Result
게시물 키워드"KIST"에 대한 4623개의 검색결과를 찾았습니다.
화재, 폭발 위험 없는 전기차 배터리 생산을 위한 전극소재 열분석 기법 개발
- 3세대 전기자동차용 안전한 소재 설계를 위한 발판 마련 - 전극 소재의 열분해 메커니즘 규명 및 실시간 분석 플랫폼 구축 최근 전기자동차 배터리의 화재 사고가 끊이지 않고 있다. 전기 자동차의 배터리 팩의 경우 스마트폰 등의 소형 모바일 기기와 달리 수백 개의 배터리 셀로 구성되기 때문에 배터리의 불안정성은 인적, 물적 피해를 초래하는 매우 중요한 문제이다. 화재의 원인을 밝혀내려는 다양한 노력이 진행 중인 가운데 국내 연구진이 배터리의 열적 불안정성을 평가할 수 있는 새로운 분석기법을 개발했다. 한국과학기술연구원(KIST, 원장 윤석진)은 에너지저장연구단 장원영 박사, 전북분원 탄소융합소재연구센터 김승민 박사 공동연구팀이 투과전자현미경을 이용하여 배터리 양(+)극 소재의 열 안정성을 평가할 수 있는 실시간 분석 플랫폼을 구축하고, 이를 통하여 전기 자동차용 하이-니켈계 양(+)극 소재의 미세한 화학조성의 변화에 따른 열분해 메커니즘의 변화를 규명했다고 밝혔다. 배터리의 양극은 충전용량, 즉 전기자동차의 주행거리를 결정짓는 핵심적인 부분이다. 양극 소재는 니켈·코발트·알루미늄 또는 니켈·망간·코발트 등의 여러 성분을 적정 비율로 배합하여 제작하는데, 기업 및 학계 연구진들은 전기자동차의 주행거리를 늘리기 위해 새로운 구성 비율을 찾으려 노력하고 있다. 양극소재에는 니켈 금속이 들어가는데, 니켈이 많이 포함될수록 더 큰 충전용량을 확보할 수 있다. 또한, 니켈은 함께 구성되는 코발트보다 상대적으로 저렴하여 전기자동차 보급에 필수적인 배터리 단가를 낮추는 효과도 있다. 하지만 니켈은 그 충전용량이 큰 만큼 외부 환경에 쉽게 반응하려는 성질이 있어 배터리의 안정성이 낮아지는 치명적인 단점을 갖고 있다. 최근 개발 중인 3세대 전기자동차용 양극 소재는 니켈 함량을 80% 이상으로 높이고 있어서, 이로 인한 안정성 저하를 필수적으로 개선해야 한다. 배터리의 화재는 주로 충전된 산화물계 양극 소재와 발화성 액체 전해질의 격렬한 발열 반응에서 기인하기 때문에, 연구진은 전해질과 맞닿아 있는 양극 표면에 초점을 맞춰 다양한 투과전자현미경 분석기법(전자에너지 분광분석법, 전자회절 분석법 등)을 활용하여 온도의 상승에 따른 전극 구조의 결정구조, 구성성분의 화학적 변화를 면밀히 관찰·분석하였다. 그 결과, NCA(니켈·코발트·알루미늄) 양극 소재에서의 화학 조성에 따른 배터리 열적 안정성 저하 원인과 배터리의 안전성 확보를 위한 구성 원소의 역할을 규명할 수 있었다. KIST 연구진은 NCA 양극 소재에서의 알루미늄 대비 니켈의 증가는 용량의 향상을 보이지만, 실제 상한 충전상태(총 리튬 이온의 67% 반응)에서 열 안정성이 크게 저하되는 것을 관찰하였다. 이를 분석한 결과, 실제 산화/환원반응에 참여하지 않는 알루미늄 원소가 부족해 충전 과정 중, 열 안정성을 저하시킬 수 있는 새로운 상(O1 Phase)을 형성하게 하고, 불안정해진 새로운 상의 표면 구조가 결국 저하된 열 안정성의 원인임을 밝혔다. KIST 장원영 박사는 “최근 전 세계적으로 잇따른 전기 자동차의 화재가 발생하고 있으며, 발화 원인이 배터리인 경우가 많았다. 본 연구를 통하여 고성능 양극 소재 개발에 있어서 열 안정성을 확보할 수 있는 화학조성 설계의 중요성을 확인했다.”고 밝혔다. KIST 전북분원 김승민 박사는 “발열 반응의 시발점인 양극 소재 자체의 열적 안정성을 확보하는 것은 전기 자동차 대중적 보급에 매우 중요한 역할을 한다. 이번에 개발한 고도 분석기법을 통하여 향후에는 미량 원소의 혼입에 따른 영향을 파악하여, 안정성이 확보된 고성능 양극소재를 개발할 수 있을 것”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 한국연구재단 중견연구자지원사업으로 수행되었으며, 연구결과는 에너지 분야 국제학술지 ‘Nano Energy’ (IF:16.602, JCR 분야 상위 4.29%) 최신호에 게재될 예정이다. * (논문명) Different Thermal Degradation Mechanisms: Role of Aluminum in Ni-rich Layered Cathode Materials - (제 1저자) 한국과학기술연구원 조은미 박사후연구원 - (교신저자) 한국과학기술연구원 장원영 책임연구원 - (교신저자) 한국과학기술연구원 김승민 책임연구원 <그림설명> [대표 이미지] KIST 연구진이 전기차용 양극소재로 널리 쓰이는 NCA (니켈·코발트·알루미늄)에서의 배터리 화재의 위험성을 줄여줄 수 있는 알루미늄 원소의 역할을 그린 예상도 [그림 1] 실제 상한 충전상태에서의 NCA양극 소재의 화학 조성에 따른 열안정성 차이 원인 규명 [그림 2] NCA 양극 소재에서의 니켈과 알루미늄의 교환으로 인한 전지성능과 열안정성과의 상충적 관계
화재, 폭발 위험 없는 전기차 배터리 생산을 위한 전극소재 열분석 기법 개발
