Result
게시물 키워드"KIST"에 대한 4623개의 검색결과를 찾았습니다.
친환경 에너지 기술인 인공광합성, 고성능 대면적 전극 시스템 개발
- 산호 형태의 은 나노 촉매 전극을 고효율·대면적으로 개발 - 기체 상태에서의 전기화학적 이산화탄소 전환시스템 상용화 기틀 마련 한국과학기술연구원(KIST, 원장 직무대행 윤석진) 국가기반기술연구본부 청정에너지연구센터의 오형석, 이웅희 박사 연구팀은 베를린공과대학과(TU-Berlin)의 공동 연구를 통해 인공광합성의 주요 연구분야인 전기화학적 이산화탄소 전환 시스템에서 높은 효율로 일산화탄소를 얻을 수 있는 나노 크기의 산호 형태를 지닌 은 촉매 전극 및 대면적 시스템을 개발했다고 밝혔다. 인공광합성 시스템은 지구온난화의 원인이 되는 이산화탄소를 고부가가치를 갖고 있는 화학 물질로 전환하는 기술로, 환경오염 없이 이산화탄소를 제거하고 유용한 화학물질을 얻을 수 있다. 특히, 최근에는 전기화학적 이산화탄소 전환 시스템 분야가 높은 관심을 받고 있다. 기존 이산화탄소 전환 연구는 액체 상태(액상)에서 주로 진행되어 왔다. 하지만 액상에서는 전극을 물에 담근 형태로 성능을 측정하는데, 이산화탄소가 물에 잘 녹지않아 투입 에너지 대비 충분한 효율을 얻지 못하고 있었다. 최근 액체가 아닌 기체 상태에서 이산화탄소를 전환하는 시스템이 개발되어 효율을 높일 수 있을 것이라는 기대가 있었지만, 시스템에 적용할 수 있는 촉매, 전극에 개발에 대한 연구는 아직 미진한 편이었다. KIST-TU Berlin 공동 연구진은 일산화탄소 생성 효율이 높은 기체상태(기상)에서의 이산화탄소 전환 시스템용으로 나노크기의 산호형태 모양을 지닌 은 촉매 전극을 개발하였다. 해당 촉매는 기존 은 촉매에 비해 반응에 필요한 에너지가 적으며, 기존 액상 시스템에 비해 100배 이상의 일산화탄소를 생성할 수 있었다. 또한, 이산화탄소환원 시스템의 전극을 실험실 규모를 벗어나 실용화될 수 있도록 대면적화(50 cm)에 성공했다. KIST 연구진은 다양한 실시간 분석(Operando analysis)을 통해 촉매를 개발할 수 있었다. 실시간 X-선 흡수 분석법으로 염소이온을 통해 제조된 산호 형태의 은 나노 전극 촉매가 높은 표면적 및 다공성 구조로 인해 높은 물질 전달 능력을 보이는 것을 확인했다. 이는 높은 이산화탄소 전환 효율을 보임을 뜻한다. 그리고 이산화탄소 전환 반응 시 소수성(hydrophobicity)이 없을 경우 이산화탄소 전환 효율이 감소함을 확인하여 향후 이산화탄소 전환전극 개발 시 소수성의 필요성을 밝혀냈다. 본 연구를 진행한 KIST 오형석 박사는 “나노미터 크기의 산호 형태 은 촉매 전극의 개발을 통해 전기화학적 이산화탄소 전환 시스템의 전류 밀도 및 성능을 크게 향상시키고 추후 연구 방향을 제시하였다” 라며, “본 연구를 통해 전기화학적 이산화탄소 전환 시스템 연구 개발에 크게 기여할 것으로 기대한다.” 라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영)의 지원을 받아 KIST 주요사업 및 기후변화대응기술개발사업 수행되었으며 이번 연구결과는 에너지 환경 분야 국제 저널인 「Nano Energy」 (IF: 15.548, JCR 분야 상위 3.716%) 최신 호에 게재되었다. * (논문명) Highly Selective and Scalable CO2 to CO - Electrolysis using Coral-Nanostructured Ag Catalysts in zero-gap configuration - (제 1저자) 한국과학기술연구원 이웅희 박사후연구원 - (교신저자) 한국과학기술연구원 오형석 선임연구원 - (교신저자) 베를린공과대학 Peter strasser 교수 <그림설명> [그림 1] 산호 형태 은 전극을 이용한 이산화탄소 전환 시스템 개요도 [그림 2] 실시간 X-선 흡수 분석법을 통한 산호형태의 은 촉매 전극에서의 전기화학적 이산화탄소 환원 반응에 대한 전기장 효과 분석 개요도 [그림 3] 나노미터 크기의 산호 형태를 지닌 은 촉매 전극의 주사 전자 현미경(SEM) 사진
친환경 에너지 기술인 인공광합성, 고성능 대면적 전극 시스템 개발
- 산호 형태의 은 나노 촉매 전극을 고효율·대면적으로 개발 - 기체 상태에서의 전기화학적 이산화탄소 전환시스템 상용화 기틀 마련 한국과학기술연구원(KIST, 원장 직무대행 윤석진) 국가기반기술연구본부 청정에너지연구센터의 오형석, 이웅희 박사 연구팀은 베를린공과대학과(TU-Berlin)의 공동 연구를 통해 인공광합성의 주요 연구분야인 전기화학적 이산화탄소 전환 시스템에서 높은 효율로 일산화탄소를 얻을 수 있는 나노 크기의 산호 형태를 지닌 은 촉매 전극 및 대면적 시스템을 개발했다고 밝혔다. 인공광합성 시스템은 지구온난화의 원인이 되는 이산화탄소를 고부가가치를 갖고 있는 화학 물질로 전환하는 기술로, 환경오염 없이 이산화탄소를 제거하고 유용한 화학물질을 얻을 수 있다. 특히, 최근에는 전기화학적 이산화탄소 전환 시스템 분야가 높은 관심을 받고 있다. 