Result
게시물 키워드"KIST"에 대한 4620개의 검색결과를 찾았습니다.
해수담수화 기술, 마그네슘을 투입하여 안정성 확보
- 마그네슘을 투입하여 해수담수화 분리막 오염을 억제하는 공정 개발 - 해수담수화 안정성을 확보하여 공정 효율 및 분리막 수명 연장 기대 국내 연구진이 바닷물로부터 염분과 용해 물질을 제거하여 식수 및 생활용수, 공업용수 등을 얻어내는 해수담수화 기술에 사용되는 분리막의 오염을 억제하는 방법을 찾아냈다. 한국과학기술연구원(KIST, 원장 직무대행 윤석진) 물자원순환연구센터 정성필, 이석헌 박사팀은 해수담수화 기술 중 하나인 막증류 공정에 적용 가능한 분리막이 오염되거나 젖지 않도록 하는 마그네슘 투입 전처리 공정을 개발했다고 밝혔다. 해수담수화 기술 중 하나인 막증류 공정은 해수를 가열하여 발생된 수증기를 소수성 분리막을 통과시켜 해수와 수증기를 분리한 후 응축하여 담수를 생산하는 기술이다. 막증류 공정에서는 분리막 표면에서 막오염이 발생하며, 막증류 공정에서의 독특한 현상인 막젖음이 발생한다. 막 오염에 의하여 담수 생산 속도가 감소하거나, 분리막의 교체 주기가 짧아지는 경우 담수 생산 비용이 증가되는 문제점이 있었다. KIST 연구진은 막증류 공정을 모니터링하여 탄산칼슘(CaCO3)과 황산칼슘(CaSO4) 결정이 분리막 표면에 형성되는 것이 막오염의 주요 원인임을 확인하였다. 또한, 탄산칼슘은 운전 초기부터 형성되어 분리막의 부분 막젖음을 유발하고, 황산칼슘의 형성은 완전한 막젖음을 발생시켜 운전 중단을 유발함을 규명하였다. 해수담수화 공정에서 칼슘계 결정에 의한 막오염을 방지하기 위하여 스케일방지제(anti-scalant)가 대표적으로 적용되어 왔으며, 막증류 공정의 전처리 공정으로써 화학적 연수화(軟水化) 기술이 적용된 사례도 보고되고 있다. 하지만, 스케일방지제를 사용하는 경우, 유기물인 스케일방지제가 유입수의 표면장력을 낮춰 막젖음의 발생 가능성을 증가시킨다는 보고가 있다. 또한, 화학적 연수화 기술을 적용하는 경우, 연수화 과정에서 형성된 결정들을 제거하기 위한 대규모 침전 공정이 추가로 필요한 어려움이 있다. KIST 정성필 박사팀은 바닷물에 마그네슘을 투입하는 전처리 공정을 최초로 제안하였다. 마그네슘은 바닷물 속에 존재하는 탄산 및 황산이온과 결합하려 하므로, 탄산칼슘 및 황산칼슘의 형성을 막아 분리막 오염이 효과적으로 지연되는 것으로 확인되었다. 또한, 투입되는 염화마그네슘(MgCl2)이 무기물질이기 때문에 소수성 분리막의 안정성(막젖음에 대한 저항성)도 확보할 수 있었다. KIST 정성필 박사는 “소수성 분리막의 안정성이 확보되어 담수화 효율이 높아지고 분리막의 수명이 연장될 수 있을 것으로 기대된다.”라고 말하며, “무기물 기반의 친환경 전처리가 막 증발 공정 뿐 아니라 다양한 해수담수화 공정에서 적용할 수 있을 것”이라고 밝혔다. 본 연구는 환경부(장관 조명래) 플랜트연구사업과 과학기술정보통신부(장관 최기영) 지원 하에 KIST 주요사업으로 수행되었으며, 연구결과는 ‘Water Research’ (IF : 7.913, JCR 분야 상위 0.549%) 최신 호에 게재되었다. * (논문명) Retardation of wetting for membrane distillation by adjusting major components of seawater - (제 1저자) 한국과학기술연구원 김혜원 연구원(박사과정) - (교신저자) 한국과학기술연구원 정성필 선임연구원 - (교신저자) 한국과학기술연구원 이석헌 책임연구원 <그림설명> [그림 1] 마그네슘이 추가 전처리가 적용된 경우, 막 증류 공정 분리막의 막오염이 제어되는 기작 개요도
해수담수화 기술, 마그네슘을 투입하여 안정성 확보
- 마그네슘을 투입하여 해수담수화 분리막 오염을 억제하는 공정 개발 - 해수담수화 안정성을 확보하여 공정 효율 및 분리막 수명 연장 기대 국내 연구진이 바닷물로부터 염분과 용해 물질을 제거하여 식수 및 생활용수, 공업용수 등을 얻어내는 해수담수화 기술에 사용되는 분리막의 오염을 억제하는 방법을 찾아냈다. 한국과학기술연구원(KIST, 원장 직무대행 윤석진) 물자원순환연구센터 정성필, 이석헌 박사팀은 해수담수화 기술 중 하나인 막증류 공정에 적용 가능한 분리막이 오염되거나 젖지 않도록 하는 마그네슘 투입 전처리 공정을 개발했다고 밝혔다. 해수담수화 기술 중 하나인 막증류 공정은 해수를 가열하여 발생된 수증기를 소수성 분리막을 통과시켜 해수와 수증기를 분리한 후 응축하여 담수를 생산하는 기술이다. 막증류 공정에서는 분리막 표면에서 막오염이 발생하며, 막증류 공정에서의 독특한 현상인 막젖음이 발생한다. 