Result
게시물 키워드"KIST"에 대한 4620개의 검색결과를 찾았습니다.
KIST, 새로운 청색광 반도체 기술 개발
- 질화칼륨 대신 요오드화 구리 사용, 높은 효율의 청색광 발광 화합물 반도체 개발 - 국내 원천기술 개발로 해외 의존도 높은 반도체 소재 자립에 첫걸음 2014년 에너지절약형 빛 혁명을 이끈 청색광 발광소자(LED) 발명자인 일본 과학자 3명이 노벨 물리학상의 영예를 안았다. 반도체를 이용한 LED는 백색광 구현을 위해 적·녹·청색의 LED가 필요하다. 이중 가장 늦게 개발된 청색광 LED는 1990년대 일본의 과학자들에 의해 질화갈륨(GaN)을 고품질로 만드는 기법을 개발, 상용화에 성공했다. 질화갈륨은 전등 뿐 아니라 스마트폰, 디스플레이, 전자제품 및 고주파장치에 핵심소재로 우리 실생활에 널리 쓰이고 있다. 또한 초고속 통신용소자, 자동차용 전력반도체, 그리고 극한에서 사용가능한 극한 환경용 반도체로 그 활용 범위가 급속도로 확대되고 있다. 한국과학기술연구원(KIST, 원장 이병권) 차세대반도체연구소 송진동 책임연구원, 장준연 소장팀은 (주)페타룩스 안도열 대표(서울시립대학교 석좌교수)와의 공동연구를 통해 기존의 청색광 LED 반도체에 사용했던 질화갈륨을 대체 할 수 있는 새로운 화합물 반도체 기술개발에 성공했다고 밝혔다. 연구진은 구리(Cu)와 요오드(I)를 합성한 요오드화 구리(CuI) 1-7족 화합물 반도체를 소재로 사용하여 고효율로 청색광을 발광하는 소자 기술을 세계최초로 개발했다. 원소주기율표에 1-7족 물질들은 강한 전기적 상호작용으로 인해 원자간 결합강도가 높아 반도체로 사용하기 어렵다는 것이 학계에 정설이었으나, 이번 기술개발로 반도체 소재 기술에 새로운 지평을 열었다는 평가를 받고 있다. 연구진이 개발한 요오드화 구리(CuI) 반도체는 저렴한 실리콘(Si) 기판에 적은 결함으로 성장이 가능하여 현재 상용화 되어 있는 대면적 실리콘 기판(300mm)을 그대로 사용할 수 있다는 큰 장점이 있다. 또한 요오드화 구리(CuI) 박막 성장온도가 실리콘 기반 CMOS소자 공정에 사용되는 온도(300도 이하)와 유사하여 열화없이 요오드화 구리(CuI) 박막을 증착, 저렴하고 손쉬운 실리콘 반도체 공정에 적용이 가능하다. 공동연구진은 요오드화 구리(CuI) 반도체가 질화갈륨기반 소자에 비해 10배 이상 강한 청색광 밝기 및 향상된 광전효율 특성과 장기적 소자 안정성을 가진다는 것을 확인 하였다. 이번 연구결과는 고품질 구리할로겐계 단결정 요오드화 구리(CuI)를 실리콘 기판 상에 성장, 고효율의 청색 발광을 구현해 세계 최초로 구리할로겐계 화합물을 이용한 새로운 반도체 소재 기술을 실증했다는 것에 큰 의의가 있다. 공동 연구진은 그간의 연구를 통해 새로운 요오드화 구리(CuI) 반도체 재료의 원천기술을 이미 보유하고 있다. *특허 : 국내외 10 여편의 특허 획득(미국 특허 US 10566427 B2 등) KIST 송진동 단장은 “기존의 p-형 질화갈륨을 대체하여 높은 생산효율의 청색(자외선) 발광에 성공했다. 성능개선 연구를 지속적으로 수행할 것”라고 말했다. KIST 장준연 소장은 “기존의 LED에 비해 많은 장점을 가지므로 일본이 독점하고 있는 질화갈륨을 대체하는 새로운 발광반도체용 소재로 큰 기대를 모을 것으로 기대한다.”고 밝혔다. ㈜페타룩스 안도열 대표(서울시립대 석좌교수)는 “2016년 구리할로겐계 반도체의 우수성에 대한 이론적 예측을 최초로 보고하고 원천기술을 보유하고 있다. 이번 연구성과가 새로운 청색 및 자외선 광원으로 상업적 생산이 가능할 것으로 기대한다.”고 말했다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업인 차세대반도체연구소 플래그십 과제로 진행되었으며, ㈜페타룩스는 연구개발비를 투자하여 공동연구를 수행했다. 본 연구결과는 네이처 자매지인 ‘Scientific Reports’ 최신호에 온라인 게재되었다. * (논문명) Intrinsically p-type cuprous iodide semiconductor for hybrid light emitting diodes - (제1저자, 교신저자) (주)페타룩스 안도열 대표(서울시립대학교 석좌교수) - (제2저자, 교신저자) 한국과학기술연구원 송진동 책임연구원 - (교신저자) 한국과학기술연구원 장준연 책임연구원 <그림설명> <그림 1> (좌) Si과 CuI 반도체의 결정구조. 격자상수가 유사하여 Si기판위에 CuI 박막성장을 저결함으로 성장 할 수 있음. (우) Si기판위에 성장한 CuI 박막의 결정대칭성을 투과전자현미경으로 관찰한 사진. Si에 격자 맞는 CuI 단결정 성장을 확인함. <그림 2> CuI를 p-형 접합으로 사용한 p-CuI/n-AlGaN UV LED 동작 사진
KIST, 새로운 청색광 반도체 기술 개발