기존 이산화탄소 전환 연구는 액체 상태(액상)에서 주로 진행되어 왔다. 하지만 액상에서는 전극을 물에 담근 형태로 성능을 측정하는데, 이산화탄소가 물에 잘 녹지않아 투입 에너지 대비 충분한 효율을 얻지 못하고 있었다. 최근 액체가 아닌 기체 상태에서 이산화탄소를 전환하는 시스템이 개발되어 효율을 높일 수 있을 것이라는 기대가 있었지만, 시스템에 적용할 수 있는 촉매, 전극에 개발에 대한 연구는 아직 미진한 편이었다. KIST-TU Berlin 공동 연구진은 일산화탄소 생성 효율이 높은 기체상태(기상)에서의 이산화탄소 전환 시스템용으로 나노크기의 산호형태 모양을 지닌 은 촉매 전극을 개발하였다. 해당 촉매는 기존 은 촉매에 비해 반응에 필요한 에너지가 적으며, 기존 액상 시스템에 비해 100배 이상의 일산화탄소를 생성할 수 있었다. 또한, 이산화탄소환원 시스템의 전극을 실험실 규모를 벗어나 실용화될 수 있도록 대면적화(50 cm)에 성공했다. KIST 연구진은 다양한 실시간 분석(Operando analysis)을 통해 촉매를 개발할 수 있었다. 실시간 X-선 흡수 분석법으로 염소이온을 통해 제조된 산호 형태의 은 나노 전극 촉매가 높은 표면적 및 다공성 구조로 인해 높은 물질 전달 능력을 보이는 것을 확인했다. 이는 높은 이산화탄소 전환 효율을 보임을 뜻한다. 그리고 이산화탄소 전환 반응 시 소수성(hydrophobicity)이 없을 경우 이산화탄소 전환 효율이 감소함을 확인하여 향후 이산화탄소 전환전극 개발 시 소수성의 필요성을 밝혀냈다. 본 연구를 진행한 KIST 오형석 박사는 “나노미터 크기의 산호 형태 은 촉매 전극의 개발을 통해 전기화학적 이산화탄소 전환 시스템의 전류 밀도 및 성능을 크게 향상시키고 추후 연구 방향을 제시하였다” 라며, “본 연구를 통해 전기화학적 이산화탄소 전환 시스템 연구 개발에 크게 기여할 것으로 기대한다.” 라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영)의 지원을 받아 KIST 주요사업 및 기후변화대응기술개발사업 수행되었으며 이번 연구결과는 에너지 환경 분야 국제 저널인 「Nano Energy」 (IF: 15.548, JCR 분야 상위 3.716%) 최신 호에 게재되었다. * (논문명) Highly Selective and Scalable CO2 to CO - Electrolysis using Coral-Nanostructured Ag Catalysts in zero-gap configuration - (제 1저자) 한국과학기술연구원 이웅희 박사후연구원 - (교신저자) 한국과학기술연구원 오형석 선임연구원 - (교신저자) 베를린공과대학 Peter strasser 교수 <그림설명> [그림 1] 산호 형태 은 전극을 이용한 이산화탄소 전환 시스템 개요도 [그림 2] 실시간 X-선 흡수 분석법을 통한 산호형태의 은 촉매 전극에서의 전기화학적 이산화탄소 환원 반응에 대한 전기장 효과 분석 개요도 [그림 3] 나노미터 크기의 산호 형태를 지닌 은 촉매 전극의 주사 전자 현미경(SEM) 사진
친환경 에너지 기술인 인공광합성, 고성능 대면적 전극 시스템 개발
- 산호 형태의 은 나노 촉매 전극을 고효율·대면적으로 개발 - 기체 상태에서의 전기화학적 이산화탄소 전환시스템 상용화 기틀 마련 한국과학기술연구원(KIST, 원장 직무대행 윤석진) 국가기반기술연구본부 청정에너지연구센터의 오형석, 이웅희 박사 연구팀은 베를린공과대학과(TU-Berlin)의 공동 연구를 통해 인공광합성의 주요 연구분야인 전기화학적 이산화탄소 전환 시스템에서 높은 효율로 일산화탄소를 얻을 수 있는 나노 크기의 산호 형태를 지닌 은 촉매 전극 및 대면적 시스템을 개발했다고 밝혔다. 인공광합성 시스템은 지구온난화의 원인이 되는 이산화탄소를 고부가가치를 갖고 있는 화학 물질로 전환하는 기술로, 환경오염 없이 이산화탄소를 제거하고 유용한 화학물질을 얻을 수 있다. 특히, 최근에는 전기화학적 이산화탄소 전환 시스템 분야가 높은 관심을 받고 있다. 기존 이산화탄소 전환 연구는 액체 상태(액상)에서 주로 진행되어 왔다. 하지만 액상에서는 전극을 물에 담근 형태로 성능을 측정하는데, 이산화탄소가 물에 잘 녹지않아 투입 에너지 대비 충분한 효율을 얻지 못하고 있었다. 최근 액체가 아닌 기체 상태에서 이산화탄소를 전환하는 시스템이 개발되어 효율을 높일 수 있을 것이라는 기대가 있었지만, 시스템에 적용할 수 있는 촉매, 전극에 개발에 대한 연구는 아직 미진한 편이었다. KIST-TU Berlin 공동 연구진은 일산화탄소 생성 효율이 높은 기체상태(기상)에서의 이산화탄소 전환 시스템용으로 나노크기의 산호형태 모양을 지닌 은 촉매 전극을 개발하였다. 해당 촉매는 기존 은 촉매에 비해 반응에 필요한 에너지가 적으며, 기존 액상 시스템에 비해 100배 이상의 일산화탄소를 생성할 수 있었다. 