막 오염에 의하여 담수 생산 속도가 감소하거나, 분리막의 교체 주기가 짧아지는 경우 담수 생산 비용이 증가되는 문제점이 있었다. KIST 연구진은 막증류 공정을 모니터링하여 탄산칼슘(CaCO3)과 황산칼슘(CaSO4) 결정이 분리막 표면에 형성되는 것이 막오염의 주요 원인임을 확인하였다. 또한, 탄산칼슘은 운전 초기부터 형성되어 분리막의 부분 막젖음을 유발하고, 황산칼슘의 형성은 완전한 막젖음을 발생시켜 운전 중단을 유발함을 규명하였다. 해수담수화 공정에서 칼슘계 결정에 의한 막오염을 방지하기 위하여 스케일방지제(anti-scalant)가 대표적으로 적용되어 왔으며, 막증류 공정의 전처리 공정으로써 화학적 연수화(軟水化) 기술이 적용된 사례도 보고되고 있다. 하지만, 스케일방지제를 사용하는 경우, 유기물인 스케일방지제가 유입수의 표면장력을 낮춰 막젖음의 발생 가능성을 증가시킨다는 보고가 있다. 또한, 화학적 연수화 기술을 적용하는 경우, 연수화 과정에서 형성된 결정들을 제거하기 위한 대규모 침전 공정이 추가로 필요한 어려움이 있다. KIST 정성필 박사팀은 바닷물에 마그네슘을 투입하는 전처리 공정을 최초로 제안하였다. 마그네슘은 바닷물 속에 존재하는 탄산 및 황산이온과 결합하려 하므로, 탄산칼슘 및 황산칼슘의 형성을 막아 분리막 오염이 효과적으로 지연되는 것으로 확인되었다. 또한, 투입되는 염화마그네슘(MgCl2)이 무기물질이기 때문에 소수성 분리막의 안정성(막젖음에 대한 저항성)도 확보할 수 있었다. KIST 정성필 박사는 “소수성 분리막의 안정성이 확보되어 담수화 효율이 높아지고 분리막의 수명이 연장될 수 있을 것으로 기대된다.”라고 말하며, “무기물 기반의 친환경 전처리가 막 증발 공정 뿐 아니라 다양한 해수담수화 공정에서 적용할 수 있을 것”이라고 밝혔다. 본 연구는 환경부(장관 조명래) 플랜트연구사업과 과학기술정보통신부(장관 최기영) 지원 하에 KIST 주요사업으로 수행되었으며, 연구결과는 ‘Water Research’ (IF : 7.913, JCR 분야 상위 0.549%) 최신 호에 게재되었다. * (논문명) Retardation of wetting for membrane distillation by adjusting major components of seawater - (제 1저자) 한국과학기술연구원 김혜원 연구원(박사과정) - (교신저자) 한국과학기술연구원 정성필 선임연구원 - (교신저자) 한국과학기술연구원 이석헌 책임연구원 <그림설명> [그림 1] 마그네슘이 추가 전처리가 적용된 경우, 막 증류 공정 분리막의 막오염이 제어되는 기작 개요도
해수담수화 기술, 마그네슘을 투입하여 안정성 확보
- 마그네슘을 투입하여 해수담수화 분리막 오염을 억제하는 공정 개발 - 해수담수화 안정성을 확보하여 공정 효율 및 분리막 수명 연장 기대 국내 연구진이 바닷물로부터 염분과 용해 물질을 제거하여 식수 및 생활용수, 공업용수 등을 얻어내는 해수담수화 기술에 사용되는 분리막의 오염을 억제하는 방법을 찾아냈다. 한국과학기술연구원(KIST, 원장 직무대행 윤석진) 물자원순환연구센터 정성필, 이석헌 박사팀은 해수담수화 기술 중 하나인 막증류 공정에 적용 가능한 분리막이 오염되거나 젖지 않도록 하는 마그네슘 투입 전처리 공정을 개발했다고 밝혔다. 해수담수화 기술 중 하나인 막증류 공정은 해수를 가열하여 발생된 수증기를 소수성 분리막을 통과시켜 해수와 수증기를 분리한 후 응축하여 담수를 생산하는 기술이다. 막증류 공정에서는 분리막 표면에서 막오염이 발생하며, 막증류 공정에서의 독특한 현상인 막젖음이 발생한다. 막 오염에 의하여 담수 생산 속도가 감소하거나, 분리막의 교체 주기가 짧아지는 경우 담수 생산 비용이 증가되는 문제점이 있었다. KIST 연구진은 막증류 공정을 모니터링하여 탄산칼슘(CaCO3)과 황산칼슘(CaSO4) 결정이 분리막 표면에 형성되는 것이 막오염의 주요 원인임을 확인하였다. 또한, 탄산칼슘은 운전 초기부터 형성되어 분리막의 부분 막젖음을 유발하고, 황산칼슘의 형성은 완전한 막젖음을 발생시켜 운전 중단을 유발함을 규명하였다. 해수담수화 공정에서 칼슘계 결정에 의한 막오염을 방지하기 위하여 스케일방지제(anti-scalant)가 대표적으로 적용되어 왔으며, 막증류 공정의 전처리 공정으로써 화학적 연수화(軟水化) 기술이 적용된 사례도 보고되고 있다. 하지만, 스케일방지제를 사용하는 경우, 유기물인 스케일방지제가 유입수의 표면장력을 낮춰 막젖음의 발생 가능성을 증가시킨다는 보고가 있다. 또한, 화학적 연수화 기술을 적용하는 경우, 연수화 과정에서 형성된 결정들을 제거하기 위한 대규모 침전 공정이 추가로 필요한 어려움이 있다. KIST 정성필 박사팀은 바닷물에 마그네슘을 투입하는 전처리 공정을 최초로 제안하였다. 