- 3세대 전기자동차용 안전한 소재 설계를 위한 발판 마련 - 전극 소재의 열분해 메커니즘 규명 및 실시간 분석 플랫폼 구축 최근 전기자동차 배터리의 화재 사고가 끊이지 않고 있다. 전기 자동차의 배터리 팩의 경우 스마트폰 등의 소형 모바일 기기와 달리 수백 개의 배터리 셀로 구성되기 때문에 배터리의 불안정성은 인적, 물적 피해를 초래하는 매우 중요한 문제이다. 화재의 원인을 밝혀내려는 다양한 노력이 진행 중인 가운데 국내 연구진이 배터리의 열적 불안정성을 평가할 수 있는 새로운 분석기법을 개발했다. 한국과학기술연구원(KIST, 원장 윤석진)은 에너지저장연구단 장원영 박사, 전북분원 탄소융합소재연구센터 김승민 박사 공동연구팀이 투과전자현미경을 이용하여 배터리 양(+)극 소재의 열 안정성을 평가할 수 있는 실시간 분석 플랫폼을 구축하고, 이를 통하여 전기 자동차용 하이-니켈계 양(+)극 소재의 미세한 화학조성의 변화에 따른 열분해 메커니즘의 변화를 규명했다고 밝혔다. 배터리의 양극은 충전용량, 즉 전기자동차의 주행거리를 결정짓는 핵심적인 부분이다. 양극 소재는 니켈·코발트·알루미늄 또는 니켈·망간·코발트 등의 여러 성분을 적정 비율로 배합하여 제작하는데, 기업 및 학계 연구진들은 전기자동차의 주행거리를 늘리기 위해 새로운 구성 비율을 찾으려 노력하고 있다. 양극소재에는 니켈 금속이 들어가는데, 니켈이 많이 포함될수록 더 큰 충전용량을 확보할 수 있다. 또한, 니켈은 함께 구성되는 코발트보다 상대적으로 저렴하여 전기자동차 보급에 필수적인 배터리 단가를 낮추는 효과도 있다. 하지만 니켈은 그 충전용량이 큰 만큼 외부 환경에 쉽게 반응하려는 성질이 있어 배터리의 안정성이 낮아지는 치명적인 단점을 갖고 있다. 최근 개발 중인 3세대 전기자동차용 양극 소재는 니켈 함량을 80% 이상으로 높이고 있어서, 이로 인한 안정성 저하를 필수적으로 개선해야 한다. 배터리의 화재는 주로 충전된 산화물계 양극 소재와 발화성 액체 전해질의 격렬한 발열 반응에서 기인하기 때문에, 연구진은 전해질과 맞닿아 있는 양극 표면에 초점을 맞춰 다양한 투과전자현미경 분석기법(전자에너지 분광분석법, 전자회절 분석법 등)을 활용하여 온도의 상승에 따른 전극 구조의 결정구조, 구성성분의 화학적 변화를 면밀히 관찰·분석하였다. 그 결과, NCA(니켈·코발트·알루미늄) 양극 소재에서의 화학 조성에 따른 배터리 열적 안정성 저하 원인과 배터리의 안전성 확보를 위한 구성 원소의 역할을 규명할 수 있었다. KIST 연구진은 NCA 양극 소재에서의 알루미늄 대비 니켈의 증가는 용량의 향상을 보이지만, 실제 상한 충전상태(총 리튬 이온의 67% 반응)에서 열 안정성이 크게 저하되는 것을 관찰하였다. 이를 분석한 결과, 실제 산화/환원반응에 참여하지 않는 알루미늄 원소가 부족해 충전 과정 중, 열 안정성을 저하시킬 수 있는 새로운 상(O1 Phase)을 형성하게 하고, 불안정해진 새로운 상의 표면 구조가 결국 저하된 열 안정성의 원인임을 밝혔다. KIST 장원영 박사는 “최근 전 세계적으로 잇따른 전기 자동차의 화재가 발생하고 있으며, 발화 원인이 배터리인 경우가 많았다. 본 연구를 통하여 고성능 양극 소재 개발에 있어서 열 안정성을 확보할 수 있는 화학조성 설계의 중요성을 확인했다.”고 밝혔다. KIST 전북분원 김승민 박사는 “발열 반응의 시발점인 양극 소재 자체의 열적 안정성을 확보하는 것은 전기 자동차 대중적 보급에 매우 중요한 역할을 한다. 이번에 개발한 고도 분석기법을 통하여 향후에는 미량 원소의 혼입에 따른 영향을 파악하여, 안정성이 확보된 고성능 양극소재를 개발할 수 있을 것”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 한국연구재단 중견연구자지원사업으로 수행되었으며, 연구결과는 에너지 분야 국제학술지 ‘Nano Energy’ (IF:16.602, JCR 분야 상위 4.29%) 최신호에 게재될 예정이다. * (논문명) Different Thermal Degradation Mechanisms: Role of Aluminum in Ni-rich Layered Cathode Materials - (제 1저자) 한국과학기술연구원 조은미 박사후연구원 - (교신저자) 한국과학기술연구원 장원영 책임연구원 - (교신저자) 한국과학기술연구원 김승민 책임연구원 <그림설명> [대표 이미지] KIST 연구진이 전기차용 양극소재로 널리 쓰이는 NCA (니켈·코발트·알루미늄)에서의 배터리 화재의 위험성을 줄여줄 수 있는 알루미늄 원소의 역할을 그린 예상도 [그림 1] 실제 상한 충전상태에서의 NCA양극 소재의 화학 조성에 따른 열안정성 차이 원인 규명 [그림 2] NCA 양극 소재에서의 니켈과 알루미늄의 교환으로 인한 전지성능과 열안정성과의 상충적 관계
화재, 폭발 위험 없는 전기차 배터리 생산을 위한 전극소재 열분석 기법 개발
- 3세대 전기자동차용 안전한 소재 설계를 위한 발판 마련 - 전극 소재의 열분해 메커니즘 규명 및 실시간 분석 플랫폼 구축 최근 전기자동차 배터리의 화재 사고가 끊이지 않고 있다. 전기 자동차의 배터리 팩의 경우 스마트폰 등의 소형 모바일 기기와 달리 수백 개의 배터리 셀로 구성되기 때문에 배터리의 불안정성은 인적, 물적 피해를 초래하는 매우 중요한 문제이다. 화재의 원인을 밝혀내려는 다양한 노력이 진행 중인 가운데 국내 연구진이 배터리의 열적 불안정성을 평가할 수 있는 새로운 분석기법을 개발했다. 한국과학기술연구원(KIST, 원장 윤석진)은 에너지저장연구단 장원영 박사, 전북분원 탄소융합소재연구센터 김승민 박사 공동연구팀이 투과전자현미경을 이용하여 배터리 양(+)극 소재의 열 안정성을 평가할 수 있는 실시간 분석 플랫폼을 구축하고, 이를 통하여 전기 자동차용 하이-니켈계 양(+)극 소재의 미세한 화학조성의 변화에 따른 열분해 메커니즘의 변화를 규명했다고 밝혔다. 배터리의 양극은 충전용량, 즉 전기자동차의 주행거리를 결정짓는 핵심적인 부분이다. 양극 소재는 니켈·코발트·알루미늄 또는 니켈·망간·코발트 등의 여러 성분을 적정 비율로 배합하여 제작하는데, 기업 및 학계 연구진들은 전기자동차의 주행거리를 늘리기 위해 새로운 구성 비율을 찾으려 노력하고 있다. 양극소재에는 니켈 금속이 들어가는데, 니켈이 많이 포함될수록 더 큰 충전용량을 확보할 수 있다. 또한, 니켈은 함께 구성되는 코발트보다 상대적으로 저렴하여 전기자동차 보급에 필수적인 배터리 단가를 낮추는 효과도 있다. 하지만 니켈은 그 충전용량이 큰 만큼 외부 환경에 쉽게 반응하려는 성질이 있어 배터리의 안정성이 낮아지는 치명적인 단점을 갖고 있다. 