또한, 이산화탄소환원 시스템의 전극을 실험실 규모를 벗어나 실용화될 수 있도록 대면적화(50 cm)에 성공했다. KIST 연구진은 다양한 실시간 분석(Operando analysis)을 통해 촉매를 개발할 수 있었다. 실시간 X-선 흡수 분석법으로 염소이온을 통해 제조된 산호 형태의 은 나노 전극 촉매가 높은 표면적 및 다공성 구조로 인해 높은 물질 전달 능력을 보이는 것을 확인했다. 이는 높은 이산화탄소 전환 효율을 보임을 뜻한다. 그리고 이산화탄소 전환 반응 시 소수성(hydrophobicity)이 없을 경우 이산화탄소 전환 효율이 감소함을 확인하여 향후 이산화탄소 전환전극 개발 시 소수성의 필요성을 밝혀냈다. 본 연구를 진행한 KIST 오형석 박사는 “나노미터 크기의 산호 형태 은 촉매 전극의 개발을 통해 전기화학적 이산화탄소 전환 시스템의 전류 밀도 및 성능을 크게 향상시키고 추후 연구 방향을 제시하였다” 라며, “본 연구를 통해 전기화학적 이산화탄소 전환 시스템 연구 개발에 크게 기여할 것으로 기대한다.” 라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영)의 지원을 받아 KIST 주요사업 및 기후변화대응기술개발사업 수행되었으며 이번 연구결과는 에너지 환경 분야 국제 저널인 「Nano Energy」 (IF: 15.548, JCR 분야 상위 3.716%) 최신 호에 게재되었다. * (논문명) Highly Selective and Scalable CO2 to CO - Electrolysis using Coral-Nanostructured Ag Catalysts in zero-gap configuration - (제 1저자) 한국과학기술연구원 이웅희 박사후연구원 - (교신저자) 한국과학기술연구원 오형석 선임연구원 - (교신저자) 베를린공과대학 Peter strasser 교수 <그림설명> [그림 1] 산호 형태 은 전극을 이용한 이산화탄소 전환 시스템 개요도 [그림 2] 실시간 X-선 흡수 분석법을 통한 산호형태의 은 촉매 전극에서의 전기화학적 이산화탄소 환원 반응에 대한 전기장 효과 분석 개요도 [그림 3] 나노미터 크기의 산호 형태를 지닌 은 촉매 전극의 주사 전자 현미경(SEM) 사진
친환경 에너지 기술인 인공광합성, 고성능 대면적 전극 시스템 개발
- 산호 형태의 은 나노 촉매 전극을 고효율·대면적으로 개발 - 기체 상태에서의 전기화학적 이산화탄소 전환시스템 상용화 기틀 마련 한국과학기술연구원(KIST, 원장 직무대행 윤석진) 국가기반기술연구본부 청정에너지연구센터의 오형석, 이웅희 박사 연구팀은 베를린공과대학과(TU-Berlin)의 공동 연구를 통해 인공광합성의 주요 연구분야인 전기화학적 이산화탄소 전환 시스템에서 높은 효율로 일산화탄소를 얻을 수 있는 나노 크기의 산호 형태를 지닌 은 촉매 전극 및 대면적 시스템을 개발했다고 밝혔다. 인공광합성 시스템은 지구온난화의 원인이 되는 이산화탄소를 고부가가치를 갖고 있는 화학 물질로 전환하는 기술로, 환경오염 없이 이산화탄소를 제거하고 유용한 화학물질을 얻을 수 있다. 특히, 최근에는 전기화학적 이산화탄소 전환 시스템 분야가 높은 관심을 받고 있다. 기존 이산화탄소 전환 연구는 액체 상태(액상)에서 주로 진행되어 왔다. 하지만 액상에서는 전극을 물에 담근 형태로 성능을 측정하는데, 이산화탄소가 물에 잘 녹지않아 투입 에너지 대비 충분한 효율을 얻지 못하고 있었다. 최근 액체가 아닌 기체 상태에서 이산화탄소를 전환하는 시스템이 개발되어 효율을 높일 수 있을 것이라는 기대가 있었지만, 시스템에 적용할 수 있는 촉매, 전극에 개발에 대한 연구는 아직 미진한 편이었다. KIST-TU Berlin 공동 연구진은 일산화탄소 생성 효율이 높은 기체상태(기상)에서의 이산화탄소 전환 시스템용으로 나노크기의 산호형태 모양을 지닌 은 촉매 전극을 개발하였다. 해당 촉매는 기존 은 촉매에 비해 반응에 필요한 에너지가 적으며, 기존 액상 시스템에 비해 100배 이상의 일산화탄소를 생성할 수 있었다. 또한, 이산화탄소환원 시스템의 전극을 실험실 규모를 벗어나 실용화될 수 있도록 대면적화(50 cm)에 성공했다. KIST 연구진은 다양한 실시간 분석(Operando analysis)을 통해 촉매를 개발할 수 있었다. 실시간 X-선 흡수 분석법으로 염소이온을 통해 제조된 산호 형태의 은 나노 전극 촉매가 높은 표면적 및 다공성 구조로 인해 높은 물질 전달 능력을 보이는 것을 확인했다. 이는 높은 이산화탄소 전환 효율을 보임을 뜻한다. 그리고 이산화탄소 전환 반응 시 소수성(hydrophobicity)이 없을 경우 이산화탄소 전환 효율이 감소함을 확인하여 향후 이산화탄소 전환전극 개발 시 소수성의 필요성을 밝혀냈다. 본 연구를 진행한 KIST 오형석 박사는 “나노미터 크기의 산호 형태 은 촉매 전극의 개발을 통해 전기화학적 이산화탄소 전환 시스템의 전류 밀도 및 성능을 크게 향상시키고 추후 연구 방향을 제시하였다” 라며, “본 연구를 통해 전기화학적 이산화탄소 전환 시스템 연구 개발에 크게 기여할 것으로 기대한다.” 