마그네슘은 바닷물 속에 존재하는 탄산 및 황산이온과 결합하려 하므로, 탄산칼슘 및 황산칼슘의 형성을 막아 분리막 오염이 효과적으로 지연되는 것으로 확인되었다. 또한, 투입되는 염화마그네슘(MgCl2)이 무기물질이기 때문에 소수성 분리막의 안정성(막젖음에 대한 저항성)도 확보할 수 있었다. KIST 정성필 박사는 “소수성 분리막의 안정성이 확보되어 담수화 효율이 높아지고 분리막의 수명이 연장될 수 있을 것으로 기대된다.”라고 말하며, “무기물 기반의 친환경 전처리가 막 증발 공정 뿐 아니라 다양한 해수담수화 공정에서 적용할 수 있을 것”이라고 밝혔다. 본 연구는 환경부(장관 조명래) 플랜트연구사업과 과학기술정보통신부(장관 최기영) 지원 하에 KIST 주요사업으로 수행되었으며, 연구결과는 ‘Water Research’ (IF : 7.913, JCR 분야 상위 0.549%) 최신 호에 게재되었다. * (논문명) Retardation of wetting for membrane distillation by adjusting major components of seawater - (제 1저자) 한국과학기술연구원 김혜원 연구원(박사과정) - (교신저자) 한국과학기술연구원 정성필 선임연구원 - (교신저자) 한국과학기술연구원 이석헌 책임연구원 <그림설명> [그림 1] 마그네슘이 추가 전처리가 적용된 경우, 막 증류 공정 분리막의 막오염이 제어되는 기작 개요도
해수담수화 기술, 마그네슘을 투입하여 안정성 확보
- 마그네슘을 투입하여 해수담수화 분리막 오염을 억제하는 공정 개발 - 해수담수화 안정성을 확보하여 공정 효율 및 분리막 수명 연장 기대 국내 연구진이 바닷물로부터 염분과 용해 물질을 제거하여 식수 및 생활용수, 공업용수 등을 얻어내는 해수담수화 기술에 사용되는 분리막의 오염을 억제하는 방법을 찾아냈다. 한국과학기술연구원(KIST, 원장 직무대행 윤석진) 물자원순환연구센터 정성필, 이석헌 박사팀은 해수담수화 기술 중 하나인 막증류 공정에 적용 가능한 분리막이 오염되거나 젖지 않도록 하는 마그네슘 투입 전처리 공정을 개발했다고 밝혔다. 해수담수화 기술 중 하나인 막증류 공정은 해수를 가열하여 발생된 수증기를 소수성 분리막을 통과시켜 해수와 수증기를 분리한 후 응축하여 담수를 생산하는 기술이다. 막증류 공정에서는 분리막 표면에서 막오염이 발생하며, 막증류 공정에서의 독특한 현상인 막젖음이 발생한다. 막 오염에 의하여 담수 생산 속도가 감소하거나, 분리막의 교체 주기가 짧아지는 경우 담수 생산 비용이 증가되는 문제점이 있었다. KIST 연구진은 막증류 공정을 모니터링하여 탄산칼슘(CaCO3)과 황산칼슘(CaSO4) 결정이 분리막 표면에 형성되는 것이 막오염의 주요 원인임을 확인하였다. 또한, 탄산칼슘은 운전 초기부터 형성되어 분리막의 부분 막젖음을 유발하고, 황산칼슘의 형성은 완전한 막젖음을 발생시켜 운전 중단을 유발함을 규명하였다. 해수담수화 공정에서 칼슘계 결정에 의한 막오염을 방지하기 위하여 스케일방지제(anti-scalant)가 대표적으로 적용되어 왔으며, 막증류 공정의 전처리 공정으로써 화학적 연수화(軟水化) 기술이 적용된 사례도 보고되고 있다. 하지만, 스케일방지제를 사용하는 경우, 유기물인 스케일방지제가 유입수의 표면장력을 낮춰 막젖음의 발생 가능성을 증가시킨다는 보고가 있다. 또한, 화학적 연수화 기술을 적용하는 경우, 연수화 과정에서 형성된 결정들을 제거하기 위한 대규모 침전 공정이 추가로 필요한 어려움이 있다. KIST 정성필 박사팀은 바닷물에 마그네슘을 투입하는 전처리 공정을 최초로 제안하였다. 마그네슘은 바닷물 속에 존재하는 탄산 및 황산이온과 결합하려 하므로, 탄산칼슘 및 황산칼슘의 형성을 막아 분리막 오염이 효과적으로 지연되는 것으로 확인되었다. 또한, 투입되는 염화마그네슘(MgCl2)이 무기물질이기 때문에 소수성 분리막의 안정성(막젖음에 대한 저항성)도 확보할 수 있었다. KIST 정성필 박사는 “소수성 분리막의 안정성이 확보되어 담수화 효율이 높아지고 분리막의 수명이 연장될 수 있을 것으로 기대된다.”라고 말하며, “무기물 기반의 친환경 전처리가 막 증발 공정 뿐 아니라 다양한 해수담수화 공정에서 적용할 수 있을 것”이라고 밝혔다. 본 연구는 환경부(장관 조명래) 플랜트연구사업과 과학기술정보통신부(장관 최기영) 지원 하에 KIST 주요사업으로 수행되었으며, 연구결과는 ‘Water Research’ (IF : 7.913, JCR 분야 상위 0.549%) 최신 호에 게재되었다. * (논문명) Retardation of wetting for membrane distillation by adjusting major components of seawater - (제 1저자) 한국과학기술연구원 김혜원 연구원(박사과정) - (교신저자) 한국과학기술연구원 정성필 선임연구원 - (교신저자) 한국과학기술연구원 이석헌 책임연구원 <그림설명> [그림 1] 마그네슘이 추가 전처리가 적용된 경우, 막 증류 공정 분리막의 막오염이 제어되는 기작 개요도