최근 개발 중인 3세대 전기자동차용 양극 소재는 니켈 함량을 80% 이상으로 높이고 있어서, 이로 인한 안정성 저하를 필수적으로 개선해야 한다. 배터리의 화재는 주로 충전된 산화물계 양극 소재와 발화성 액체 전해질의 격렬한 발열 반응에서 기인하기 때문에, 연구진은 전해질과 맞닿아 있는 양극 표면에 초점을 맞춰 다양한 투과전자현미경 분석기법(전자에너지 분광분석법, 전자회절 분석법 등)을 활용하여 온도의 상승에 따른 전극 구조의 결정구조, 구성성분의 화학적 변화를 면밀히 관찰·분석하였다. 그 결과, NCA(니켈·코발트·알루미늄) 양극 소재에서의 화학 조성에 따른 배터리 열적 안정성 저하 원인과 배터리의 안전성 확보를 위한 구성 원소의 역할을 규명할 수 있었다. KIST 연구진은 NCA 양극 소재에서의 알루미늄 대비 니켈의 증가는 용량의 향상을 보이지만, 실제 상한 충전상태(총 리튬 이온의 67% 반응)에서 열 안정성이 크게 저하되는 것을 관찰하였다. 이를 분석한 결과, 실제 산화/환원반응에 참여하지 않는 알루미늄 원소가 부족해 충전 과정 중, 열 안정성을 저하시킬 수 있는 새로운 상(O1 Phase)을 형성하게 하고, 불안정해진 새로운 상의 표면 구조가 결국 저하된 열 안정성의 원인임을 밝혔다. KIST 장원영 박사는 “최근 전 세계적으로 잇따른 전기 자동차의 화재가 발생하고 있으며, 발화 원인이 배터리인 경우가 많았다. 본 연구를 통하여 고성능 양극 소재 개발에 있어서 열 안정성을 확보할 수 있는 화학조성 설계의 중요성을 확인했다.”고 밝혔다. KIST 전북분원 김승민 박사는 “발열 반응의 시발점인 양극 소재 자체의 열적 안정성을 확보하는 것은 전기 자동차 대중적 보급에 매우 중요한 역할을 한다. 이번에 개발한 고도 분석기법을 통하여 향후에는 미량 원소의 혼입에 따른 영향을 파악하여, 안정성이 확보된 고성능 양극소재를 개발할 수 있을 것”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 한국연구재단 중견연구자지원사업으로 수행되었으며, 연구결과는 에너지 분야 국제학술지 ‘Nano Energy’ (IF:16.602, JCR 분야 상위 4.29%) 최신호에 게재될 예정이다. * (논문명) Different Thermal Degradation Mechanisms: Role of Aluminum in Ni-rich Layered Cathode Materials - (제 1저자) 한국과학기술연구원 조은미 박사후연구원 - (교신저자) 한국과학기술연구원 장원영 책임연구원 - (교신저자) 한국과학기술연구원 김승민 책임연구원 <그림설명> [대표 이미지] KIST 연구진이 전기차용 양극소재로 널리 쓰이는 NCA (니켈·코발트·알루미늄)에서의 배터리 화재의 위험성을 줄여줄 수 있는 알루미늄 원소의 역할을 그린 예상도 [그림 1] 실제 상한 충전상태에서의 NCA양극 소재의 화학 조성에 따른 열안정성 차이 원인 규명 [그림 2] NCA 양극 소재에서의 니켈과 알루미늄의 교환으로 인한 전지성능과 열안정성과의 상충적 관계
화재, 폭발 위험 없는 전기차 배터리 생산을 위한 전극소재 열분석 기법 개발
- 3세대 전기자동차용 안전한 소재 설계를 위한 발판 마련 - 전극 소재의 열분해 메커니즘 규명 및 실시간 분석 플랫폼 구축 최근 전기자동차 배터리의 화재 사고가 끊이지 않고 있다. 전기 자동차의 배터리 팩의 경우 스마트폰 등의 소형 모바일 기기와 달리 수백 개의 배터리 셀로 구성되기 때문에 배터리의 불안정성은 인적, 물적 피해를 초래하는 매우 중요한 문제이다. 화재의 원인을 밝혀내려는 다양한 노력이 진행 중인 가운데 국내 연구진이 배터리의 열적 불안정성을 평가할 수 있는 새로운 분석기법을 개발했다. 한국과학기술연구원(KIST, 원장 윤석진)은 에너지저장연구단 장원영 박사, 전북분원 탄소융합소재연구센터 김승민 박사 공동연구팀이 투과전자현미경을 이용하여 배터리 양(+)극 소재의 열 안정성을 평가할 수 있는 실시간 분석 플랫폼을 구축하고, 이를 통하여 전기 자동차용 하이-니켈계 양(+)극 소재의 미세한 화학조성의 변화에 따른 열분해 메커니즘의 변화를 규명했다고 밝혔다. 배터리의 양극은 충전용량, 즉 전기자동차의 주행거리를 결정짓는 핵심적인 부분이다. 양극 소재는 니켈·코발트·알루미늄 또는 니켈·망간·코발트 등의 여러 성분을 적정 비율로 배합하여 제작하는데, 기업 및 학계 연구진들은 전기자동차의 주행거리를 늘리기 위해 새로운 구성 비율을 찾으려 노력하고 있다. 양극소재에는 니켈 금속이 들어가는데, 니켈이 많이 포함될수록 더 큰 충전용량을 확보할 수 있다. 또한, 니켈은 함께 구성되는 코발트보다 상대적으로 저렴하여 전기자동차 보급에 필수적인 배터리 단가를 낮추는 효과도 있다. 하지만 니켈은 그 충전용량이 큰 만큼 외부 환경에 쉽게 반응하려는 성질이 있어 배터리의 안정성이 낮아지는 치명적인 단점을 갖고 있다. 최근 개발 중인 3세대 전기자동차용 양극 소재는 니켈 함량을 80% 이상으로 높이고 있어서, 이로 인한 안정성 저하를 필수적으로 개선해야 한다. 배터리의 화재는 주로 충전된 산화물계 양극 소재와 발화성 액체 전해질의 격렬한 발열 반응에서 기인하기 때문에, 연구진은 전해질과 맞닿아 있는 양극 표면에 초점을 맞춰 다양한 투과전자현미경 분석기법(전자에너지 분광분석법, 전자회절 분석법 등)을 활용하여 온도의 상승에 따른 전극 구조의 결정구조, 구성성분의 화학적 변화를 면밀히 관찰·분석하였다. 그 결과, NCA(니켈·코발트·알루미늄) 양극 소재에서의 화학 조성에 따른 배터리 열적 안정성 저하 원인과 배터리의 안전성 확보를 위한 구성 원소의 역할을 규명할 수 있었다. KIST 연구진은 NCA 양극 소재에서의 알루미늄 대비 니켈의 증가는 용량의 향상을 보이지만, 실제 상한 충전상태(총 리튬 이온의 67% 반응)에서 열 안정성이 크게 저하되는 것을 관찰하였다. 