라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영)의 지원을 받아 KIST 주요사업 및 기후변화대응기술개발사업 수행되었으며 이번 연구결과는 에너지 환경 분야 국제 저널인 「Nano Energy」 (IF: 15.548, JCR 분야 상위 3.716%) 최신 호에 게재되었다. * (논문명) Highly Selective and Scalable CO2 to CO - Electrolysis using Coral-Nanostructured Ag Catalysts in zero-gap configuration - (제 1저자) 한국과학기술연구원 이웅희 박사후연구원 - (교신저자) 한국과학기술연구원 오형석 선임연구원 - (교신저자) 베를린공과대학 Peter strasser 교수 <그림설명> [그림 1] 산호 형태 은 전극을 이용한 이산화탄소 전환 시스템 개요도 [그림 2] 실시간 X-선 흡수 분석법을 통한 산호형태의 은 촉매 전극에서의 전기화학적 이산화탄소 환원 반응에 대한 전기장 효과 분석 개요도 [그림 3] 나노미터 크기의 산호 형태를 지닌 은 촉매 전극의 주사 전자 현미경(SEM) 사진
친환경 에너지 기술인 인공광합성, 고성능 대면적 전극 시스템 개발
- 산호 형태의 은 나노 촉매 전극을 고효율·대면적으로 개발 - 기체 상태에서의 전기화학적 이산화탄소 전환시스템 상용화 기틀 마련 한국과학기술연구원(KIST, 원장 직무대행 윤석진) 국가기반기술연구본부 청정에너지연구센터의 오형석, 이웅희 박사 연구팀은 베를린공과대학과(TU-Berlin)의 공동 연구를 통해 인공광합성의 주요 연구분야인 전기화학적 이산화탄소 전환 시스템에서 높은 효율로 일산화탄소를 얻을 수 있는 나노 크기의 산호 형태를 지닌 은 촉매 전극 및 대면적 시스템을 개발했다고 밝혔다. 인공광합성 시스템은 지구온난화의 원인이 되는 이산화탄소를 고부가가치를 갖고 있는 화학 물질로 전환하는 기술로, 환경오염 없이 이산화탄소를 제거하고 유용한 화학물질을 얻을 수 있다. 특히, 최근에는 전기화학적 이산화탄소 전환 시스템 분야가 높은 관심을 받고 있다. 기존 이산화탄소 전환 연구는 액체 상태(액상)에서 주로 진행되어 왔다. 하지만 액상에서는 전극을 물에 담근 형태로 성능을 측정하는데, 이산화탄소가 물에 잘 녹지않아 투입 에너지 대비 충분한 효율을 얻지 못하고 있었다. 최근 액체가 아닌 기체 상태에서 이산화탄소를 전환하는 시스템이 개발되어 효율을 높일 수 있을 것이라는 기대가 있었지만, 시스템에 적용할 수 있는 촉매, 전극에 개발에 대한 연구는 아직 미진한 편이었다. KIST-TU Berlin 공동 연구진은 일산화탄소 생성 효율이 높은 기체상태(기상)에서의 이산화탄소 전환 시스템용으로 나노크기의 산호형태 모양을 지닌 은 촉매 전극을 개발하였다. 해당 촉매는 기존 은 촉매에 비해 반응에 필요한 에너지가 적으며, 기존 액상 시스템에 비해 100배 이상의 일산화탄소를 생성할 수 있었다. 또한, 이산화탄소환원 시스템의 전극을 실험실 규모를 벗어나 실용화될 수 있도록 대면적화(50 cm)에 성공했다. KIST 연구진은 다양한 실시간 분석(Operando analysis)을 통해 촉매를 개발할 수 있었다. 실시간 X-선 흡수 분석법으로 염소이온을 통해 제조된 산호 형태의 은 나노 전극 촉매가 높은 표면적 및 다공성 구조로 인해 높은 물질 전달 능력을 보이는 것을 확인했다. 이는 높은 이산화탄소 전환 효율을 보임을 뜻한다. 그리고 이산화탄소 전환 반응 시 소수성(hydrophobicity)이 없을 경우 이산화탄소 전환 효율이 감소함을 확인하여 향후 이산화탄소 전환전극 개발 시 소수성의 필요성을 밝혀냈다. 본 연구를 진행한 KIST 오형석 박사는 “나노미터 크기의 산호 형태 은 촉매 전극의 개발을 통해 전기화학적 이산화탄소 전환 시스템의 전류 밀도 및 성능을 크게 향상시키고 추후 연구 방향을 제시하였다” 라며, “본 연구를 통해 전기화학적 이산화탄소 전환 시스템 연구 개발에 크게 기여할 것으로 기대한다.” 라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영)의 지원을 받아 KIST 주요사업 및 기후변화대응기술개발사업 수행되었으며 이번 연구결과는 에너지 환경 분야 국제 저널인 「Nano Energy」 (IF: 15.548, JCR 분야 상위 3.716%) 최신 호에 게재되었다. * (논문명) Highly Selective and Scalable CO2 to CO - Electrolysis using Coral-Nanostructured Ag Catalysts in zero-gap configuration - (제 1저자) 한국과학기술연구원 이웅희 박사후연구원 - (교신저자) 한국과학기술연구원 오형석 선임연구원 - (교신저자) 베를린공과대학 Peter strasser 교수 <그림설명> [그림 1] 산호 형태 은 전극을 이용한 이산화탄소 전환 시스템 개요도 [그림 2] 실시간 X-선 흡수 분석법을 통한 산호형태의 은 촉매 전극에서의 전기화학적 이산화탄소 환원 반응에 대한 전기장 효과 분석 개요도 [그림 3] 나노미터 크기의 산호 형태를 지닌 은 촉매 전극의 주사 전자 현미경(SEM) 사진