KIST, 이달의 KIST인상 수상자 발표
- 치매DTC융합연구단 박기덕 박사,‘이달의 KIST인상’수상 한국과학기술연구원(KIST, 원장 직무대행 윤석진)은 30일(월) KIST 서울 성북구 본원에서 우수한 연구업적을 달성한 연구자에게 2020년 3월 ‘이달의 KIST인상’을 수여했다고 밝혔다. KIST 치매DTC융합연구단 박기덕 책임연구원은 근원적 치료약물이 전무한 척수손상과 뇌졸중에 대한 신약 후보물질을 개발했다. 박기덕 박사는 2019년 알츠하이머성 치매환자의 뇌에서 가바(GABA) : 포유류의 중추신경계에 생기는 억제성 신호 전달 물질로써, 반응성 성상교세포에서 가바가 과생성되면 기억력 저하나 인지 장애를 유발한다. 가바(GABA)의 과생성을 억제하는 새로운 치매치료 후보물질인 ‘KDS2010’을 발표한 바 있다.(Science Advances 20 Mar 2019 : Vol. 5, no. 3, eaav0316) KDS2010을 적용할 수 있는 적응증 확대를 위해 척수손상 동물모델을 통해 관찰한 결과, 척수 손상시 가바가 과생성되며 이로 인해 손상된 부위의 신경이 회복되지 않고 영구적으로 손상됨을 확인하였다. 또한, KDS2010에 의해 손상된 척수가 회복됨과 동시에 신경 재생 효능과 치료기전을 규명하였다. 뇌졸중 동물모델에서 약물투여와 함께 병행된 재활 훈련에서도 회복 효능과 치료기전을 확인하였다. KIST는 위 후보물질을 글로벌 신약으로 개발하기 위해 ㈜뉴로바이오젠에 기술료 선급금 2억원(개발 및 임상 진행에 따른 마일스톤 책정)으로 기술이전 하였다. 2020년 상반기 비임상 시험을 완료할 예정이며, 2020년 하반기 임상 진입을 목표하고 있다. KIST 박기덕 박사는 상기 공적을 인정받아 이달의 KIST인상을 수상하게 되었다. 이달의 KIST인상은 연구원의 발전에 가장 창조적, 혁신적으로 기여한 우수 직원을 발굴하여 포상심의위원회 심의를 거쳐 최종 선정된다.
KIST, 부탄가스로도 작동하는 고성능 세라믹 연료전지 개발
- 박막 촉매 삽입 기술로 섭씨 600도 이하 에서 부탄연료 고성능 획득 - 휴대용 연료를 사용하는 세라믹 연료전지 응용범위 크게 넓혀 국내 연구진이 휴대가 용이한 부탄연료를 사용할 수 있는 고성능 세라믹 연료전지를 개발하여 상용화 가능성을 크게 높였다. 고온의 작동조건 탓에 대형 발전용으로만 활용이 가능할 것으로 여겨져 온 세라믹 연료전지의 응용 범위가 전기차·로봇·드론 등 소형 이동수단으로도 확대될 것으로 예상된다. 한국과학기술연구원(KIST, 원장 직무대행 윤석진)은 에너지소재연구단 손지원 박사팀이 600°C 이하의 중저온 영역에서 작동하는 고성능 박막 기반 세라믹 연료전지 기술을 개발했다고 밝혔다. 고온형 연료전지의 대표격인 세라믹 연료전지는 통상 800℃ 이상의 고온작동이 특징적이다. 이 덕분에 저온형 연료전지인 고분자전해질 연료전지 등이 낮은 열역학적 활성도를 보완하기 위해 고가의 백금 촉매를 사용하는 것과 달리, 니켈과 같은 값싼 촉매를 사용할 수 있다. 또한, 고순도 수소 외에 LPG, LNG 등 다양한 연료를 쓸 수 있다는 게 큰 장점이다. 하지만 역설적으로 고온작동에는 비싼 소재와 제조 기술이 필요하다. 고온작동의 특성상 시동-정지-재가동에 시간이 오래 걸리는 점도 대형 발전용 외의 응용 가능성을 낮추는 요인이 됐다. 이에 따라 전 세계적으로 작동온도를 낮추면서도 성능의 손실이 없는 박막기반 세라믹 연료전지에 대한 연구가 활발히 이어졌다. 문제는 작동온도를 낮추면 다양한 연료를 사용할 수 있는 세라믹 연료전지의 장점이 사라진다는 것이다. 세라믹 연료전지의 니켈(Ni) 촉매는 메탄, 프로판, 부탄 등 일반적인 탄화수소계 연료를 낮은 온도에서 사용 시 연료를 변환한 후 생성되는 탄소가 표면에 쌓이면서 촉매 성능이 기하급수적으로 떨어진다. 손지원 박사팀은 이런 문제를 전해질과 접하고 있는 연료극의 최 근접부위에 연료를 보다 손쉽게 변환할 수 있는 고성능의 2차 촉매를 박막공정으로 삽입하는 방법으로 해결했다. 기존 연료극 소재인 니켈-전해질 복합체 박막층과 2차 촉매 금속 박막층을 교차로 증착해 나노구조 특성은 그대로 유지하면서 2차 촉매가 균일하게 분포될 수 있도록 박막층의 두께와 층수를 최적화한 것이다. KIST 연구진은 저온에서 뛰어난 촉매활성을 가지는 것으로 알려진 팔라듐(Pd)과 루테늄(Ru), 구리(Cu) 등의 2차 촉매를 나노구조 연료극 내에 삽입하는 데 성공했다. 