이를 분석한 결과, 실제 산화/환원반응에 참여하지 않는 알루미늄 원소가 부족해 충전 과정 중, 열 안정성을 저하시킬 수 있는 새로운 상(O1 Phase)을 형성하게 하고, 불안정해진 새로운 상의 표면 구조가 결국 저하된 열 안정성의 원인임을 밝혔다. KIST 장원영 박사는 “최근 전 세계적으로 잇따른 전기 자동차의 화재가 발생하고 있으며, 발화 원인이 배터리인 경우가 많았다. 본 연구를 통하여 고성능 양극 소재 개발에 있어서 열 안정성을 확보할 수 있는 화학조성 설계의 중요성을 확인했다.”고 밝혔다. KIST 전북분원 김승민 박사는 “발열 반응의 시발점인 양극 소재 자체의 열적 안정성을 확보하는 것은 전기 자동차 대중적 보급에 매우 중요한 역할을 한다. 이번에 개발한 고도 분석기법을 통하여 향후에는 미량 원소의 혼입에 따른 영향을 파악하여, 안정성이 확보된 고성능 양극소재를 개발할 수 있을 것”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 한국연구재단 중견연구자지원사업으로 수행되었으며, 연구결과는 에너지 분야 국제학술지 ‘Nano Energy’ (IF:16.602, JCR 분야 상위 4.29%) 최신호에 게재될 예정이다. * (논문명) Different Thermal Degradation Mechanisms: Role of Aluminum in Ni-rich Layered Cathode Materials - (제 1저자) 한국과학기술연구원 조은미 박사후연구원 - (교신저자) 한국과학기술연구원 장원영 책임연구원 - (교신저자) 한국과학기술연구원 김승민 책임연구원 <그림설명> [대표 이미지] KIST 연구진이 전기차용 양극소재로 널리 쓰이는 NCA (니켈·코발트·알루미늄)에서의 배터리 화재의 위험성을 줄여줄 수 있는 알루미늄 원소의 역할을 그린 예상도 [그림 1] 실제 상한 충전상태에서의 NCA양극 소재의 화학 조성에 따른 열안정성 차이 원인 규명 [그림 2] NCA 양극 소재에서의 니켈과 알루미늄의 교환으로 인한 전지성능과 열안정성과의 상충적 관계
화재, 폭발 위험 없는 전기차 배터리 생산을 위한 전극소재 열분석 기법 개발
- 3세대 전기자동차용 안전한 소재 설계를 위한 발판 마련 - 전극 소재의 열분해 메커니즘 규명 및 실시간 분석 플랫폼 구축 최근 전기자동차 배터리의 화재 사고가 끊이지 않고 있다. 전기 자동차의 배터리 팩의 경우 스마트폰 등의 소형 모바일 기기와 달리 수백 개의 배터리 셀로 구성되기 때문에 배터리의 불안정성은 인적, 물적 피해를 초래하는 매우 중요한 문제이다. 화재의 원인을 밝혀내려는 다양한 노력이 진행 중인 가운데 국내 연구진이 배터리의 열적 불안정성을 평가할 수 있는 새로운 분석기법을 개발했다. 한국과학기술연구원(KIST, 원장 윤석진)은 에너지저장연구단 장원영 박사, 전북분원 탄소융합소재연구센터 김승민 박사 공동연구팀이 투과전자현미경을 이용하여 배터리 양(+)극 소재의 열 안정성을 평가할 수 있는 실시간 분석 플랫폼을 구축하고, 이를 통하여 전기 자동차용 하이-니켈계 양(+)극 소재의 미세한 화학조성의 변화에 따른 열분해 메커니즘의 변화를 규명했다고 밝혔다. 배터리의 양극은 충전용량, 즉 전기자동차의 주행거리를 결정짓는 핵심적인 부분이다. 양극 소재는 니켈·코발트·알루미늄 또는 니켈·망간·코발트 등의 여러 성분을 적정 비율로 배합하여 제작하는데, 기업 및 학계 연구진들은 전기자동차의 주행거리를 늘리기 위해 새로운 구성 비율을 찾으려 노력하고 있다. 양극소재에는 니켈 금속이 들어가는데, 니켈이 많이 포함될수록 더 큰 충전용량을 확보할 수 있다. 또한, 니켈은 함께 구성되는 코발트보다 상대적으로 저렴하여 전기자동차 보급에 필수적인 배터리 단가를 낮추는 효과도 있다. 하지만 니켈은 그 충전용량이 큰 만큼 외부 환경에 쉽게 반응하려는 성질이 있어 배터리의 안정성이 낮아지는 치명적인 단점을 갖고 있다. 최근 개발 중인 3세대 전기자동차용 양극 소재는 니켈 함량을 80% 이상으로 높이고 있어서, 이로 인한 안정성 저하를 필수적으로 개선해야 한다. 배터리의 화재는 주로 충전된 산화물계 양극 소재와 발화성 액체 전해질의 격렬한 발열 반응에서 기인하기 때문에, 연구진은 전해질과 맞닿아 있는 양극 표면에 초점을 맞춰 다양한 투과전자현미경 분석기법(전자에너지 분광분석법, 전자회절 분석법 등)을 활용하여 온도의 상승에 따른 전극 구조의 결정구조, 구성성분의 화학적 변화를 면밀히 관찰·분석하였다. 그 결과, NCA(니켈·코발트·알루미늄) 양극 소재에서의 화학 조성에 따른 배터리 열적 안정성 저하 원인과 배터리의 안전성 확보를 위한 구성 원소의 역할을 규명할 수 있었다. KIST 연구진은 NCA 양극 소재에서의 알루미늄 대비 니켈의 증가는 용량의 향상을 보이지만, 실제 상한 충전상태(총 리튬 이온의 67% 반응)에서 열 안정성이 크게 저하되는 것을 관찰하였다. 이를 분석한 결과, 실제 산화/환원반응에 참여하지 않는 알루미늄 원소가 부족해 충전 과정 중, 열 안정성을 저하시킬 수 있는 새로운 상(O1 Phase)을 형성하게 하고, 불안정해진 새로운 상의 표면 구조가 결국 저하된 열 안정성의 원인임을 밝혔다. KIST 장원영 박사는 “최근 전 세계적으로 잇따른 전기 자동차의 화재가 발생하고 있으며, 발화 원인이 배터리인 경우가 많았다. 본 연구를 통하여 고성능 양극 소재 개발에 있어서 열 안정성을 확보할 수 있는 화학조성 설계의 중요성을 확인했다.”고 밝혔다. KIST 전북분원 김승민 박사는 “발열 반응의 시발점인 양극 소재 자체의 열적 안정성을 확보하는 것은 전기 자동차 대중적 보급에 매우 중요한 역할을 한다. 