친환경 에너지 기술인 인공광합성, 고성능 대면적 전극 시스템 개발
- 산호 형태의 은 나노 촉매 전극을 고효율·대면적으로 개발 - 기체 상태에서의 전기화학적 이산화탄소 전환시스템 상용화 기틀 마련 한국과학기술연구원(KIST, 원장 직무대행 윤석진) 국가기반기술연구본부 청정에너지연구센터의 오형석, 이웅희 박사 연구팀은 베를린공과대학과(TU-Berlin)의 공동 연구를 통해 인공광합성의 주요 연구분야인 전기화학적 이산화탄소 전환 시스템에서 높은 효율로 일산화탄소를 얻을 수 있는 나노 크기의 산호 형태를 지닌 은 촉매 전극 및 대면적 시스템을 개발했다고 밝혔다. 인공광합성 시스템은 지구온난화의 원인이 되는 이산화탄소를 고부가가치를 갖고 있는 화학 물질로 전환하는 기술로, 환경오염 없이 이산화탄소를 제거하고 유용한 화학물질을 얻을 수 있다. 특히, 최근에는 전기화학적 이산화탄소 전환 시스템 분야가 높은 관심을 받고 있다. 기존 이산화탄소 전환 연구는 액체 상태(액상)에서 주로 진행되어 왔다. 하지만 액상에서는 전극을 물에 담근 형태로 성능을 측정하는데, 이산화탄소가 물에 잘 녹지않아 투입 에너지 대비 충분한 효율을 얻지 못하고 있었다. 최근 액체가 아닌 기체 상태에서 이산화탄소를 전환하는 시스템이 개발되어 효율을 높일 수 있을 것이라는 기대가 있었지만, 시스템에 적용할 수 있는 촉매, 전극에 개발에 대한 연구는 아직 미진한 편이었다. KIST-TU Berlin 공동 연구진은 일산화탄소 생성 효율이 높은 기체상태(기상)에서의 이산화탄소 전환 시스템용으로 나노크기의 산호형태 모양을 지닌 은 촉매 전극을 개발하였다. 해당 촉매는 기존 은 촉매에 비해 반응에 필요한 에너지가 적으며, 기존 액상 시스템에 비해 100배 이상의 일산화탄소를 생성할 수 있었다. 또한, 이산화탄소환원 시스템의 전극을 실험실 규모를 벗어나 실용화될 수 있도록 대면적화(50 cm)에 성공했다. KIST 연구진은 다양한 실시간 분석(Operando analysis)을 통해 촉매를 개발할 수 있었다. 실시간 X-선 흡수 분석법으로 염소이온을 통해 제조된 산호 형태의 은 나노 전극 촉매가 높은 표면적 및 다공성 구조로 인해 높은 물질 전달 능력을 보이는 것을 확인했다. 이는 높은 이산화탄소 전환 효율을 보임을 뜻한다. 그리고 이산화탄소 전환 반응 시 소수성(hydrophobicity)이 없을 경우 이산화탄소 전환 효율이 감소함을 확인하여 향후 이산화탄소 전환전극 개발 시 소수성의 필요성을 밝혀냈다. 본 연구를 진행한 KIST 오형석 박사는 “나노미터 크기의 산호 형태 은 촉매 전극의 개발을 통해 전기화학적 이산화탄소 전환 시스템의 전류 밀도 및 성능을 크게 향상시키고 추후 연구 방향을 제시하였다” 라며, “본 연구를 통해 전기화학적 이산화탄소 전환 시스템 연구 개발에 크게 기여할 것으로 기대한다.” 라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영)의 지원을 받아 KIST 주요사업 및 기후변화대응기술개발사업 수행되었으며 이번 연구결과는 에너지 환경 분야 국제 저널인 「Nano Energy」 (IF: 15.548, JCR 분야 상위 3.716%) 최신 호에 게재되었다. * (논문명) Highly Selective and Scalable CO2 to CO - Electrolysis using Coral-Nanostructured Ag Catalysts in zero-gap configuration - (제 1저자) 한국과학기술연구원 이웅희 박사후연구원 - (교신저자) 한국과학기술연구원 오형석 선임연구원 - (교신저자) 베를린공과대학 Peter strasser 교수 <그림설명> [그림 1] 산호 형태 은 전극을 이용한 이산화탄소 전환 시스템 개요도 [그림 2] 실시간 X-선 흡수 분석법을 통한 산호형태의 은 촉매 전극에서의 전기화학적 이산화탄소 환원 반응에 대한 전기장 효과 분석 개요도 [그림 3] 나노미터 크기의 산호 형태를 지닌 은 촉매 전극의 주사 전자 현미경(SEM) 사진
친환경 에너지 기술인 인공광합성, 고성능 대면적 전극 시스템 개발