- 질화칼륨 대신 요오드화 구리 사용, 높은 효율의 청색광 발광 화합물 반도체 개발 - 국내 원천기술 개발로 해외 의존도 높은 반도체 소재 자립에 첫걸음 2014년 에너지절약형 빛 혁명을 이끈 청색광 발광소자(LED) 발명자인 일본 과학자 3명이 노벨 물리학상의 영예를 안았다. 반도체를 이용한 LED는 백색광 구현을 위해 적·녹·청색의 LED가 필요하다. 이중 가장 늦게 개발된 청색광 LED는 1990년대 일본의 과학자들에 의해 질화갈륨(GaN)을 고품질로 만드는 기법을 개발, 상용화에 성공했다. 질화갈륨은 전등 뿐 아니라 스마트폰, 디스플레이, 전자제품 및 고주파장치에 핵심소재로 우리 실생활에 널리 쓰이고 있다. 또한 초고속 통신용소자, 자동차용 전력반도체, 그리고 극한에서 사용가능한 극한 환경용 반도체로 그 활용 범위가 급속도로 확대되고 있다. 한국과학기술연구원(KIST, 원장 이병권) 차세대반도체연구소 송진동 책임연구원, 장준연 소장팀은 (주)페타룩스 안도열 대표(서울시립대학교 석좌교수)와의 공동연구를 통해 기존의 청색광 LED 반도체에 사용했던 질화갈륨을 대체 할 수 있는 새로운 화합물 반도체 기술개발에 성공했다고 밝혔다. 연구진은 구리(Cu)와 요오드(I)를 합성한 요오드화 구리(CuI) 1-7족 화합물 반도체를 소재로 사용하여 고효율로 청색광을 발광하는 소자 기술을 세계최초로 개발했다. 원소주기율표에 1-7족 물질들은 강한 전기적 상호작용으로 인해 원자간 결합강도가 높아 반도체로 사용하기 어렵다는 것이 학계에 정설이었으나, 이번 기술개발로 반도체 소재 기술에 새로운 지평을 열었다는 평가를 받고 있다. 연구진이 개발한 요오드화 구리(CuI) 반도체는 저렴한 실리콘(Si) 기판에 적은 결함으로 성장이 가능하여 현재 상용화 되어 있는 대면적 실리콘 기판(300mm)을 그대로 사용할 수 있다는 큰 장점이 있다. 또한 요오드화 구리(CuI) 박막 성장온도가 실리콘 기반 CMOS소자 공정에 사용되는 온도(300도 이하)와 유사하여 열화없이 요오드화 구리(CuI) 박막을 증착, 저렴하고 손쉬운 실리콘 반도체 공정에 적용이 가능하다. 공동연구진은 요오드화 구리(CuI) 반도체가 질화갈륨기반 소자에 비해 10배 이상 강한 청색광 밝기 및 향상된 광전효율 특성과 장기적 소자 안정성을 가진다는 것을 확인 하였다. 이번 연구결과는 고품질 구리할로겐계 단결정 요오드화 구리(CuI)를 실리콘 기판 상에 성장, 고효율의 청색 발광을 구현해 세계 최초로 구리할로겐계 화합물을 이용한 새로운 반도체 소재 기술을 실증했다는 것에 큰 의의가 있다. 공동 연구진은 그간의 연구를 통해 새로운 요오드화 구리(CuI) 반도체 재료의 원천기술을 이미 보유하고 있다. *특허 : 국내외 10 여편의 특허 획득(미국 특허 US 10566427 B2 등) KIST 송진동 단장은 “기존의 p-형 질화갈륨을 대체하여 높은 생산효율의 청색(자외선) 발광에 성공했다. 성능개선 연구를 지속적으로 수행할 것”라고 말했다. KIST 장준연 소장은 “기존의 LED에 비해 많은 장점을 가지므로 일본이 독점하고 있는 질화갈륨을 대체하는 새로운 발광반도체용 소재로 큰 기대를 모을 것으로 기대한다.”고 밝혔다. ㈜페타룩스 안도열 대표(서울시립대 석좌교수)는 “2016년 구리할로겐계 반도체의 우수성에 대한 이론적 예측을 최초로 보고하고 원천기술을 보유하고 있다. 이번 연구성과가 새로운 청색 및 자외선 광원으로 상업적 생산이 가능할 것으로 기대한다.”고 말했다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업인 차세대반도체연구소 플래그십 과제로 진행되었으며, ㈜페타룩스는 연구개발비를 투자하여 공동연구를 수행했다. 본 연구결과는 네이처 자매지인 ‘Scientific Reports’ 최신호에 온라인 게재되었다. * (논문명) Intrinsically p-type cuprous iodide semiconductor for hybrid light emitting diodes - (제1저자, 교신저자) (주)페타룩스 안도열 대표(서울시립대학교 석좌교수) - (제2저자, 교신저자) 한국과학기술연구원 송진동 책임연구원 - (교신저자) 한국과학기술연구원 장준연 책임연구원 <그림설명> <그림 1> (좌) Si과 CuI 반도체의 결정구조. 격자상수가 유사하여 Si기판위에 CuI 박막성장을 저결함으로 성장 할 수 있음. (우) Si기판위에 성장한 CuI 박막의 결정대칭성을 투과전자현미경으로 관찰한 사진. Si에 격자 맞는 CuI 단결정 성장을 확인함. <그림 2> CuI를 p-형 접합으로 사용한 p-CuI/n-AlGaN UV LED 동작 사진
KIST, 새로운 청색광 반도체 기술 개발
- 질화칼륨 대신 요오드화 구리 사용, 높은 효율의 청색광 발광 화합물 반도체 개발 - 국내 원천기술 개발로 해외 의존도 높은 반도체 소재 자립에 첫걸음 2014년 에너지절약형 빛 혁명을 이끈 청색광 발광소자(LED) 발명자인 일본 과학자 3명이 노벨 물리학상의 영예를 안았다. 반도체를 이용한 LED는 백색광 구현을 위해 적·녹·청색의 LED가 필요하다. 이중 가장 늦게 개발된 청색광 LED는 1990년대 일본의 과학자들에 의해 질화갈륨(GaN)을 고품질로 만드는 기법을 개발, 상용화에 성공했다. 질화갈륨은 전등 뿐 아니라 스마트폰, 디스플레이, 전자제품 및 고주파장치에 핵심소재로 우리 실생활에 널리 쓰이고 있다. 또한 초고속 통신용소자, 자동차용 전력반도체, 그리고 극한에서 사용가능한 극한 환경용 반도체로 그 활용 범위가 급속도로 확대되고 있다. 한국과학기술연구원(KIST, 원장 이병권) 차세대반도체연구소 송진동 책임연구원, 장준연 소장팀은 (주)페타룩스 안도열 대표(서울시립대학교 석좌교수)와의 공동연구를 통해 기존의 청색광 LED 반도체에 사용했던 질화갈륨을 대체 할 수 있는 새로운 화합물 반도체 기술개발에 성공했다고 밝혔다. 연구진은 구리(Cu)와 요오드(I)를 합성한 요오드화 구리(CuI) 1-7족 화합물 반도체를 소재로 사용하여 고효율로 청색광을 발광하는 소자 기술을 세계최초로 개발했다. 