연구팀은 시중에서 손쉽게 구할 수 있는 부탄 연료를 사용해 중저온 작동온도 영역인 섭씨 500~600℃에서 새로 개발한 박막기반 세라믹 연료전지의 고성능 구동을 확인했다. 손지원 박사는 “이번 연구결과는 저온에서 작동하는 세라믹 연료전지의 다양한 연료사용 가능성을 체계적으로 심도 깊게 파헤친 것”이라며 “그간 발전용으로만 여겨진 세라믹 연료전지를 보다 더 낮은 온도에서도 휴대용 연료로 작동이 가능하도록 해 다양한 수송 및 이동용 연료전지로 응용할 가능성을 확인했다”라고 연구의의를 설명했다. 본 연구는 과학기술정보통신부(장관 최기영)지원으로 KIST 미래원천 과제, 글로벌프론티어 멀티스케일에너지시스템연구사업 및 기후변화대응사업으로 수행되었다. 연구결과는 환경, 화학공학 분야의 국제학술지 ‘Applied Catalysis B - Environmental’ (IF : 14.229, JCR 분야상위 : 0.962%) 2020년 4월호에 게재되었다. * (논문명) Effect of secondary metal catalysts on butane internal steam reforming operation of thin-film solid oxide fuel cells at 500-600oC - (제1저자) 한국과학기술연구원 안 캠 티유 박사과정 - (교신저자) 한국과학기술연구원 손지원 책임연구원 <그림설명> [그림 1] 박막 SOFC에서의 부탄연료 사용 시 2차 촉매 삽입에 따른 연료전지 반응과 성능 [그림2] 섭씨 500~600도에서 삽입 촉매 별 부탄 연료작동 연료전지 성능. 특히 섭씨 500도에서는 루테늄과 구리 촉매가 사용된 경우 Ni만 사용한 경우의 약 1.5배의 성능이 얻어지며, 순수한 수소를 연료로 사용한 경우와 유사한 높은 성능이 얻어짐
KIST, 부탄가스로도 작동하는 고성능 세라믹 연료전지 개발
- 박막 촉매 삽입 기술로 섭씨 600도 이하 에서 부탄연료 고성능 획득 - 휴대용 연료를 사용하는 세라믹 연료전지 응용범위 크게 넓혀 국내 연구진이 휴대가 용이한 부탄연료를 사용할 수 있는 고성능 세라믹 연료전지를 개발하여 상용화 가능성을 크게 높였다. 고온의 작동조건 탓에 대형 발전용으로만 활용이 가능할 것으로 여겨져 온 세라믹 연료전지의 응용 범위가 전기차·로봇·드론 등 소형 이동수단으로도 확대될 것으로 예상된다. 한국과학기술연구원(KIST, 원장 직무대행 윤석진)은 에너지소재연구단 손지원 박사팀이 600°C 이하의 중저온 영역에서 작동하는 고성능 박막 기반 세라믹 연료전지 기술을 개발했다고 밝혔다. 고온형 연료전지의 대표격인 세라믹 연료전지는 통상 800℃ 이상의 고온작동이 특징적이다. 이 덕분에 저온형 연료전지인 고분자전해질 연료전지 등이 낮은 열역학적 활성도를 보완하기 위해 고가의 백금 촉매를 사용하는 것과 달리, 니켈과 같은 값싼 촉매를 사용할 수 있다. 또한, 고순도 수소 외에 LPG, LNG 등 다양한 연료를 쓸 수 있다는 게 큰 장점이다. 하지만 역설적으로 고온작동에는 비싼 소재와 제조 기술이 필요하다. 고온작동의 특성상 시동-정지-재가동에 시간이 오래 걸리는 점도 대형 발전용 외의 응용 가능성을 낮추는 요인이 됐다. 이에 따라 전 세계적으로 작동온도를 낮추면서도 성능의 손실이 없는 박막기반 세라믹 연료전지에 대한 연구가 활발히 이어졌다. 문제는 작동온도를 낮추면 다양한 연료를 사용할 수 있는 세라믹 연료전지의 장점이 사라진다는 것이다. 세라믹 연료전지의 니켈(Ni) 촉매는 메탄, 프로판, 부탄 등 일반적인 탄화수소계 연료를 낮은 온도에서 사용 시 연료를 변환한 후 생성되는 탄소가 표면에 쌓이면서 촉매 성능이 기하급수적으로 떨어진다. 손지원 박사팀은 이런 문제를 전해질과 접하고 있는 연료극의 최 근접부위에 연료를 보다 손쉽게 변환할 수 있는 고성능의 2차 촉매를 박막공정으로 삽입하는 방법으로 해결했다. 기존 연료극 소재인 니켈-전해질 복합체 박막층과 2차 촉매 금속 박막층을 교차로 증착해 나노구조 특성은 그대로 유지하면서 2차 촉매가 균일하게 분포될 수 있도록 박막층의 두께와 층수를 최적화한 것이다. KIST 연구진은 저온에서 뛰어난 촉매활성을 가지는 것으로 알려진 팔라듐(Pd)과 루테늄(Ru), 구리(Cu) 등의 2차 촉매를 나노구조 연료극 내에 삽입하는 데 성공했다. 연구팀은 시중에서 손쉽게 구할 수 있는 부탄 연료를 사용해 중저온 작동온도 영역인 섭씨 500~600℃에서 새로 개발한 박막기반 세라믹 연료전지의 고성능 구동을 확인했다. 손지원 박사는 “이번 연구결과는 저온에서 작동하는 세라믹 연료전지의 다양한 연료사용 가능성을 체계적으로 심도 깊게 파헤친 것”이라며 “그간 발전용으로만 여겨진 세라믹 연료전지를 보다 더 낮은 온도에서도 휴대용 연료로 작동이 가능하도록 해 다양한 수송 및 이동용 연료전지로 응용할 가능성을 확인했다”라고 연구의의를 설명했다. 