- 산호 형태의 은 나노 촉매 전극을 고효율·대면적으로 개발 - 기체 상태에서의 전기화학적 이산화탄소 전환시스템 상용화 기틀 마련 한국과학기술연구원(KIST, 원장 직무대행 윤석진) 국가기반기술연구본부 청정에너지연구센터의 오형석, 이웅희 박사 연구팀은 베를린공과대학과(TU-Berlin)의 공동 연구를 통해 인공광합성의 주요 연구분야인 전기화학적 이산화탄소 전환 시스템에서 높은 효율로 일산화탄소를 얻을 수 있는 나노 크기의 산호 형태를 지닌 은 촉매 전극 및 대면적 시스템을 개발했다고 밝혔다. 인공광합성 시스템은 지구온난화의 원인이 되는 이산화탄소를 고부가가치를 갖고 있는 화학 물질로 전환하는 기술로, 환경오염 없이 이산화탄소를 제거하고 유용한 화학물질을 얻을 수 있다. 특히, 최근에는 전기화학적 이산화탄소 전환 시스템 분야가 높은 관심을 받고 있다. 기존 이산화탄소 전환 연구는 액체 상태(액상)에서 주로 진행되어 왔다. 하지만 액상에서는 전극을 물에 담근 형태로 성능을 측정하는데, 이산화탄소가 물에 잘 녹지않아 투입 에너지 대비 충분한 효율을 얻지 못하고 있었다. 최근 액체가 아닌 기체 상태에서 이산화탄소를 전환하는 시스템이 개발되어 효율을 높일 수 있을 것이라는 기대가 있었지만, 시스템에 적용할 수 있는 촉매, 전극에 개발에 대한 연구는 아직 미진한 편이었다. KIST-TU Berlin 공동 연구진은 일산화탄소 생성 효율이 높은 기체상태(기상)에서의 이산화탄소 전환 시스템용으로 나노크기의 산호형태 모양을 지닌 은 촉매 전극을 개발하였다. 해당 촉매는 기존 은 촉매에 비해 반응에 필요한 에너지가 적으며, 기존 액상 시스템에 비해 100배 이상의 일산화탄소를 생성할 수 있었다. 또한, 이산화탄소환원 시스템의 전극을 실험실 규모를 벗어나 실용화될 수 있도록 대면적화(50 cm)에 성공했다. KIST 연구진은 다양한 실시간 분석(Operando analysis)을 통해 촉매를 개발할 수 있었다. 실시간 X-선 흡수 분석법으로 염소이온을 통해 제조된 산호 형태의 은 나노 전극 촉매가 높은 표면적 및 다공성 구조로 인해 높은 물질 전달 능력을 보이는 것을 확인했다. 이는 높은 이산화탄소 전환 효율을 보임을 뜻한다. 그리고 이산화탄소 전환 반응 시 소수성(hydrophobicity)이 없을 경우 이산화탄소 전환 효율이 감소함을 확인하여 향후 이산화탄소 전환전극 개발 시 소수성의 필요성을 밝혀냈다. 본 연구를 진행한 KIST 오형석 박사는 “나노미터 크기의 산호 형태 은 촉매 전극의 개발을 통해 전기화학적 이산화탄소 전환 시스템의 전류 밀도 및 성능을 크게 향상시키고 추후 연구 방향을 제시하였다” 라며, “본 연구를 통해 전기화학적 이산화탄소 전환 시스템 연구 개발에 크게 기여할 것으로 기대한다.” 라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영)의 지원을 받아 KIST 주요사업 및 기후변화대응기술개발사업 수행되었으며 이번 연구결과는 에너지 환경 분야 국제 저널인 「Nano Energy」 (IF: 15.548, JCR 분야 상위 3.716%) 최신 호에 게재되었다. * (논문명) Highly Selective and Scalable CO2 to CO - Electrolysis using Coral-Nanostructured Ag Catalysts in zero-gap configuration - (제 1저자) 한국과학기술연구원 이웅희 박사후연구원 - (교신저자) 한국과학기술연구원 오형석 선임연구원 - (교신저자) 베를린공과대학 Peter strasser 교수 <그림설명> [그림 1] 산호 형태 은 전극을 이용한 이산화탄소 전환 시스템 개요도 [그림 2] 실시간 X-선 흡수 분석법을 통한 산호형태의 은 촉매 전극에서의 전기화학적 이산화탄소 환원 반응에 대한 전기장 효과 분석 개요도 [그림 3] 나노미터 크기의 산호 형태를 지닌 은 촉매 전극의 주사 전자 현미경(SEM) 사진
친환경 에너지 기술인 인공광합성, 고성능 대면적 전극 시스템 개발
- 산호 형태의 은 나노 촉매 전극을 고효율·대면적으로 개발 - 기체 상태에서의 전기화학적 이산화탄소 전환시스템 상용화 기틀 마련 한국과학기술연구원(KIST, 원장 직무대행 윤석진) 국가기반기술연구본부 청정에너지연구센터의 오형석, 이웅희 박사 연구팀은 베를린공과대학과(TU-Berlin)의 공동 연구를 통해 인공광합성의 주요 연구분야인 전기화학적 이산화탄소 전환 시스템에서 높은 효율로 일산화탄소를 얻을 수 있는 나노 크기의 산호 형태를 지닌 은 촉매 전극 및 대면적 시스템을 개발했다고 밝혔다. 인공광합성 시스템은 지구온난화의 원인이 되는 이산화탄소를 고부가가치를 갖고 있는 화학 물질로 전환하는 기술로, 환경오염 없이 이산화탄소를 제거하고 유용한 화학물질을 얻을 수 있다. 특히, 최근에는 전기화학적 이산화탄소 전환 시스템 분야가 높은 관심을 받고 있다. 기존 이산화탄소 전환 연구는 액체 상태(액상)에서 주로 진행되어 왔다. 하지만 액상에서는 전극을 물에 담근 형태로 성능을 측정하는데, 이산화탄소가 물에 잘 녹지않아 투입 에너지 대비 충분한 효율을 얻지 못하고 있었다. 최근 액체가 아닌 기체 상태에서 이산화탄소를 전환하는 시스템이 개발되어 효율을 높일 수 있을 것이라는 기대가 있었지만, 시스템에 적용할 수 있는 촉매, 전극에 개발에 대한 연구는 아직 미진한 편이었다. KIST-TU Berlin 공동 연구진은 일산화탄소 생성 효율이 높은 기체상태(기상)에서의 이산화탄소 전환 시스템용으로 나노크기의 산호형태 모양을 지닌 은 촉매 전극을 개발하였다. 해당 촉매는 기존 은 촉매에 비해 반응에 필요한 에너지가 적으며, 기존 액상 시스템에 비해 100배 이상의 일산화탄소를 생성할 수 있었다. 