원소주기율표에 1-7족 물질들은 강한 전기적 상호작용으로 인해 원자간 결합강도가 높아 반도체로 사용하기 어렵다는 것이 학계에 정설이었으나, 이번 기술개발로 반도체 소재 기술에 새로운 지평을 열었다는 평가를 받고 있다. 연구진이 개발한 요오드화 구리(CuI) 반도체는 저렴한 실리콘(Si) 기판에 적은 결함으로 성장이 가능하여 현재 상용화 되어 있는 대면적 실리콘 기판(300mm)을 그대로 사용할 수 있다는 큰 장점이 있다. 또한 요오드화 구리(CuI) 박막 성장온도가 실리콘 기반 CMOS소자 공정에 사용되는 온도(300도 이하)와 유사하여 열화없이 요오드화 구리(CuI) 박막을 증착, 저렴하고 손쉬운 실리콘 반도체 공정에 적용이 가능하다. 공동연구진은 요오드화 구리(CuI) 반도체가 질화갈륨기반 소자에 비해 10배 이상 강한 청색광 밝기 및 향상된 광전효율 특성과 장기적 소자 안정성을 가진다는 것을 확인 하였다. 이번 연구결과는 고품질 구리할로겐계 단결정 요오드화 구리(CuI)를 실리콘 기판 상에 성장, 고효율의 청색 발광을 구현해 세계 최초로 구리할로겐계 화합물을 이용한 새로운 반도체 소재 기술을 실증했다는 것에 큰 의의가 있다. 공동 연구진은 그간의 연구를 통해 새로운 요오드화 구리(CuI) 반도체 재료의 원천기술을 이미 보유하고 있다. *특허 : 국내외 10 여편의 특허 획득(미국 특허 US 10566427 B2 등) KIST 송진동 단장은 “기존의 p-형 질화갈륨을 대체하여 높은 생산효율의 청색(자외선) 발광에 성공했다. 성능개선 연구를 지속적으로 수행할 것”라고 말했다. KIST 장준연 소장은 “기존의 LED에 비해 많은 장점을 가지므로 일본이 독점하고 있는 질화갈륨을 대체하는 새로운 발광반도체용 소재로 큰 기대를 모을 것으로 기대한다.”고 밝혔다. ㈜페타룩스 안도열 대표(서울시립대 석좌교수)는 “2016년 구리할로겐계 반도체의 우수성에 대한 이론적 예측을 최초로 보고하고 원천기술을 보유하고 있다. 이번 연구성과가 새로운 청색 및 자외선 광원으로 상업적 생산이 가능할 것으로 기대한다.”고 말했다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업인 차세대반도체연구소 플래그십 과제로 진행되었으며, ㈜페타룩스는 연구개발비를 투자하여 공동연구를 수행했다. 본 연구결과는 네이처 자매지인 ‘Scientific Reports’ 최신호에 온라인 게재되었다. * (논문명) Intrinsically p-type cuprous iodide semiconductor for hybrid light emitting diodes - (제1저자, 교신저자) (주)페타룩스 안도열 대표(서울시립대학교 석좌교수) - (제2저자, 교신저자) 한국과학기술연구원 송진동 책임연구원 - (교신저자) 한국과학기술연구원 장준연 책임연구원 <그림설명> <그림 1> (좌) Si과 CuI 반도체의 결정구조. 격자상수가 유사하여 Si기판위에 CuI 박막성장을 저결함으로 성장 할 수 있음. (우) Si기판위에 성장한 CuI 박막의 결정대칭성을 투과전자현미경으로 관찰한 사진. Si에 격자 맞는 CuI 단결정 성장을 확인함. <그림 2> CuI를 p-형 접합으로 사용한 p-CuI/n-AlGaN UV LED 동작 사진
KIST, 새로운 청색광 반도체 기술 개발
- 질화칼륨 대신 요오드화 구리 사용, 높은 효율의 청색광 발광 화합물 반도체 개발 - 국내 원천기술 개발로 해외 의존도 높은 반도체 소재 자립에 첫걸음 2014년 에너지절약형 빛 혁명을 이끈 청색광 발광소자(LED) 발명자인 일본 과학자 3명이 노벨 물리학상의 영예를 안았다. 반도체를 이용한 LED는 백색광 구현을 위해 적·녹·청색의 LED가 필요하다. 이중 가장 늦게 개발된 청색광 LED는 1990년대 일본의 과학자들에 의해 질화갈륨(GaN)을 고품질로 만드는 기법을 개발, 상용화에 성공했다. 질화갈륨은 전등 뿐 아니라 스마트폰, 디스플레이, 전자제품 및 고주파장치에 핵심소재로 우리 실생활에 널리 쓰이고 있다. 또한 초고속 통신용소자, 자동차용 전력반도체, 그리고 극한에서 사용가능한 극한 환경용 반도체로 그 활용 범위가 급속도로 확대되고 있다. 한국과학기술연구원(KIST, 원장 이병권) 차세대반도체연구소 송진동 책임연구원, 장준연 소장팀은 (주)페타룩스 안도열 대표(서울시립대학교 석좌교수)와의 공동연구를 통해 기존의 청색광 LED 반도체에 사용했던 질화갈륨을 대체 할 수 있는 새로운 화합물 반도체 기술개발에 성공했다고 밝혔다. 연구진은 구리(Cu)와 요오드(I)를 합성한 요오드화 구리(CuI) 1-7족 화합물 반도체를 소재로 사용하여 고효율로 청색광을 발광하는 소자 기술을 세계최초로 개발했다. 원소주기율표에 1-7족 물질들은 강한 전기적 상호작용으로 인해 원자간 결합강도가 높아 반도체로 사용하기 어렵다는 것이 학계에 정설이었으나, 이번 기술개발로 반도체 소재 기술에 새로운 지평을 열었다는 평가를 받고 있다. 연구진이 개발한 요오드화 구리(CuI) 반도체는 저렴한 실리콘(Si) 기판에 적은 결함으로 성장이 가능하여 현재 상용화 되어 있는 대면적 실리콘 기판(300mm)을 그대로 사용할 수 있다는 큰 장점이 있다. 또한 요오드화 구리(CuI) 박막 성장온도가 실리콘 기반 CMOS소자 공정에 사용되는 온도(300도 이하)와 유사하여 열화없이 요오드화 구리(CuI) 박막을 증착, 저렴하고 손쉬운 실리콘 반도체 공정에 적용이 가능하다. 공동연구진은 요오드화 구리(CuI) 반도체가 질화갈륨기반 소자에 비해 10배 이상 강한 청색광 밝기 및 향상된 광전효율 특성과 장기적 소자 안정성을 가진다는 것을 확인 하였다. 