이번에 개발한 고도 분석기법을 통하여 향후에는 미량 원소의 혼입에 따른 영향을 파악하여, 안정성이 확보된 고성능 양극소재를 개발할 수 있을 것”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 한국연구재단 중견연구자지원사업으로 수행되었으며, 연구결과는 에너지 분야 국제학술지 ‘Nano Energy’ (IF:16.602, JCR 분야 상위 4.29%) 최신호에 게재될 예정이다. * (논문명) Different Thermal Degradation Mechanisms: Role of Aluminum in Ni-rich Layered Cathode Materials - (제 1저자) 한국과학기술연구원 조은미 박사후연구원 - (교신저자) 한국과학기술연구원 장원영 책임연구원 - (교신저자) 한국과학기술연구원 김승민 책임연구원 <그림설명> [대표 이미지] KIST 연구진이 전기차용 양극소재로 널리 쓰이는 NCA (니켈·코발트·알루미늄)에서의 배터리 화재의 위험성을 줄여줄 수 있는 알루미늄 원소의 역할을 그린 예상도 [그림 1] 실제 상한 충전상태에서의 NCA양극 소재의 화학 조성에 따른 열안정성 차이 원인 규명 [그림 2] NCA 양극 소재에서의 니켈과 알루미늄의 교환으로 인한 전지성능과 열안정성과의 상충적 관계
화재, 폭발 위험 없는 전기차 배터리 생산을 위한 전극소재 열분석 기법 개발
- 3세대 전기자동차용 안전한 소재 설계를 위한 발판 마련 - 전극 소재의 열분해 메커니즘 규명 및 실시간 분석 플랫폼 구축 최근 전기자동차 배터리의 화재 사고가 끊이지 않고 있다. 전기 자동차의 배터리 팩의 경우 스마트폰 등의 소형 모바일 기기와 달리 수백 개의 배터리 셀로 구성되기 때문에 배터리의 불안정성은 인적, 물적 피해를 초래하는 매우 중요한 문제이다. 화재의 원인을 밝혀내려는 다양한 노력이 진행 중인 가운데 국내 연구진이 배터리의 열적 불안정성을 평가할 수 있는 새로운 분석기법을 개발했다. 한국과학기술연구원(KIST, 원장 윤석진)은 에너지저장연구단 장원영 박사, 전북분원 탄소융합소재연구센터 김승민 박사 공동연구팀이 투과전자현미경을 이용하여 배터리 양(+)극 소재의 열 안정성을 평가할 수 있는 실시간 분석 플랫폼을 구축하고, 이를 통하여 전기 자동차용 하이-니켈계 양(+)극 소재의 미세한 화학조성의 변화에 따른 열분해 메커니즘의 변화를 규명했다고 밝혔다. 배터리의 양극은 충전용량, 즉 전기자동차의 주행거리를 결정짓는 핵심적인 부분이다. 양극 소재는 니켈·코발트·알루미늄 또는 니켈·망간·코발트 등의 여러 성분을 적정 비율로 배합하여 제작하는데, 기업 및 학계 연구진들은 전기자동차의 주행거리를 늘리기 위해 새로운 구성 비율을 찾으려 노력하고 있다. 양극소재에는 니켈 금속이 들어가는데, 니켈이 많이 포함될수록 더 큰 충전용량을 확보할 수 있다. 또한, 니켈은 함께 구성되는 코발트보다 상대적으로 저렴하여 전기자동차 보급에 필수적인 배터리 단가를 낮추는 효과도 있다. 하지만 니켈은 그 충전용량이 큰 만큼 외부 환경에 쉽게 반응하려는 성질이 있어 배터리의 안정성이 낮아지는 치명적인 단점을 갖고 있다. 최근 개발 중인 3세대 전기자동차용 양극 소재는 니켈 함량을 80% 이상으로 높이고 있어서, 이로 인한 안정성 저하를 필수적으로 개선해야 한다. 배터리의 화재는 주로 충전된 산화물계 양극 소재와 발화성 액체 전해질의 격렬한 발열 반응에서 기인하기 때문에, 연구진은 전해질과 맞닿아 있는 양극 표면에 초점을 맞춰 다양한 투과전자현미경 분석기법(전자에너지 분광분석법, 전자회절 분석법 등)을 활용하여 온도의 상승에 따른 전극 구조의 결정구조, 구성성분의 화학적 변화를 면밀히 관찰·분석하였다. 그 결과, NCA(니켈·코발트·알루미늄) 양극 소재에서의 화학 조성에 따른 배터리 열적 안정성 저하 원인과 배터리의 안전성 확보를 위한 구성 원소의 역할을 규명할 수 있었다. KIST 연구진은 NCA 양극 소재에서의 알루미늄 대비 니켈의 증가는 용량의 향상을 보이지만, 실제 상한 충전상태(총 리튬 이온의 67% 반응)에서 열 안정성이 크게 저하되는 것을 관찰하였다. 이를 분석한 결과, 실제 산화/환원반응에 참여하지 않는 알루미늄 원소가 부족해 충전 과정 중, 열 안정성을 저하시킬 수 있는 새로운 상(O1 Phase)을 형성하게 하고, 불안정해진 새로운 상의 표면 구조가 결국 저하된 열 안정성의 원인임을 밝혔다. KIST 장원영 박사는 “최근 전 세계적으로 잇따른 전기 자동차의 화재가 발생하고 있으며, 발화 원인이 배터리인 경우가 많았다. 본 연구를 통하여 고성능 양극 소재 개발에 있어서 열 안정성을 확보할 수 있는 화학조성 설계의 중요성을 확인했다.”고 밝혔다. KIST 전북분원 김승민 박사는 “발열 반응의 시발점인 양극 소재 자체의 열적 안정성을 확보하는 것은 전기 자동차 대중적 보급에 매우 중요한 역할을 한다. 이번에 개발한 고도 분석기법을 통하여 향후에는 미량 원소의 혼입에 따른 영향을 파악하여, 안정성이 확보된 고성능 양극소재를 개발할 수 있을 것”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 한국연구재단 중견연구자지원사업으로 수행되었으며, 연구결과는 에너지 분야 국제학술지 ‘Nano Energy’ (IF:16.602, JCR 분야 상위 4.29%) 최신호에 게재될 예정이다. * (논문명) Different Thermal Degradation Mechanisms: Role of Aluminum in Ni-rich Layered Cathode Materials - (제 1저자) 한국과학기술연구원 조은미 박사후연구원 - (교신저자) 한국과학기술연구원 장원영 책임연구원 - (교신저자) 한국과학기술연구원 김승민 책임연구원 <그림설명> [대표 이미지] KIST 연구진이 전기차용 양극소재로 널리 쓰이는 NCA (니켈·코발트·알루미늄)에서의 배터리 화재의 위험성을 줄여줄 수 있는 알루미늄 원소의 역할을 그린 예상도 [그림 1] 실제 상한 충전상태에서의 NCA양극 소재의 화학 조성에 따른 열안정성 차이 원인 규명 [그림 2] NCA 양극 소재에서의 니켈과 알루미늄의 교환으로 인한 전지성능과 열안정성과의 상충적 관계