본 연구는 과학기술정보통신부(장관 최기영)지원으로 KIST 미래원천 과제, 글로벌프론티어 멀티스케일에너지시스템연구사업 및 기후변화대응사업으로 수행되었다. 연구결과는 환경, 화학공학 분야의 국제학술지 ‘Applied Catalysis B - Environmental’ (IF : 14.229, JCR 분야상위 : 0.962%) 2020년 4월호에 게재되었다. * (논문명) Effect of secondary metal catalysts on butane internal steam reforming operation of thin-film solid oxide fuel cells at 500-600oC - (제1저자) 한국과학기술연구원 안 캠 티유 박사과정 - (교신저자) 한국과학기술연구원 손지원 책임연구원 <그림설명> [그림 1] 박막 SOFC에서의 부탄연료 사용 시 2차 촉매 삽입에 따른 연료전지 반응과 성능 [그림2] 섭씨 500~600도에서 삽입 촉매 별 부탄 연료작동 연료전지 성능. 특히 섭씨 500도에서는 루테늄과 구리 촉매가 사용된 경우 Ni만 사용한 경우의 약 1.5배의 성능이 얻어지며, 순수한 수소를 연료로 사용한 경우와 유사한 높은 성능이 얻어짐
KIST, 부탄가스로도 작동하는 고성능 세라믹 연료전지 개발
- 박막 촉매 삽입 기술로 섭씨 600도 이하 에서 부탄연료 고성능 획득 - 휴대용 연료를 사용하는 세라믹 연료전지 응용범위 크게 넓혀 국내 연구진이 휴대가 용이한 부탄연료를 사용할 수 있는 고성능 세라믹 연료전지를 개발하여 상용화 가능성을 크게 높였다. 고온의 작동조건 탓에 대형 발전용으로만 활용이 가능할 것으로 여겨져 온 세라믹 연료전지의 응용 범위가 전기차·로봇·드론 등 소형 이동수단으로도 확대될 것으로 예상된다. 한국과학기술연구원(KIST, 원장 직무대행 윤석진)은 에너지소재연구단 손지원 박사팀이 600°C 이하의 중저온 영역에서 작동하는 고성능 박막 기반 세라믹 연료전지 기술을 개발했다고 밝혔다. 고온형 연료전지의 대표격인 세라믹 연료전지는 통상 800℃ 이상의 고온작동이 특징적이다. 이 덕분에 저온형 연료전지인 고분자전해질 연료전지 등이 낮은 열역학적 활성도를 보완하기 위해 고가의 백금 촉매를 사용하는 것과 달리, 니켈과 같은 값싼 촉매를 사용할 수 있다. 또한, 고순도 수소 외에 LPG, LNG 등 다양한 연료를 쓸 수 있다는 게 큰 장점이다. 하지만 역설적으로 고온작동에는 비싼 소재와 제조 기술이 필요하다. 고온작동의 특성상 시동-정지-재가동에 시간이 오래 걸리는 점도 대형 발전용 외의 응용 가능성을 낮추는 요인이 됐다. 이에 따라 전 세계적으로 작동온도를 낮추면서도 성능의 손실이 없는 박막기반 세라믹 연료전지에 대한 연구가 활발히 이어졌다. 문제는 작동온도를 낮추면 다양한 연료를 사용할 수 있는 세라믹 연료전지의 장점이 사라진다는 것이다. 세라믹 연료전지의 니켈(Ni) 촉매는 메탄, 프로판, 부탄 등 일반적인 탄화수소계 연료를 낮은 온도에서 사용 시 연료를 변환한 후 생성되는 탄소가 표면에 쌓이면서 촉매 성능이 기하급수적으로 떨어진다. 손지원 박사팀은 이런 문제를 전해질과 접하고 있는 연료극의 최 근접부위에 연료를 보다 손쉽게 변환할 수 있는 고성능의 2차 촉매를 박막공정으로 삽입하는 방법으로 해결했다. 기존 연료극 소재인 니켈-전해질 복합체 박막층과 2차 촉매 금속 박막층을 교차로 증착해 나노구조 특성은 그대로 유지하면서 2차 촉매가 균일하게 분포될 수 있도록 박막층의 두께와 층수를 최적화한 것이다. KIST 연구진은 저온에서 뛰어난 촉매활성을 가지는 것으로 알려진 팔라듐(Pd)과 루테늄(Ru), 구리(Cu) 등의 2차 촉매를 나노구조 연료극 내에 삽입하는 데 성공했다. 연구팀은 시중에서 손쉽게 구할 수 있는 부탄 연료를 사용해 중저온 작동온도 영역인 섭씨 500~600℃에서 새로 개발한 박막기반 세라믹 연료전지의 고성능 구동을 확인했다. 손지원 박사는 “이번 연구결과는 저온에서 작동하는 세라믹 연료전지의 다양한 연료사용 가능성을 체계적으로 심도 깊게 파헤친 것”이라며 “그간 발전용으로만 여겨진 세라믹 연료전지를 보다 더 낮은 온도에서도 휴대용 연료로 작동이 가능하도록 해 다양한 수송 및 이동용 연료전지로 응용할 가능성을 확인했다”라고 연구의의를 설명했다. 본 연구는 과학기술정보통신부(장관 최기영)지원으로 KIST 미래원천 과제, 글로벌프론티어 멀티스케일에너지시스템연구사업 및 기후변화대응사업으로 수행되었다. 