이번 연구결과는 고품질 구리할로겐계 단결정 요오드화 구리(CuI)를 실리콘 기판 상에 성장, 고효율의 청색 발광을 구현해 세계 최초로 구리할로겐계 화합물을 이용한 새로운 반도체 소재 기술을 실증했다는 것에 큰 의의가 있다. 공동 연구진은 그간의 연구를 통해 새로운 요오드화 구리(CuI) 반도체 재료의 원천기술을 이미 보유하고 있다. *특허 : 국내외 10 여편의 특허 획득(미국 특허 US 10566427 B2 등) KIST 송진동 단장은 “기존의 p-형 질화갈륨을 대체하여 높은 생산효율의 청색(자외선) 발광에 성공했다. 성능개선 연구를 지속적으로 수행할 것”라고 말했다. KIST 장준연 소장은 “기존의 LED에 비해 많은 장점을 가지므로 일본이 독점하고 있는 질화갈륨을 대체하는 새로운 발광반도체용 소재로 큰 기대를 모을 것으로 기대한다.”고 밝혔다. ㈜페타룩스 안도열 대표(서울시립대 석좌교수)는 “2016년 구리할로겐계 반도체의 우수성에 대한 이론적 예측을 최초로 보고하고 원천기술을 보유하고 있다. 이번 연구성과가 새로운 청색 및 자외선 광원으로 상업적 생산이 가능할 것으로 기대한다.”고 말했다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업인 차세대반도체연구소 플래그십 과제로 진행되었으며, ㈜페타룩스는 연구개발비를 투자하여 공동연구를 수행했다. 본 연구결과는 네이처 자매지인 ‘Scientific Reports’ 최신호에 온라인 게재되었다. * (논문명) Intrinsically p-type cuprous iodide semiconductor for hybrid light emitting diodes - (제1저자, 교신저자) (주)페타룩스 안도열 대표(서울시립대학교 석좌교수) - (제2저자, 교신저자) 한국과학기술연구원 송진동 책임연구원 - (교신저자) 한국과학기술연구원 장준연 책임연구원 <그림설명> <그림 1> (좌) Si과 CuI 반도체의 결정구조. 격자상수가 유사하여 Si기판위에 CuI 박막성장을 저결함으로 성장 할 수 있음. (우) Si기판위에 성장한 CuI 박막의 결정대칭성을 투과전자현미경으로 관찰한 사진. Si에 격자 맞는 CuI 단결정 성장을 확인함. <그림 2> CuI를 p-형 접합으로 사용한 p-CuI/n-AlGaN UV LED 동작 사진
KIST, 새로운 청색광 반도체 기술 개발
- 질화칼륨 대신 요오드화 구리 사용, 높은 효율의 청색광 발광 화합물 반도체 개발 - 국내 원천기술 개발로 해외 의존도 높은 반도체 소재 자립에 첫걸음 2014년 에너지절약형 빛 혁명을 이끈 청색광 발광소자(LED) 발명자인 일본 과학자 3명이 노벨 물리학상의 영예를 안았다. 반도체를 이용한 LED는 백색광 구현을 위해 적·녹·청색의 LED가 필요하다. 이중 가장 늦게 개발된 청색광 LED는 1990년대 일본의 과학자들에 의해 질화갈륨(GaN)을 고품질로 만드는 기법을 개발, 상용화에 성공했다. 질화갈륨은 전등 뿐 아니라 스마트폰, 디스플레이, 전자제품 및 고주파장치에 핵심소재로 우리 실생활에 널리 쓰이고 있다. 또한 초고속 통신용소자, 자동차용 전력반도체, 그리고 극한에서 사용가능한 극한 환경용 반도체로 그 활용 범위가 급속도로 확대되고 있다. 한국과학기술연구원(KIST, 원장 이병권) 차세대반도체연구소 송진동 책임연구원, 장준연 소장팀은 (주)페타룩스 안도열 대표(서울시립대학교 석좌교수)와의 공동연구를 통해 기존의 청색광 LED 반도체에 사용했던 질화갈륨을 대체 할 수 있는 새로운 화합물 반도체 기술개발에 성공했다고 밝혔다. 연구진은 구리(Cu)와 요오드(I)를 합성한 요오드화 구리(CuI) 1-7족 화합물 반도체를 소재로 사용하여 고효율로 청색광을 발광하는 소자 기술을 세계최초로 개발했다. 원소주기율표에 1-7족 물질들은 강한 전기적 상호작용으로 인해 원자간 결합강도가 높아 반도체로 사용하기 어렵다는 것이 학계에 정설이었으나, 이번 기술개발로 반도체 소재 기술에 새로운 지평을 열었다는 평가를 받고 있다. 연구진이 개발한 요오드화 구리(CuI) 반도체는 저렴한 실리콘(Si) 기판에 적은 결함으로 성장이 가능하여 현재 상용화 되어 있는 대면적 실리콘 기판(300mm)을 그대로 사용할 수 있다는 큰 장점이 있다. 또한 요오드화 구리(CuI) 박막 성장온도가 실리콘 기반 CMOS소자 공정에 사용되는 온도(300도 이하)와 유사하여 열화없이 요오드화 구리(CuI) 박막을 증착, 저렴하고 손쉬운 실리콘 반도체 공정에 적용이 가능하다. 공동연구진은 요오드화 구리(CuI) 반도체가 질화갈륨기반 소자에 비해 10배 이상 강한 청색광 밝기 및 향상된 광전효율 특성과 장기적 소자 안정성을 가진다는 것을 확인 하였다. 이번 연구결과는 고품질 구리할로겐계 단결정 요오드화 구리(CuI)를 실리콘 기판 상에 성장, 고효율의 청색 발광을 구현해 세계 최초로 구리할로겐계 화합물을 이용한 새로운 반도체 소재 기술을 실증했다는 것에 큰 의의가 있다. 공동 연구진은 그간의 연구를 통해 새로운 요오드화 구리(CuI) 반도체 재료의 원천기술을 이미 보유하고 있다. *특허 : 국내외 10 여편의 특허 획득(미국 특허 US 10566427 B2 등) KIST 송진동 단장은 “기존의 p-형 질화갈륨을 대체하여 높은 생산효율의 청색(자외선) 발광에 성공했다. 