화재, 폭발 위험 없는 전기차 배터리 생산을 위한 전극소재 열분석 기법 개발
- 3세대 전기자동차용 안전한 소재 설계를 위한 발판 마련 - 전극 소재의 열분해 메커니즘 규명 및 실시간 분석 플랫폼 구축 최근 전기자동차 배터리의 화재 사고가 끊이지 않고 있다. 전기 자동차의 배터리 팩의 경우 스마트폰 등의 소형 모바일 기기와 달리 수백 개의 배터리 셀로 구성되기 때문에 배터리의 불안정성은 인적, 물적 피해를 초래하는 매우 중요한 문제이다. 화재의 원인을 밝혀내려는 다양한 노력이 진행 중인 가운데 국내 연구진이 배터리의 열적 불안정성을 평가할 수 있는 새로운 분석기법을 개발했다. 한국과학기술연구원(KIST, 원장 윤석진)은 에너지저장연구단 장원영 박사, 전북분원 탄소융합소재연구센터 김승민 박사 공동연구팀이 투과전자현미경을 이용하여 배터리 양(+)극 소재의 열 안정성을 평가할 수 있는 실시간 분석 플랫폼을 구축하고, 이를 통하여 전기 자동차용 하이-니켈계 양(+)극 소재의 미세한 화학조성의 변화에 따른 열분해 메커니즘의 변화를 규명했다고 밝혔다. 배터리의 양극은 충전용량, 즉 전기자동차의 주행거리를 결정짓는 핵심적인 부분이다. 양극 소재는 니켈·코발트·알루미늄 또는 니켈·망간·코발트 등의 여러 성분을 적정 비율로 배합하여 제작하는데, 기업 및 학계 연구진들은 전기자동차의 주행거리를 늘리기 위해 새로운 구성 비율을 찾으려 노력하고 있다. 양극소재에는 니켈 금속이 들어가는데, 니켈이 많이 포함될수록 더 큰 충전용량을 확보할 수 있다. 또한, 니켈은 함께 구성되는 코발트보다 상대적으로 저렴하여 전기자동차 보급에 필수적인 배터리 단가를 낮추는 효과도 있다. 하지만 니켈은 그 충전용량이 큰 만큼 외부 환경에 쉽게 반응하려는 성질이 있어 배터리의 안정성이 낮아지는 치명적인 단점을 갖고 있다. 최근 개발 중인 3세대 전기자동차용 양극 소재는 니켈 함량을 80% 이상으로 높이고 있어서, 이로 인한 안정성 저하를 필수적으로 개선해야 한다. 배터리의 화재는 주로 충전된 산화물계 양극 소재와 발화성 액체 전해질의 격렬한 발열 반응에서 기인하기 때문에, 연구진은 전해질과 맞닿아 있는 양극 표면에 초점을 맞춰 다양한 투과전자현미경 분석기법(전자에너지 분광분석법, 전자회절 분석법 등)을 활용하여 온도의 상승에 따른 전극 구조의 결정구조, 구성성분의 화학적 변화를 면밀히 관찰·분석하였다. 그 결과, NCA(니켈·코발트·알루미늄) 양극 소재에서의 화학 조성에 따른 배터리 열적 안정성 저하 원인과 배터리의 안전성 확보를 위한 구성 원소의 역할을 규명할 수 있었다. KIST 연구진은 NCA 양극 소재에서의 알루미늄 대비 니켈의 증가는 용량의 향상을 보이지만, 실제 상한 충전상태(총 리튬 이온의 67% 반응)에서 열 안정성이 크게 저하되는 것을 관찰하였다. 이를 분석한 결과, 실제 산화/환원반응에 참여하지 않는 알루미늄 원소가 부족해 충전 과정 중, 열 안정성을 저하시킬 수 있는 새로운 상(O1 Phase)을 형성하게 하고, 불안정해진 새로운 상의 표면 구조가 결국 저하된 열 안정성의 원인임을 밝혔다. KIST 장원영 박사는 “최근 전 세계적으로 잇따른 전기 자동차의 화재가 발생하고 있으며, 발화 원인이 배터리인 경우가 많았다. 본 연구를 통하여 고성능 양극 소재 개발에 있어서 열 안정성을 확보할 수 있는 화학조성 설계의 중요성을 확인했다.”고 밝혔다. KIST 전북분원 김승민 박사는 “발열 반응의 시발점인 양극 소재 자체의 열적 안정성을 확보하는 것은 전기 자동차 대중적 보급에 매우 중요한 역할을 한다. 이번에 개발한 고도 분석기법을 통하여 향후에는 미량 원소의 혼입에 따른 영향을 파악하여, 안정성이 확보된 고성능 양극소재를 개발할 수 있을 것”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 한국연구재단 중견연구자지원사업으로 수행되었으며, 연구결과는 에너지 분야 국제학술지 ‘Nano Energy’ (IF:16.602, JCR 분야 상위 4.29%) 최신호에 게재될 예정이다. * (논문명) Different Thermal Degradation Mechanisms: Role of Aluminum in Ni-rich Layered Cathode Materials - (제 1저자) 한국과학기술연구원 조은미 박사후연구원 - (교신저자) 한국과학기술연구원 장원영 책임연구원 - (교신저자) 한국과학기술연구원 김승민 책임연구원 <그림설명> [대표 이미지] KIST 연구진이 전기차용 양극소재로 널리 쓰이는 NCA (니켈·코발트·알루미늄)에서의 배터리 화재의 위험성을 줄여줄 수 있는 알루미늄 원소의 역할을 그린 예상도 [그림 1] 실제 상한 충전상태에서의 NCA양극 소재의 화학 조성에 따른 열안정성 차이 원인 규명 [그림 2] NCA 양극 소재에서의 니켈과 알루미늄의 교환으로 인한 전지성능과 열안정성과의 상충적 관계
KIST, 꺼지지 않는 연구의 불빛 밝힌 故 송곡 최형섭 박사 탄신 100주년 기려