연구결과는 환경, 화학공학 분야의 국제학술지 ‘Applied Catalysis B - Environmental’ (IF : 14.229, JCR 분야상위 : 0.962%) 2020년 4월호에 게재되었다. * (논문명) Effect of secondary metal catalysts on butane internal steam reforming operation of thin-film solid oxide fuel cells at 500-600oC - (제1저자) 한국과학기술연구원 안 캠 티유 박사과정 - (교신저자) 한국과학기술연구원 손지원 책임연구원 <그림설명> [그림 1] 박막 SOFC에서의 부탄연료 사용 시 2차 촉매 삽입에 따른 연료전지 반응과 성능 [그림2] 섭씨 500~600도에서 삽입 촉매 별 부탄 연료작동 연료전지 성능. 특히 섭씨 500도에서는 루테늄과 구리 촉매가 사용된 경우 Ni만 사용한 경우의 약 1.5배의 성능이 얻어지며, 순수한 수소를 연료로 사용한 경우와 유사한 높은 성능이 얻어짐
KIST, 부탄가스로도 작동하는 고성능 세라믹 연료전지 개발
- 박막 촉매 삽입 기술로 섭씨 600도 이하 에서 부탄연료 고성능 획득 - 휴대용 연료를 사용하는 세라믹 연료전지 응용범위 크게 넓혀 국내 연구진이 휴대가 용이한 부탄연료를 사용할 수 있는 고성능 세라믹 연료전지를 개발하여 상용화 가능성을 크게 높였다. 고온의 작동조건 탓에 대형 발전용으로만 활용이 가능할 것으로 여겨져 온 세라믹 연료전지의 응용 범위가 전기차·로봇·드론 등 소형 이동수단으로도 확대될 것으로 예상된다. 한국과학기술연구원(KIST, 원장 직무대행 윤석진)은 에너지소재연구단 손지원 박사팀이 600°C 이하의 중저온 영역에서 작동하는 고성능 박막 기반 세라믹 연료전지 기술을 개발했다고 밝혔다. 고온형 연료전지의 대표격인 세라믹 연료전지는 통상 800℃ 이상의 고온작동이 특징적이다. 이 덕분에 저온형 연료전지인 고분자전해질 연료전지 등이 낮은 열역학적 활성도를 보완하기 위해 고가의 백금 촉매를 사용하는 것과 달리, 니켈과 같은 값싼 촉매를 사용할 수 있다. 또한, 고순도 수소 외에 LPG, LNG 등 다양한 연료를 쓸 수 있다는 게 큰 장점이다. 하지만 역설적으로 고온작동에는 비싼 소재와 제조 기술이 필요하다. 고온작동의 특성상 시동-정지-재가동에 시간이 오래 걸리는 점도 대형 발전용 외의 응용 가능성을 낮추는 요인이 됐다. 이에 따라 전 세계적으로 작동온도를 낮추면서도 성능의 손실이 없는 박막기반 세라믹 연료전지에 대한 연구가 활발히 이어졌다. 문제는 작동온도를 낮추면 다양한 연료를 사용할 수 있는 세라믹 연료전지의 장점이 사라진다는 것이다. 세라믹 연료전지의 니켈(Ni) 촉매는 메탄, 프로판, 부탄 등 일반적인 탄화수소계 연료를 낮은 온도에서 사용 시 연료를 변환한 후 생성되는 탄소가 표면에 쌓이면서 촉매 성능이 기하급수적으로 떨어진다. 손지원 박사팀은 이런 문제를 전해질과 접하고 있는 연료극의 최 근접부위에 연료를 보다 손쉽게 변환할 수 있는 고성능의 2차 촉매를 박막공정으로 삽입하는 방법으로 해결했다. 기존 연료극 소재인 니켈-전해질 복합체 박막층과 2차 촉매 금속 박막층을 교차로 증착해 나노구조 특성은 그대로 유지하면서 2차 촉매가 균일하게 분포될 수 있도록 박막층의 두께와 층수를 최적화한 것이다. KIST 연구진은 저온에서 뛰어난 촉매활성을 가지는 것으로 알려진 팔라듐(Pd)과 루테늄(Ru), 구리(Cu) 등의 2차 촉매를 나노구조 연료극 내에 삽입하는 데 성공했다. 연구팀은 시중에서 손쉽게 구할 수 있는 부탄 연료를 사용해 중저온 작동온도 영역인 섭씨 500~600℃에서 새로 개발한 박막기반 세라믹 연료전지의 고성능 구동을 확인했다. 손지원 박사는 “이번 연구결과는 저온에서 작동하는 세라믹 연료전지의 다양한 연료사용 가능성을 체계적으로 심도 깊게 파헤친 것”이라며 “그간 발전용으로만 여겨진 세라믹 연료전지를 보다 더 낮은 온도에서도 휴대용 연료로 작동이 가능하도록 해 다양한 수송 및 이동용 연료전지로 응용할 가능성을 확인했다”라고 연구의의를 설명했다. 본 연구는 과학기술정보통신부(장관 최기영)지원으로 KIST 미래원천 과제, 글로벌프론티어 멀티스케일에너지시스템연구사업 및 기후변화대응사업으로 수행되었다. 연구결과는 환경, 화학공학 분야의 국제학술지 ‘Applied Catalysis B - Environmental’ (IF : 14.229, JCR 분야상위 : 0.962%) 2020년 4월호에 게재되었다. * (논문명) Effect of secondary metal catalysts on butane internal steam reforming operation of thin-film solid oxide fuel cells at 500-600oC - (제1저자) 한국과학기술연구원 안 캠 티유 박사과정 - (교신저자) 한국과학기술연구원 손지원 책임연구원 <그림설명> [그림 1] 박막 SOFC에서의 부탄연료 사용 시 2차 촉매 삽입에 따른 연료전지 반응과 성능 [그림2] 섭씨 500~600도에서 삽입 촉매 별 부탄 연료작동 연료전지 성능. 특히 섭씨 500도에서는 루테늄과 구리 촉매가 사용된 경우 Ni만 사용한 경우의 약 1.5배의 성능이 얻어지며, 순수한 수소를 연료로 사용한 경우와 유사한 높은 성능이 얻어짐