성능개선 연구를 지속적으로 수행할 것”라고 말했다. KIST 장준연 소장은 “기존의 LED에 비해 많은 장점을 가지므로 일본이 독점하고 있는 질화갈륨을 대체하는 새로운 발광반도체용 소재로 큰 기대를 모을 것으로 기대한다.”고 밝혔다. ㈜페타룩스 안도열 대표(서울시립대 석좌교수)는 “2016년 구리할로겐계 반도체의 우수성에 대한 이론적 예측을 최초로 보고하고 원천기술을 보유하고 있다. 이번 연구성과가 새로운 청색 및 자외선 광원으로 상업적 생산이 가능할 것으로 기대한다.”고 말했다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업인 차세대반도체연구소 플래그십 과제로 진행되었으며, ㈜페타룩스는 연구개발비를 투자하여 공동연구를 수행했다. 본 연구결과는 네이처 자매지인 ‘Scientific Reports’ 최신호에 온라인 게재되었다. * (논문명) Intrinsically p-type cuprous iodide semiconductor for hybrid light emitting diodes - (제1저자, 교신저자) (주)페타룩스 안도열 대표(서울시립대학교 석좌교수) - (제2저자, 교신저자) 한국과학기술연구원 송진동 책임연구원 - (교신저자) 한국과학기술연구원 장준연 책임연구원 <그림설명> <그림 1> (좌) Si과 CuI 반도체의 결정구조. 격자상수가 유사하여 Si기판위에 CuI 박막성장을 저결함으로 성장 할 수 있음. (우) Si기판위에 성장한 CuI 박막의 결정대칭성을 투과전자현미경으로 관찰한 사진. Si에 격자 맞는 CuI 단결정 성장을 확인함. <그림 2> CuI를 p-형 접합으로 사용한 p-CuI/n-AlGaN UV LED 동작 사진
KIST, 새로운 청색광 반도체 기술 개발
- 질화칼륨 대신 요오드화 구리 사용, 높은 효율의 청색광 발광 화합물 반도체 개발 - 국내 원천기술 개발로 해외 의존도 높은 반도체 소재 자립에 첫걸음 2014년 에너지절약형 빛 혁명을 이끈 청색광 발광소자(LED) 발명자인 일본 과학자 3명이 노벨 물리학상의 영예를 안았다. 반도체를 이용한 LED는 백색광 구현을 위해 적·녹·청색의 LED가 필요하다. 이중 가장 늦게 개발된 청색광 LED는 1990년대 일본의 과학자들에 의해 질화갈륨(GaN)을 고품질로 만드는 기법을 개발, 상용화에 성공했다. 질화갈륨은 전등 뿐 아니라 스마트폰, 디스플레이, 전자제품 및 고주파장치에 핵심소재로 우리 실생활에 널리 쓰이고 있다. 또한 초고속 통신용소자, 자동차용 전력반도체, 그리고 극한에서 사용가능한 극한 환경용 반도체로 그 활용 범위가 급속도로 확대되고 있다. 한국과학기술연구원(KIST, 원장 이병권) 차세대반도체연구소 송진동 책임연구원, 장준연 소장팀은 (주)페타룩스 안도열 대표(서울시립대학교 석좌교수)와의 공동연구를 통해 기존의 청색광 LED 반도체에 사용했던 질화갈륨을 대체 할 수 있는 새로운 화합물 반도체 기술개발에 성공했다고 밝혔다. 연구진은 구리(Cu)와 요오드(I)를 합성한 요오드화 구리(CuI) 1-7족 화합물 반도체를 소재로 사용하여 고효율로 청색광을 발광하는 소자 기술을 세계최초로 개발했다. 원소주기율표에 1-7족 물질들은 강한 전기적 상호작용으로 인해 원자간 결합강도가 높아 반도체로 사용하기 어렵다는 것이 학계에 정설이었으나, 이번 기술개발로 반도체 소재 기술에 새로운 지평을 열었다는 평가를 받고 있다. 연구진이 개발한 요오드화 구리(CuI) 반도체는 저렴한 실리콘(Si) 기판에 적은 결함으로 성장이 가능하여 현재 상용화 되어 있는 대면적 실리콘 기판(300mm)을 그대로 사용할 수 있다는 큰 장점이 있다. 또한 요오드화 구리(CuI) 박막 성장온도가 실리콘 기반 CMOS소자 공정에 사용되는 온도(300도 이하)와 유사하여 열화없이 요오드화 구리(CuI) 박막을 증착, 저렴하고 손쉬운 실리콘 반도체 공정에 적용이 가능하다. 공동연구진은 요오드화 구리(CuI) 반도체가 질화갈륨기반 소자에 비해 10배 이상 강한 청색광 밝기 및 향상된 광전효율 특성과 장기적 소자 안정성을 가진다는 것을 확인 하였다. 이번 연구결과는 고품질 구리할로겐계 단결정 요오드화 구리(CuI)를 실리콘 기판 상에 성장, 고효율의 청색 발광을 구현해 세계 최초로 구리할로겐계 화합물을 이용한 새로운 반도체 소재 기술을 실증했다는 것에 큰 의의가 있다. 공동 연구진은 그간의 연구를 통해 새로운 요오드화 구리(CuI) 반도체 재료의 원천기술을 이미 보유하고 있다. *특허 : 국내외 10 여편의 특허 획득(미국 특허 US 10566427 B2 등) KIST 송진동 단장은 “기존의 p-형 질화갈륨을 대체하여 높은 생산효율의 청색(자외선) 발광에 성공했다. 성능개선 연구를 지속적으로 수행할 것”라고 말했다. KIST 장준연 소장은 “기존의 LED에 비해 많은 장점을 가지므로 일본이 독점하고 있는 질화갈륨을 대체하는 새로운 발광반도체용 소재로 큰 기대를 모을 것으로 기대한다.”고 밝혔다. ㈜페타룩스 안도열 대표(서울시립대 석좌교수)는 “2016년 구리할로겐계 반도체의 우수성에 대한 이론적 예측을 최초로 보고하고 원천기술을 보유하고 있다. 이번 연구성과가 새로운 청색 및 자외선 광원으로 상업적 생산이 가능할 것으로 기대한다.”고 말했다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업인 차세대반도체연구소 플래그십 과제로 진행되었으며, ㈜페타룩스는 연구개발비를 투자하여 공동연구를 수행했다. 본 연구결과는 네이처 자매지인 ‘Scientific Reports’ 최신호에 온라인 게재되었다. * (논문명) Intrinsically p-type cuprous iodide semiconductor for hybrid light emitting diodes - (제1저자, 교신저자) (주)페타룩스 안도열 대표(서울시립대학교 석좌교수) - (제2저자, 교신저자) 한국과학기술연구원 송진동 책임연구원 - (교신저자) 한국과학기술연구원 장준연 책임연구원 <그림설명> <그림 1> (좌) Si과 CuI 반도체의 결정구조. 격자상수가 유사하여 Si기판위에 CuI 박막성장을 저결함으로 성장 할 수 있음. (우) Si기판위에 성장한 CuI 박막의 결정대칭성을 투과전자현미경으로 관찰한 사진. Si에 격자 맞는 CuI 단결정 성장을 확인함. <그림 2> CuI를 p-형 접합으로 사용한 p-CuI/n-AlGaN UV LED 동작 사진