또한, 이산화탄소환원 시스템의 전극을 실험실 규모를 벗어나 실용화될 수 있도록 대면적화(50 cm)에 성공했다. KIST 연구진은 다양한 실시간 분석(Operando analysis)을 통해 촉매를 개발할 수 있었다. 실시간 X-선 흡수 분석법으로 염소이온을 통해 제조된 산호 형태의 은 나노 전극 촉매가 높은 표면적 및 다공성 구조로 인해 높은 물질 전달 능력을 보이는 것을 확인했다. 이는 높은 이산화탄소 전환 효율을 보임을 뜻한다. 그리고 이산화탄소 전환 반응 시 소수성(hydrophobicity)이 없을 경우 이산화탄소 전환 효율이 감소함을 확인하여 향후 이산화탄소 전환전극 개발 시 소수성의 필요성을 밝혀냈다. 본 연구를 진행한 KIST 오형석 박사는 “나노미터 크기의 산호 형태 은 촉매 전극의 개발을 통해 전기화학적 이산화탄소 전환 시스템의 전류 밀도 및 성능을 크게 향상시키고 추후 연구 방향을 제시하였다” 라며, “본 연구를 통해 전기화학적 이산화탄소 전환 시스템 연구 개발에 크게 기여할 것으로 기대한다.” 라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영)의 지원을 받아 KIST 주요사업 및 기후변화대응기술개발사업 수행되었으며 이번 연구결과는 에너지 환경 분야 국제 저널인 「Nano Energy」 (IF: 15.548, JCR 분야 상위 3.716%) 최신 호에 게재되었다. * (논문명) Highly Selective and Scalable CO2 to CO - Electrolysis using Coral-Nanostructured Ag Catalysts in zero-gap configuration - (제 1저자) 한국과학기술연구원 이웅희 박사후연구원 - (교신저자) 한국과학기술연구원 오형석 선임연구원 - (교신저자) 베를린공과대학 Peter strasser 교수 <그림설명> [그림 1] 산호 형태 은 전극을 이용한 이산화탄소 전환 시스템 개요도 [그림 2] 실시간 X-선 흡수 분석법을 통한 산호형태의 은 촉매 전극에서의 전기화학적 이산화탄소 환원 반응에 대한 전기장 효과 분석 개요도 [그림 3] 나노미터 크기의 산호 형태를 지닌 은 촉매 전극의 주사 전자 현미경(SEM) 사진
친환경 에너지 기술인 인공광합성, 고성능 대면적 전극 시스템 개발
- 산호 형태의 은 나노 촉매 전극을 고효율·대면적으로 개발 - 기체 상태에서의 전기화학적 이산화탄소 전환시스템 상용화 기틀 마련 한국과학기술연구원(KIST, 원장 직무대행 윤석진) 국가기반기술연구본부 청정에너지연구센터의 오형석, 이웅희 박사 연구팀은 베를린공과대학과(TU-Berlin)의 공동 연구를 통해 인공광합성의 주요 연구분야인 전기화학적 이산화탄소 전환 시스템에서 높은 효율로 일산화탄소를 얻을 수 있는 나노 크기의 산호 형태를 지닌 은 촉매 전극 및 대면적 시스템을 개발했다고 밝혔다. 인공광합성 시스템은 지구온난화의 원인이 되는 이산화탄소를 고부가가치를 갖고 있는 화학 물질로 전환하는 기술로, 환경오염 없이 이산화탄소를 제거하고 유용한 화학물질을 얻을 수 있다. 특히, 최근에는 전기화학적 이산화탄소 전환 시스템 분야가 높은 관심을 받고 있다. 기존 이산화탄소 전환 연구는 액체 상태(액상)에서 주로 진행되어 왔다. 하지만 액상에서는 전극을 물에 담근 형태로 성능을 측정하는데, 이산화탄소가 물에 잘 녹지않아 투입 에너지 대비 충분한 효율을 얻지 못하고 있었다. 최근 액체가 아닌 기체 상태에서 이산화탄소를 전환하는 시스템이 개발되어 효율을 높일 수 있을 것이라는 기대가 있었지만, 시스템에 적용할 수 있는 촉매, 전극에 개발에 대한 연구는 아직 미진한 편이었다. KIST-TU Berlin 공동 연구진은 일산화탄소 생성 효율이 높은 기체상태(기상)에서의 이산화탄소 전환 시스템용으로 나노크기의 산호형태 모양을 지닌 은 촉매 전극을 개발하였다. 해당 촉매는 기존 은 촉매에 비해 반응에 필요한 에너지가 적으며, 기존 액상 시스템에 비해 100배 이상의 일산화탄소를 생성할 수 있었다. 또한, 이산화탄소환원 시스템의 전극을 실험실 규모를 벗어나 실용화될 수 있도록 대면적화(50 cm)에 성공했다. KIST 연구진은 다양한 실시간 분석(Operando analysis)을 통해 촉매를 개발할 수 있었다. 실시간 X-선 흡수 분석법으로 염소이온을 통해 제조된 산호 형태의 은 나노 전극 촉매가 높은 표면적 및 다공성 구조로 인해 높은 물질 전달 능력을 보이는 것을 확인했다. 이는 높은 이산화탄소 전환 효율을 보임을 뜻한다. 그리고 이산화탄소 전환 반응 시 소수성(hydrophobicity)이 없을 경우 이산화탄소 전환 효율이 감소함을 확인하여 향후 이산화탄소 전환전극 개발 시 소수성의 필요성을 밝혀냈다. 본 연구를 진행한 KIST 오형석 박사는 “나노미터 크기의 산호 형태 은 촉매 전극의 개발을 통해 전기화학적 이산화탄소 전환 시스템의 전류 밀도 및 성능을 크게 향상시키고 추후 연구 방향을 제시하였다” 라며, “본 연구를 통해 전기화학적 이산화탄소 전환 시스템 연구 개발에 크게 기여할 것으로 기대한다.” 