 원료가 되는 물질을 생산할 수 있어 기존 화석연료 기반 석유화학산업을 뒤흔들 수 있는 차세대 주력산업으로 기대되고 있다. 하지만 기존의 e-케미컬 기술은 투자비용이 많이 들고 생산성이 부족하여 산업화에 대한 회의적인 시선이 있었다. 석유 화학을 통해 생산한 화학 원료보다는 가격경쟁력이 부족한 것도 사실이었다. KIST 연구진은 e-케미컬의 단점을 극복하기 위해 동시생산공정 기술을 개발하여 현재 시장가격과 비교해도 부족하지 않은 가격경쟁력을 확보해냈다. 기존의 e-케미컬 기술은 물과 이산화탄소를 투입하여 화학 원료를 생산하는데, 그 부산물로 산소가 생성된다. 산소는 경제적 가치가 없어 다른 곳에 사용하지 않고 폐기하는 실정이었다. KIST 연구진은 반응 부산물로 산소가 아닌 고부가가치 화합물을 생성할 수 있도록 유기화합물을 물 대신 사용하였다. 그 결과, 화학 원료 생산 반응을 일으키면 또 다른 화학 원료가 부산물로 생성되는 동시생산공정을 개발할 수 있었다. KIST 연구진은 동시생산공정이 기존보다 더 낮은 전기에너지로도 구현할 수 있으며, 생산된 화합물이 산소보다 비싼 가격에 팔릴 수 있다는 점에 주목하였다. KIS T 이웅 박사는 인공지능기술과 자동공정 설계기술을 적용하여 이 공정을 활용했을 때 최적의 효과를 얻을 수 있는 화합물을 찾아냈다. 공정설계에 필요한 모든 시스템을 고려하여 경제성을 분석한 결과, 실제 산업 시장에서도 가격경쟁력을 가질 수 있음을 확인했다. e-케미컬 기술 연구의 총책임자인 KIST 민병권 본부장은 “본 연구는 e-케미컬 연구를 실험실 수준에서 산업계의 관심으로 옮기기 위해 풀어야 할 숙제인 경제성 문제를 해결하기 위한 돌파구를 마련했다는 점에서 큰 파급력이 있다.”라고 말하며, “본 연구를 통해 제안된 e-케미컬 공정설계안 및 기술경제성평가 방법론은 e-케미컬 분야뿐만 아니라 유사 분야인 인공광합성 및 이산화탄소 자원화 기술의 실용화를 앞당기는 데 크게 기여할 것으로 기대한다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영)의 지원을 받아 KIST 주요사업 및 기후변화대응기술개발사업으로 수행되었으며 연구결과는 종합 과학 분야 저명 국제 학술지인 「Nature Communications」 (IF : 11.878, JCR 분야 상위 6.52%) 최신호에 ‘Editor’s Highlight Article’로 온라인 게재되었다. * (논문명) General technoeconomic analysis for electrochemical coproduction coupling carbon dioxide reduction with organic oxidation - (제 1저자) 한국과학기술연구원 나종걸 박사((現)Carnegie Mellon University 박사후연구원) - (교신저자) 한국과학기술연구원 오형석 선임연구원 - (교신저자) 한국과학기술연구원 이웅 선임연구원 <그림설명> [그림 1] e-케미컬 이미지