KIST, 이달의 KIST인상 수상자 발표
- 치매DTC융합연구단 배애님 단장, 김윤경 박사,‘이달의 KIST인상’수상 한국과학기술연구원(KIST, 원장 이병권)은 28일(금) KIST 서울 성북구 본원에서 우수한 연구업적을 달성한 연구자에게 2020년 2월 ‘이달의 KIST인상’을 수여했다고 밝혔다. KIST 치매DTC융합연구단 배애님 단장(책임연구원), 김윤경 책임연구원은 치매기 개발을 위하여 타우 단백질 응집 저해 기반 치매 치료제의 전임상 후보 물질을 개발했다. 타우 단백질은 알츠하이머성 치매의 주요 원인 중 하나인데, KIST 연구진은 타우 단백질의 응집 초기 단계에서 올리고머 형성을 모니터링할 수 있는 세포모델 및 동물모델을 구축하였다. 이를 활용한 약물 스크리닝과 최적화를 통해 효능과 안전성이 우수한 물질을 도출하였다. KIST는 경쟁력 있는 임상 후보로 개발하기 위해 국내 대형 제약사인 ㈜동아 ST에 기술료 선급금 10억원(개발 및 임상 진행에 따른 마일스톤 책정)으로 기술이전을 하였고, 향후 공동 개발을 통해 전임상 및 임상 연구를 진행하기 위해 공동 연구 개발 협약(MOU, `19.12.11)을 체결했다. 배애님 단장은 의약합성 전공자로서 신규 화합물 설계 및 합성 연구를 수행하였고, 김윤경 박사는 타우 응집 효능 평가를 할 수 있는 시스템 구축 및 약물 효능 평가를 수행하여 상호 긴밀한 협력 연구를 통해 우수한 물질을 도출할 수 있었다. KIST 배애님 단장, 김윤경 박사는 상기 공적을 인정받아 이달의 KIST인상을 공동 수상하는 것으로 최종 선정되었다. 이달의 KIST인상은 연구원의 발전에 가장 창조적, 혁신적으로 기여한 우수 직원을 발굴하여 포상심의위원회 심의를 거쳐 최종 선정된다.
KIST, 치매 원인 물질(베타-아밀로이드)만 빨아들여 제거하는 나노 청소기 개발
- 알츠하이머 주요 원인 물질인 베타-아밀로이드를 선택적으로 흡입, 제거 - 응용범위 확장 후 다양한 질병 치료에 적용 가능 베타-아밀로이드 단백질은 뇌 속에 비정상적으로 축적되어 알츠하이머병의 주요 원인이 되는 것으로 알려져 있다. 최근 KIST 연구진이 베타-아밀로이드 단백질만을 선택적으로 흡입하여 제거하는 나노 구조체를 개발하여 주목받고 있다. 한국과학기술연구원(KIST, 원장 이병권)은 분자인식연구센터 이준석 박사팀이 한국과학기술원(KAIST, 총장 신성철) 신소재공학과 박찬범 교수팀, 아르곤 국립연구소와의 공동연구를 통해 치매의 주요 원인 물질로 꼽히는 베타-아밀로이드 단백질을 흡입하여 제거함으로써 알츠하이머 질환의 진행을 예방하는 나노청소기를 개발했다고 밝혔다. 베타-아밀로이드 단백질은 뇌 속에서 응집되는 특성이 있다. 이 단백질이 과도하게 응집되면 신경세포를 사멸시키고 시냅스를 파괴하여 알츠하이머의 진행을 가속시킨다. 이러한 응집을 막기 위해 베타-아밀로이드 단백질의 생성을 차단하거나, 생성된 단백질이 서로 응집되지 않도록 항체 및 저해제를 활용하는 연구가 여러 방면에서 진행되고 있으나 아직 효과적인 치매 치료제는 개발되지 못했다. KIST 이준석 박사팀은 상기 기존 방식이 아닌 생성된 베타-아밀로이드 단백질을 원천적으로 흡입하여 제거하는 새로운 접근법을 통해 독성물질의 생성을 예방하는 전략에 주목하였다. 이와 같은 특정 단백질(베타-아밀로이드)을 효율적으로 제거하기 위해서는 항체와 같은 베타-아밀로이드를 선택성을 가진 물질이 필요하다. 하지만 기존의 항체는 체내에서 안정성이 떨어지고 체내 다른 분자와도 결합할 수 있어 그 효율성이 떨어진다. 이러한 한계점을 극복하기 위해 거대한 구멍을 갖는 나노입자를 디자인하여 넓은 표면적을 갖는 나노 구조체를 제작했다. 연구진은 이 구조체에 표적 물질에 대한 선택성은 높으면서도 보통의 항체보다 작아 더 높은 효율로 흡입할 수 있는 미니항체(scFv)를 부착하여 표적 물질인 베타-아밀로이드 단백질을 선별하여 흡착하도록 하였다. KIST 연구진이 개발한 나노청소기는 베타-아밀로이드 단백질을 효과적으로 흡착하여 베타-아밀로이드 단백질의 비정상적 응집을 80% 이상 차단하여 신경독성을 완화하였다. 또한, 연구진은 동물실험을 통해 그 효과를 입증하여 미래 항-아밀로이드성 억제제로서의 가능성을 입증하였다. 