라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영)의 지원을 받아 KIST 주요사업 및 기후변화대응기술개발사업 수행되었으며 이번 연구결과는 에너지 환경 분야 국제 저널인 「Nano Energy」 (IF: 15.548, JCR 분야 상위 3.716%) 최신 호에 게재되었다. * (논문명) Highly Selective and Scalable CO2 to CO - Electrolysis using Coral-Nanostructured Ag Catalysts in zero-gap configuration - (제 1저자) 한국과학기술연구원 이웅희 박사후연구원 - (교신저자) 한국과학기술연구원 오형석 선임연구원 - (교신저자) 베를린공과대학 Peter strasser 교수 <그림설명> [그림 1] 산호 형태 은 전극을 이용한 이산화탄소 전환 시스템 개요도 [그림 2] 실시간 X-선 흡수 분석법을 통한 산호형태의 은 촉매 전극에서의 전기화학적 이산화탄소 환원 반응에 대한 전기장 효과 분석 개요도 [그림 3] 나노미터 크기의 산호 형태를 지닌 은 촉매 전극의 주사 전자 현미경(SEM) 사진
투명도가 10배 향상된 전도성 플라스틱 개발
- 뛰어난 투명도와 유연성을 동시에 갖는 고분자 개발, 세계최초 원천기술 확보 - 기존 전도성 고분자 구조적 모순 해결, 향후 다양한 분야 산업발전에 활용 기대 국내 연구진에 의해 투명도가 매우 향상된 전도성 플라스틱 신소재가 개발되었다. 뛰어난 가공성과 내구성에도 불구하고 불투명함이 한계로 지적되어온 전도성 고분자를 뛰어넘어 차세대 투명유기전극 시장의 유력한 후보로 부상할 전망이다. 한국과학기술연구원(KIST, 원장직무대행 윤석진) 전북분원 복합소재기술연구소(분원장 홍재민) 기능성복합소재연구센터 주용호 박사팀은 Purdue University 화학공학과 Bryan W. Boudouris 교수팀과 공동연구를 통해 높은 전도성과 투명함을 동시에 지니는 플라스틱 신소재를 개발했다고 밝혔다. 투명전극은 현재 스마트폰과 TV, 각종 디스플레이에 활용되고 있으며, 빛은 그대로 투과시키면서 전기를 잘 통하게 하는 역할을 한다. 투명전극을 만들기 위해 대표적으로 사용되는 소재가 전도성 고분자인데, 유연하고 생산비용이 적어 우리나라를 포함한 소재 강국에서 전도성 고분자에 대한 연구개발이 활발히 진행 중이다. 본 연구에 활용된 전도성 고분자는 PEDOT:PSS[poly(3,4-ethylenedioxythiophene)]로, 투명전극 연구에 대표적으로 활용되고 있지만 화학구조의 한계로 인하여 필름의 두께가 두꺼워지면 불투명도가 높아지는 단점을 가지고 있다. 따라서 2000년 노벨화학상을 수상한 전도성 고분자의 개발은 이후 유연하고 투명하며, 높은 압력에도 깨지지 않는 강도를 확보하기 위한 연구개발이 중점적으로 이루어져왔다. KIST 주용호 박사팀은 본 연구에서 라디칼 고분자(Radical Polymer)의 활용에 주목하였다. 투명전극으로 라디칼 고분자를 활용하고자, 소재를 불투명하게 하는 공중합 구조를 없앤 비공중합 고분자 합성에 주력하였고, 이에 최적화된 화학구조를 적용하여 뛰어난 투명도와 유연성을 동시에 갖는 고분자를 개발하고 고분자-이온 복합체를 형성하여 이 분야의 세계최초 원천기술 확보에 성공했다. 실험을 통해 개발한 고분자가 필름 두께 1㎛(마이크로미터, 100만분의 1m)에서 96% 이상의 투명도를 가지는 것을 확인하였으며, 이는 같은 두께에서(1㎛)의 기존 전도성 고분자 PEDOT:PSS의 투명도가 10% 이하인 것과 비교하면 매우 높은 수치이다. KIST 주용호 박사는 “라디칼 고분자의 개발은 기존 전도성 고분자의 구조적 모순을 해결하여 유기 전자재료 연구개발에 새로운 패러다임을 제시하게 될 것”이라며 “향후 높은 전도도와 유연성, 투명도를 극대화하는 고성능 유기 전자소재의 개발로 이어져 차세대 에너지 저장 소재, 투명 디스플레이 소재, 플렉시블 배터리, 바이오 전기화학 등 다방면의 발전에 활용될 수 있기를 기대한다.”라고 연구 의의를 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영)의 지원을 받아 KIST의 주요사업과 한국연구재단 신진연구자지원사업으로 수행되었다. 연구 결과는 고분자 분야 국제 저널인 ‘Macromolecules’ (IF: 5.997, JCR 분야 상위 5.172%) 최신호에 게재되었다. * (논문명) Mixed Ionic and Electronic Conduction in Radical Polymers - (제 1저자) 한국과학기술연구원 기능성복합소재연구센터 유일환 학생연구원 - (교신저자) 한국과학기술연구원 기능성복합소재연구센터 주용호 선임연구원 <그림설명> [그림 1] (좌, 위) 라디칼고분자와 이온의 화학적 구조 (우, 위) 높은 투명도를 나타내는 고분자-이온 복합소재 (아래) 높은 이온 전도도와 전기 전도도를 동시에 나타내는 디바이스 성능 그래프