- 2일(화), 송곡 최형섭 박사 탄신 100주년 기념 심포지움 개최 성료 - 한국 과학기술발전 토대 마련한 최형섭 박사의 공적과 정신 되새겨 한국과학기술연구원(KIST, 원장 윤석진)은 11월 2일(월) 서울 성북구 KIST 본원에서 故 송곡 최형섭 박사 탄신 100주년을 맞아 주요 외빈과 초기 유치과학자 및 임직원들이 참석한 가운데 기념 심포지엄을 성료했다고 밝혔다. 이번 심포지움은 한국 과학기술의 기틀을 세운 故 송곡 최형섭 박사(1920.11.2 ~ 2004.5.29)의 탄신 100주년을 기념하여, 국가발전에 기여한 공적과 그 정신을 되새기고 이를 널리 알리고자 개최되었다. 이번 행사는 과학기술정보통신부가 후원하고 KIST, STEPI, 한국과학기술단체총연합회(KOFST)가 공동 주최로 열렸다. 특히 STEPI의 438회 과학기술정책포럼과 연계한 이번 심포지엄은 온라인 생중계로 진행되었으며, 일반인들도 아래 링크*를 통해 업로드된 영상 시청이 가능하다. *심포지엄 영상 링크 : https://www.youtube.com/channel/UC5Nsv1nZdcK0uJmLxtQL0Tg/videos?app=desktop 아울러 행사는 윤석진 KIST 원장의 개회사를 시작으로 조황희 STEPI 원장, 이우일 과총 회장, 박호군 KIST 연우회장의 환영사로 이어졌으며, 이원욱 과학기술정보통신방송위원회 위원장과 용홍택 과학기술정보통신부 연구개발정책실장의 축사가 진행되었다. 이날 심포지엄은 문만용 전북대학교 교수의 ‘한국 과학기술의 설계자, 최형섭 박사’ 발제를 시작으로, 염재호 前 고려대학교 총장의 ‘최형섭 박사의 리더십과 한국의 미래’라는 주제발표가 진행되었으며, 매년 故 최형섭 박사의 기일에 한국을 방문해 참배를 드리는 각별한 인연의 히라사와 료 도쿄대 명예교수가 영상을 통해 고인을 회고했다. 이후 패널토론은 박원훈 KIST 前 원장을 좌장으로, 앞서 발표한 발제자들을 포함해 최영락 前 STEPI 원장, 이석봉 ㈜대덕넷 대표, 최형섭 서울과기대 교수, 김은영 前 KIST 원장, 구종민 KIST 책임연구원이 참석하여 故 최형섭 박사의 발자취와 우리나라 과학기술의 미래에 대한 토론을 진행했다. KIST 윤석진 원장은 이번 ‘故 송곡 최형섭 박사 탄신 100주년 기념 심포지엄’을 통해 “故 최형섭 박사가 우리나라 과학기술 발전에 기여한 공적, 그분의 철학, 열정을 되새기는 자리가 되었으며 한다. 나아가 현 세대 연구자들에 그의 정신이 이어져 미래를 여는 연구에 큰 동기 부여가 되길 바란다.”고 밝혔다. 한편, 1920년 11월 2일 경상남도 진주에서 태어난 송곡 최형섭 박사는 초대 한국과학기술연구소장을 맡아 한국과학기술 여명기 개척자의 소임을 다한 과학자이다. 美 미네소타 대학 공학박사 학위를 받고, 한국과학기술연구소(당시 KIST) 초대 소장, 과학기술처 장관으로 최장수(7년간) 재직하면서 우리나라 과학기술 개발이론과 정책의 터전을 닦았다. 이후 한국과학기술단체총연합회 회장을 역임하였으며, 2004년 5월 29일 대전 현충원에 영면하였다. 평생 동안 과학기술인으로 달성한 위업으로는 ‘불이 꺼지지 않는 연구소’외 12권의 저서와 금속공학, 과학기술정책 분야에서 120편의 논문을 저술하였다. 1996년 국민훈장 무궁화장을 수여받았다. 특히 그가 평소에 자주 언급한 “부귀영화와 직위에 연연하지 말고, 시간에 초연해 연구에 몰입하고, 아는 것을 자랑하는 것이 아니라 모르는 것을 반성하라.”와 연구자의 덕목은 현 세대의 연구자들의 귀감이 되고 있다.
부작용 무서운 조영제 없이 치매 원인 물질 모니터링
- 테라헤르츠파 기술과 메타물질을 결합한 초고감도 영상기술 개발 - 향후 다양한 극미량 질병 원인 물질 진단 기술 응용 기대 국내 연구진이 조영제 없이도 생체 내부를 촬영한 영상을 통해 질병을 모니터링 할 수 있는 기술을 개발했다. PET, CT, 형광현미경 등을 이용해 생체 내부를 촬영하기 위해서는 촬영 대상이 잘 보이도록 하는 조영제 사용이 필수적이다. 하지만 조영제는 연관검색어가 ‘부작용’일 정도로 위험성을 갖고 있으며, 몸 속에서 생체 조직과 반응하여 조직을 변형시켜 어떠한 증상을 일으킬지 모른다는 문제가 있었다. 한국과학기술연구원(원장 윤석진)은 센서시스템연구센터 서민아 박사 연구팀이 테라헤르츠(THz, 1012Hz) 전자기파를 이용하여, 조영제 없이도 생체 내에 미량만 존재하는 물질을 검출할 수 있는 새로운 방식의 이미징 기술을 개발했다고 밝혔다. 연구팀은 이 기술을 이용하여 치매 원인 물질로 알려진 ‘아밀로이드 플라크’ 단백질을 모니터링할 수 있었다. 테라헤르츠 전자기파는 X-ray나 방사선처럼 고에너지를 갖고 있지 않아 생체조직을 변형시키지 않을 수 있는 장점이 있으며, 별도의 조영제 없이도 생체 내부를 관찰할 수 있어 안전한 차세대 이미징 기술에 응용할 수 있을 것으로 기대되고 있다. 하지만, X-ray나 가시광선보다 파장이 길기 때문에 매우 작거나 극미량의 물질은 관찰하는데는 어려움이 있었다. 또한, 테라헤르츠파는 생체 내 수분에 흡수되어 사라지기 때문에 관찰한 정보를 수집할 수 없다는 어려움도 있었다. KIST 연구팀은 자연계에 존재하지 않는 성질을 인위적으로 만들어낸 인공물질인 메타물질을 개발하여 위와 같은 어려움들을 극복해냈다. 메타물질을 활용하여 대상 물질의 광학적 특성을 바꾸면 특정 파장에서 금속을 플라스틱처럼 보이게 할 수도 있고, 눈에 보이지 않도록 할 수도 있다. 서민아 박사팀은 테라헤르츠파의 민감도를 높이고, 생체 내부의 물과 만나 흡수되지 않도록 수분과 만날경우 그 경계면에서 반사되어 돌아오도록 하는 새로운 메타물질을 설계, 개발했다. 그 결과, 기존 테라헤르츠파 기술로 영상화가 어려운 극미량의 생체 조직의 선명한 영상을 촬영하였다. 형광물질이나 방사성동위원소와 같은 조영제를 사용하지 않고도 기존 영상장치와 유사한 수준의 영상을 얻을 수 있게 된 것이다. 연구진은 이 기술을 활용하여 뇌 속에 극미량만 존재하고, 치매의 원인 물질로 알려진 ‘아밀로이드 플라크’ 단백질을 관찰하였다. 기존의 영상 진단 방법에서는 영상의 명암 차이를 통한 상대적인 비교만 할 수 있었으나, 테라헤르츠파는 분자들의 상태에 민감하기 때문에 아밀로이드 단백질이 축적된 양까지도 정량적으로 분석할 수 있었다. KIST 서민아 박사는 “인체 내 다양한 질병 원인 물질을 조영제 없이 직접 검출함으로써, 치매뿐만 아니라 다양한 질병 진단 기술 개발에 적용할 수 있을 것으로 전망한다.”