본 연구를 주도한 KIST 이준석 박사는 “나노청소기를 이용해 베타-아밀로이드나 타우 단백질에 대한 흡입을 통해 신경독성 물질의 응집저해가 가능할 뿐만 아니라, 응용 범위를 확장하면 체내 다양한 유해물질을 선택적으로 제거할 수 있는 나노청소기로써 질병 예방 및 건강증진에 기여할 수 있을 것”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 국가과학기술연구회 창의형융합연구사업으로 수행되었으며, 이번 연구결과는 ‘Advanced functional Materials’(IF: 15.621, JCR 분야 상위 3.041%) 표지논문(Front Cover)으로 선정되어 게재될 예정이다. * (논문명) Silica Nanodepletors: Targeting and Clearing Alzheimer’s β?Amyloid Plaques - (제1저자) 한국과학기술연구원 정희진 석사과정 - (제1저자) 한국과학기술원 정유정 박사과정 - (제1저자) 한국과학기술연구원 이창헌 박사 - (제1저자) 미국 아르곤 국립연구소 Rosemarie Wilton 박사 - (교신저자) 한국과학기술연구원 이준석 선임연구원 - (교신저자) 한국과학기술원 박찬범 교수 - (교신저자) 미국 아르곤 국립연구소 Elena A. Rozhkova 박사 <그림설명> [그림 1] 표지논문 이미지 [그림 2] 특정 물질을 타겟팅하여 빨아들이는 나노청소기의 구성 및 작용 개략도 미니항체가 접합된 다공성 실리카 나노구조체는 특정 타겟 물질을 선택적으로 표적화하고 흡수한다. 그림1의 경우 베타-아밀로이드를 대상으로 진행하였으며, 베타-아밀로이드의 자가 조립을 억제하여 플라크의 침착으로 이어지는 일련의 과정을 차단하였다.
KIST, 치매 원인 물질(베타-아밀로이드)만 빨아들여 제거하는 나노 청소기 개발
- 알츠하이머 주요 원인 물질인 베타-아밀로이드를 선택적으로 흡입, 제거 - 응용범위 확장 후 다양한 질병 치료에 적용 가능 베타-아밀로이드 단백질은 뇌 속에 비정상적으로 축적되어 알츠하이머병의 주요 원인이 되는 것으로 알려져 있다. 최근 KIST 연구진이 베타-아밀로이드 단백질만을 선택적으로 흡입하여 제거하는 나노 구조체를 개발하여 주목받고 있다. 한국과학기술연구원(KIST, 원장 이병권)은 분자인식연구센터 이준석 박사팀이 한국과학기술원(KAIST, 총장 신성철) 신소재공학과 박찬범 교수팀, 아르곤 국립연구소와의 공동연구를 통해 치매의 주요 원인 물질로 꼽히는 베타-아밀로이드 단백질을 흡입하여 제거함으로써 알츠하이머 질환의 진행을 예방하는 나노청소기를 개발했다고 밝혔다. 베타-아밀로이드 단백질은 뇌 속에서 응집되는 특성이 있다. 이 단백질이 과도하게 응집되면 신경세포를 사멸시키고 시냅스를 파괴하여 알츠하이머의 진행을 가속시킨다. 이러한 응집을 막기 위해 베타-아밀로이드 단백질의 생성을 차단하거나, 생성된 단백질이 서로 응집되지 않도록 항체 및 저해제를 활용하는 연구가 여러 방면에서 진행되고 있으나 아직 효과적인 치매 치료제는 개발되지 못했다. KIST 이준석 박사팀은 상기 기존 방식이 아닌 생성된 베타-아밀로이드 단백질을 원천적으로 흡입하여 제거하는 새로운 접근법을 통해 독성물질의 생성을 예방하는 전략에 주목하였다. 이와 같은 특정 단백질(베타-아밀로이드)을 효율적으로 제거하기 위해서는 항체와 같은 베타-아밀로이드를 선택성을 가진 물질이 필요하다. 하지만 기존의 항체는 체내에서 안정성이 떨어지고 체내 다른 분자와도 결합할 수 있어 그 효율성이 떨어진다. 이러한 한계점을 극복하기 위해 거대한 구멍을 갖는 나노입자를 디자인하여 넓은 표면적을 갖는 나노 구조체를 제작했다. 연구진은 이 구조체에 표적 물질에 대한 선택성은 높으면서도 보통의 항체보다 작아 더 높은 효율로 흡입할 수 있는 미니항체(scFv)를 부착하여 표적 물질인 베타-아밀로이드 단백질을 선별하여 흡착하도록 하였다. KIST 연구진이 개발한 나노청소기는 베타-아밀로이드 단백질을 효과적으로 흡착하여 베타-아밀로이드 단백질의 비정상적 응집을 80% 이상 차단하여 신경독성을 완화하였다. 또한, 연구진은 동물실험을 통해 그 효과를 입증하여 미래 항-아밀로이드성 억제제로서의 가능성을 입증하였다. 본 연구를 주도한 KIST 이준석 박사는 “나노청소기를 이용해 베타-아밀로이드나 타우 단백질에 대한 흡입을 통해 신경독성 물질의 응집저해가 가능할 뿐만 아니라, 응용 범위를 확장하면 체내 다양한 유해물질을 선택적으로 제거할 수 있는 나노청소기로써 질병 예방 및 건강증진에 기여할 수 있을 것”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 국가과학기술연구회 창의형융합연구사업으로 수행되었으며, 이번 연구결과는 ‘Advanced functional Materials’(IF: 15.621, JCR 분야 상위 3.041%) 표지논문(Front Cover)으로 선정되어 게재될 예정이다. * (논문명) Silica Nanodepletors: Targeting and Clearing Alzheimer’s β?Amyloid Plaques - (제1저자) 한국과학기술연구원 정희진 석사과정 - (제1저자) 한국과학기술원 정유정 박사과정 - (제1저자) 한국과학기술연구원 이창헌 박사 - (제1저자) 미국 아르곤 국립연구소 Rosemarie Wilton 박사 - (교신저자) 한국과학기술연구원 이준석 선임연구원 - (교신저자) 한국과학기술원 박찬범 교수 - (교신저자) 미국 아르곤 국립연구소 Elena A. Rozhkova 박사 <그림설명> [그림 1] 표지논문 이미지 [그림 2] 특정 물질을 타겟팅하여 빨아들이는 나노청소기의 구성 및 작용 개략도 미니항체가 접합된 다공성 실리카 나노구조체는 특정 타겟 물질을 선택적으로 표적화하고 흡수한다. 그림1의 경우 베타-아밀로이드를 대상으로 진행하였으며, 베타-아밀로이드의 자가 조립을 억제하여 플라크의 침착으로 이어지는 일련의 과정을 차단하였다.