KIST, 부탄가스로도 작동하는 고성능 세라믹 연료전지 개발
- 박막 촉매 삽입 기술로 섭씨 600도 이하 에서 부탄연료 고성능 획득 - 휴대용 연료를 사용하는 세라믹 연료전지 응용범위 크게 넓혀 국내 연구진이 휴대가 용이한 부탄연료를 사용할 수 있는 고성능 세라믹 연료전지를 개발하여 상용화 가능성을 크게 높였다. 고온의 작동조건 탓에 대형 발전용으로만 활용이 가능할 것으로 여겨져 온 세라믹 연료전지의 응용 범위가 전기차·로봇·드론 등 소형 이동수단으로도 확대될 것으로 예상된다. 한국과학기술연구원(KIST, 원장 직무대행 윤석진)은 에너지소재연구단 손지원 박사팀이 600°C 이하의 중저온 영역에서 작동하는 고성능 박막 기반 세라믹 연료전지 기술을 개발했다고 밝혔다. 고온형 연료전지의 대표격인 세라믹 연료전지는 통상 800℃ 이상의 고온작동이 특징적이다. 이 덕분에 저온형 연료전지인 고분자전해질 연료전지 등이 낮은 열역학적 활성도를 보완하기 위해 고가의 백금 촉매를 사용하는 것과 달리, 니켈과 같은 값싼 촉매를 사용할 수 있다. 또한, 고순도 수소 외에 LPG, LNG 등 다양한 연료를 쓸 수 있다는 게 큰 장점이다. 하지만 역설적으로 고온작동에는 비싼 소재와 제조 기술이 필요하다. 고온작동의 특성상 시동-정지-재가동에 시간이 오래 걸리는 점도 대형 발전용 외의 응용 가능성을 낮추는 요인이 됐다. 이에 따라 전 세계적으로 작동온도를 낮추면서도 성능의 손실이 없는 박막기반 세라믹 연료전지에 대한 연구가 활발히 이어졌다. 문제는 작동온도를 낮추면 다양한 연료를 사용할 수 있는 세라믹 연료전지의 장점이 사라진다는 것이다. 세라믹 연료전지의 니켈(Ni) 촉매는 메탄, 프로판, 부탄 등 일반적인 탄화수소계 연료를 낮은 온도에서 사용 시 연료를 변환한 후 생성되는 탄소가 표면에 쌓이면서 촉매 성능이 기하급수적으로 떨어진다. 손지원 박사팀은 이런 문제를 전해질과 접하고 있는 연료극의 최 근접부위에 연료를 보다 손쉽게 변환할 수 있는 고성능의 2차 촉매를 박막공정으로 삽입하는 방법으로 해결했다. 기존 연료극 소재인 니켈-전해질 복합체 박막층과 2차 촉매 금속 박막층을 교차로 증착해 나노구조 특성은 그대로 유지하면서 2차 촉매가 균일하게 분포될 수 있도록 박막층의 두께와 층수를 최적화한 것이다. KIST 연구진은 저온에서 뛰어난 촉매활성을 가지는 것으로 알려진 팔라듐(Pd)과 루테늄(Ru), 구리(Cu) 등의 2차 촉매를 나노구조 연료극 내에 삽입하는 데 성공했다. 연구팀은 시중에서 손쉽게 구할 수 있는 부탄 연료를 사용해 중저온 작동온도 영역인 섭씨 500~600℃에서 새로 개발한 박막기반 세라믹 연료전지의 고성능 구동을 확인했다. 손지원 박사는 “이번 연구결과는 저온에서 작동하는 세라믹 연료전지의 다양한 연료사용 가능성을 체계적으로 심도 깊게 파헤친 것”이라며 “그간 발전용으로만 여겨진 세라믹 연료전지를 보다 더 낮은 온도에서도 휴대용 연료로 작동이 가능하도록 해 다양한 수송 및 이동용 연료전지로 응용할 가능성을 확인했다”라고 연구의의를 설명했다. 본 연구는 과학기술정보통신부(장관 최기영)지원으로 KIST 미래원천 과제, 글로벌프론티어 멀티스케일에너지시스템연구사업 및 기후변화대응사업으로 수행되었다. 연구결과는 환경, 화학공학 분야의 국제학술지 ‘Applied Catalysis B - Environmental’ (IF : 14.229, JCR 분야상위 : 0.962%) 2020년 4월호에 게재되었다. * (논문명) Effect of secondary metal catalysts on butane internal steam reforming operation of thin-film solid oxide fuel cells at 500-600oC - (제1저자) 한국과학기술연구원 안 캠 티유 박사과정 - (교신저자) 한국과학기술연구원 손지원 책임연구원 <그림설명> [그림 1] 박막 SOFC에서의 부탄연료 사용 시 2차 촉매 삽입에 따른 연료전지 반응과 성능 [그림2] 섭씨 500~600도에서 삽입 촉매 별 부탄 연료작동 연료전지 성능. 특히 섭씨 500도에서는 루테늄과 구리 촉매가 사용된 경우 Ni만 사용한 경우의 약 1.5배의 성능이 얻어지며, 순수한 수소를 연료로 사용한 경우와 유사한 높은 성능이 얻어짐