라며 “예를 들어 인체 내 암조직 등을 조영제 없이 선명한 경계면을 확인하는 영상기술로도 활용할 수 있을 것”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업 및 한국연구재단 중견연구자지원사업, 글로벌프론티어사업을 통해 수행되었으며, 연구결과는 분석화학 분야 국제학술지인 ‘Biosensors and Bioelectronics’ (IF:10.257, JCR 분야 상위 0.581%) 최신호에 게재되었다. * (논문명) Label-free brain tissue imaging using large-area terahertz metamaterials - (제 1저자) 한국과학기술연구원 이상훈 박사후연구원 - (교신저자) 한국과학기술연구원 서민아 책임연구원 <그림설명> [그림 1] 전자기파 파장별 스펙트럼과 테라헤르츠 정의 [그림 2] 메타물질을 이용한 고민감도 비표지 테라헤르츠 생체 이미징 기술 모식도 [그림 3] 테라헤르츠 메타물질을 이용한 생쥐모델의 뇌에서 노화에 따른 아밀로이드 플라크 응집 정도 모니터링 (좌) 메타물질을 이용한 정상(wildtype, 왼쪽)과 치매모델(APP/PS1, 오른쪽) 쥐 뇌의 비표지 테라헤르츠 이미지, 정상보다 치매 모델 쥐 뇌에서 월령에 따라 아밀로이드 플라크 양이 증가함을 확인할 수 있음
부작용 무서운 조영제 없이 치매 원인 물질 모니터링
- 테라헤르츠파 기술과 메타물질을 결합한 초고감도 영상기술 개발 - 향후 다양한 극미량 질병 원인 물질 진단 기술 응용 기대 국내 연구진이 조영제 없이도 생체 내부를 촬영한 영상을 통해 질병을 모니터링 할 수 있는 기술을 개발했다. PET, CT, 형광현미경 등을 이용해 생체 내부를 촬영하기 위해서는 촬영 대상이 잘 보이도록 하는 조영제 사용이 필수적이다. 하지만 조영제는 연관검색어가 ‘부작용’일 정도로 위험성을 갖고 있으며, 몸 속에서 생체 조직과 반응하여 조직을 변형시켜 어떠한 증상을 일으킬지 모른다는 문제가 있었다. 한국과학기술연구원(원장 윤석진)은 센서시스템연구센터 서민아 박사 연구팀이 테라헤르츠(THz, 1012Hz) 전자기파를 이용하여, 조영제 없이도 생체 내에 미량만 존재하는 물질을 검출할 수 있는 새로운 방식의 이미징 기술을 개발했다고 밝혔다. 연구팀은 이 기술을 이용하여 치매 원인 물질로 알려진 ‘아밀로이드 플라크’ 단백질을 모니터링할 수 있었다. 테라헤르츠 전자기파는 X-ray나 방사선처럼 고에너지를 갖고 있지 않아 생체조직을 변형시키지 않을 수 있는 장점이 있으며, 별도의 조영제 없이도 생체 내부를 관찰할 수 있어 안전한 차세대 이미징 기술에 응용할 수 있을 것으로 기대되고 있다. 하지만, X-ray나 가시광선보다 파장이 길기 때문에 매우 작거나 극미량의 물질은 관찰하는데는 어려움이 있었다. 또한, 테라헤르츠파는 생체 내 수분에 흡수되어 사라지기 때문에 관찰한 정보를 수집할 수 없다는 어려움도 있었다. KIST 연구팀은 자연계에 존재하지 않는 성질을 인위적으로 만들어낸 인공물질인 메타물질을 개발하여 위와 같은 어려움들을 극복해냈다. 메타물질을 활용하여 대상 물질의 광학적 특성을 바꾸면 특정 파장에서 금속을 플라스틱처럼 보이게 할 수도 있고, 눈에 보이지 않도록 할 수도 있다. 서민아 박사팀은 테라헤르츠파의 민감도를 높이고, 생체 내부의 물과 만나 흡수되지 않도록 수분과 만날경우 그 경계면에서 반사되어 돌아오도록 하는 새로운 메타물질을 설계, 개발했다. 그 결과, 기존 테라헤르츠파 기술로 영상화가 어려운 극미량의 생체 조직의 선명한 영상을 촬영하였다. 형광물질이나 방사성동위원소와 같은 조영제를 사용하지 않고도 기존 영상장치와 유사한 수준의 영상을 얻을 수 있게 된 것이다. 연구진은 이 기술을 활용하여 뇌 속에 극미량만 존재하고, 치매의 원인 물질로 알려진 ‘아밀로이드 플라크’ 단백질을 관찰하였다. 기존의 영상 진단 방법에서는 영상의 명암 차이를 통한 상대적인 비교만 할 수 있었으나, 테라헤르츠파는 분자들의 상태에 민감하기 때문에 아밀로이드 단백질이 축적된 양까지도 정량적으로 분석할 수 있었다. KIST 서민아 박사는 “인체 내 다양한 질병 원인 물질을 조영제 없이 직접 검출함으로써, 치매뿐만 아니라 다양한 질병 진단 기술 개발에 적용할 수 있을 것으로 전망한다.”라며 “예를 들어 인체 내 암조직 등을 조영제 없이 선명한 경계면을 확인하는 영상기술로도 활용할 수 있을 것”이라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업 및 한국연구재단 중견연구자지원사업, 글로벌프론티어사업을 통해 수행되었으며, 연구결과는 분석화학 분야 국제학술지인 ‘Biosensors and Bioelectronics’ (IF:10.257, JCR 분야 상위 0.581%) 최신호에 게재되었다. * (논문명) Label-free brain tissue imaging using large-area terahertz metamaterials - (제 1저자) 한국과학기술연구원 이상훈 박사후연구원 - (교신저자) 한국과학기술연구원 서민아 책임연구원 <그림설명> [그림 1] 전자기파 파장별 스펙트럼과 테라헤르츠 정의 [그림 2] 메타물질을 이용한 고민감도 비표지 테라헤르츠 생체 이미징 기술 모식도 [그림 3] 테라헤르츠 메타물질을 이용한 생쥐모델의 뇌에서 노화에 따른 아밀로이드 플라크 응집 정도 모니터링 (좌) 메타물질을 이용한 정상(wildtype, 왼쪽)과 치매모델(APP/PS1, 오른쪽) 쥐 뇌의 비표지 테라헤르츠 이미지, 정상보다 치매 모델 쥐 뇌에서 월령에 따라 아밀로이드 플라크 양이 증가함을 확인할 수 있음