KIST, 치매 원인 물질(베타-아밀로이드)만 빨아들여 제거하는 나노 청소기 개발
- 알츠하이머 주요 원인 물질인 베타-아밀로이드를 선택적으로 흡입, 제거 - 응용범위 확장 후 다양한 질병 치료에 적용 가능 베타-아밀로이드 단백질은 뇌 속에 비정상적으로 축적되어 알츠하이머병의 주요 원인이 되는 것으로 알려져 있다. 최근 KIST 연구진이 베타-아밀로이드 단백질만을 선택적으로 흡입하여 제거하는 나노 구조체를 개발하여 주목받고 있다. 한국과학기술연구원(KIST, 원장 이병권)은 분자인식연구센터 이준석 박사팀이 한국과학기술원(KAIST, 총장 신성철) 신소재공학과 박찬범 교수팀, 아르곤 국립연구소와의 공동연구를 통해 치매의 주요 원인 물질로 꼽히는 베타-아밀로이드 단백질을 흡입하여 제거함으로써 알츠하이머 질환의 진행을 예방하는 나노청소기를 개발했다고 밝혔다. 베타-아밀로이드 단백질은 뇌 속에서 응집되는 특성이 있다. 이 단백질이 과도하게 응집되면 신경세포를 사멸시키고 시냅스를 파괴하여 알츠하이머의 진행을 가속시킨다. 이러한 응집을 막기 위해 베타-아밀로이드 단백질의 생성을 차단하거나, 생성된 단백질이 서로 응집되지 않도록 항체 및 저해제를 활용하는 연구가 여러 방면에서 진행되고 있으나 아직 효과적인 치매 치료제는 개발되지 못했다. KIST 이준석 박사팀은 상기 기존 방식이 아닌 생성된 베타-아밀로이드 단백질을 원천적으로 흡입하여 제거하는 새로운 접근법을 통해 독성물질의 생성을 예방하는 전략에 주목하였다. 이와 같은 특정 단백질(베타-아밀로이드)을 효율적으로 제거하기 위해서는 항체와 같은 베타-아밀로이드를 선택성을 가진 물질이 필요하다. 하지만 기존의 항체는 체내에서 안정성이 떨어지고 체내 다른 분자와도 결합할 수 있어 그 효율성이 떨어진다. 이러한 한계점을 극복하기 위해 거대한 구멍을 갖는 나노입자를 디자인하여 넓은 표면적을 갖는 나노 구조체를 제작했다. 연구진은 이 구조체에 표적 물질에 대한 선택성은 높으면서도 보통의 항체보다 작아 더 높은 효율로 흡입할 수 있는 미니항체(scFv)를 부착하여 표적 물질인 베타-아밀로이드 단백질을 선별하여 흡착하도록 하였다. KIST 연구진이 개발한 나노청소기는 베타-아밀로이드 단백질을 효과적으로 흡착하여 베타-아밀로이드 단백질의 비정상적 응집을 80% 이상 차단하여 신경독성을 완화하였다. 또한, 연구진은 동물실험을 통해 그 효과를 입증하여 미래 항-아밀로이드성 억제제로서의 가능성을 입증하였다. 본 연구를 주도한 KIST 이준석 박사는 “나노청소기를 이용해 베타-아밀로이드나 타우 단백질에 대한 흡입을 통해 신경독성 물질의 응집저해가 가능할 뿐만 아니라, 응용 범위를 확장하면 체내 다양한 유해물질을 선택적으로 제거할 수 있는 나노청소기로써 질병 예방 및 건강증진에 기여할 수 있을 것”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 국가과학기술연구회 창의형융합연구사업으로 수행되었으며, 이번 연구결과는 ‘Advanced functional Materials’(IF: 15.621, JCR 분야 상위 3.041%) 표지논문(Front Cover)으로 선정되어 게재될 예정이다. * (논문명) Silica Nanodepletors: Targeting and Clearing Alzheimer’s β?Amyloid Plaques - (제1저자) 한국과학기술연구원 정희진 석사과정 - (제1저자) 한국과학기술원 정유정 박사과정 - (제1저자) 한국과학기술연구원 이창헌 박사 - (제1저자) 미국 아르곤 국립연구소 Rosemarie Wilton 박사 - (교신저자) 한국과학기술연구원 이준석 선임연구원 - (교신저자) 한국과학기술원 박찬범 교수 - (교신저자) 미국 아르곤 국립연구소 Elena A. Rozhkova 박사 <그림설명> [그림 1] 표지논문 이미지 [그림 2] 특정 물질을 타겟팅하여 빨아들이는 나노청소기의 구성 및 작용 개략도 미니항체가 접합된 다공성 실리카 나노구조체는 특정 타겟 물질을 선택적으로 표적화하고 흡수한다. 그림1의 경우 베타-아밀로이드를 대상으로 진행하였으며, 베타-아밀로이드의 자가 조립을 억제하여 플라크의 침착으로 이어지는 일련의 과정을 차단하였다.