Result
게시물 키워드"KIST"에 대한 4625개의 검색결과를 찾았습니다.
광(光) 데이터 전송 속도 10,000배 이상 높인다
- 그래핀이 포함된 공진기를 삽입하여 펄스 레이저의 반복 속도 57.8GHz 달성 - 일반 구리 전선에 그래핀을 직접 합성하여 제조 공정 한계 극복 펄스 레이저는 깜빡이듯 빛이 아주 짧은 시간 동안 반복되는 출력 형태의 레이저를 말한다. 시간에 따라 세기가 일정하게 지속되는 연속 레이저보다 에너지를 크게 집속시킬 수 있는 장점이 있는데, 여기에 디지털 신호를 실으면 개개의 펄스가 1비트(bit)의 데이터를 저장할 수 있어 펄스가 반복되는 속도가 빠를수록 더 많은 데이터를 전송할 수 있다. 그러나, 기존의 일반적인 광섬유 기반 펄스 레이저는 초당 펄스의 개수를 MHz 수준 이상으로 높이는 데 한계가 있었다. 한국과학기술연구원(KIST, 원장 윤석진)은 광전소재연구단 송용원 박사팀이 펨토초로(10-15초) 동작하는 광섬유 펄스 레이저 발진기에 그래핀이 포함된 추가의 공진기를 삽입하여, 펄스를 기존보다 10,000배 이상 빠르게 발생시킬 수 있게 만들었다고 밝혔다. 이를 데이터 통신에 적용하면 데이터의 전송 및 처리 속도가 크게 늘어날 것으로 기대된다. KIST 연구진은 레이저 빛의 파장과 세기가 시간에 따라 변화하는 특성이 상관관계(푸리에변환)로 엮인 것에 주목했다. 레이저 내에 공진기를 삽입하면 펄스 레이저의 파장을 주기적으로 필터링하고, 이를 통해 레이저 세기 변화의 양상을 바꿀 수 있다. 여기에 송용원 박사는 세기가 약한 빛은 흡수하여 사라지게 하고 강한 빛만 통과시켜 세기를 증폭시키는 특성이 있는 그래핀을 공진기에 융합하여, 레이저 세기 변화를 매우 빠른속도로 정확하게 조절되게 하여 펄스의 반복속도를 높게 만들 수 있었다. 또한 일반적으로 그래핀은 촉매금속 표면에서 합성한 후 이것을 분리하여 원하는 기판의 표면으로 옮기게 되는데, 이 과정에서 그래핀이 손상되거나 이물질이 유입되는 문제가 있었다. 이에 KIST 연구진은 구하기 쉬운 구리 전선 표면에 직접 그래핀을 형성시키고, 광섬유를 감아 공진기로 사용함으로써 제조 공정에서 발생하는 효율 저하의 문제점을 해결했다. 그 결과 기존 MHz 수준의 반복 속도를 보이던 펄스 레이저의 한계를 극복하여 57.8GHz의 반복 속도를 얻을 수 있었다. 또한, 레이저를 흡수하면 열이 국소적으로 발생하는 그래핀의 특성을 이용해 추가의 레이저를 소자에 가해주어 그래핀 공진기의 특성을 튜닝할 수 있게 만들었다. KIST 이성재 연구원은 “데이터 트래픽에 대한 수요가 계속 폭발적으로 증가하고 있는 현시점에서 초고속으로 동작하고 특성을 튜닝할 수 있는 극초단 펄스 레이저는 급변하는 데이터 처리 환경에 적응할 수 있는 새로운 방안을 제시할 수 있을 것”라고 말했다. 본 연구를 주도한 송용원 박사는 “공진기와 그래핀 기반의 초고속 펄스 레이저 개발로 나노소재 기반의 광정보 소자분야의 기술 선도와 시장 선점을 가능하게 할 것으로 기대한다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 한국연구재단 기초연구사업으로 수행되었으며, 이번 연구 결과는 나노기술 분야 국제 저널인 ‘ACS Nano’ (IF: 14.588, JCR 분야 상위 5.255%) 최신 호에 게재되었다. * (논문명) Graphene Self-Phase-Lockers Formed around a Cu Wire Hub for Ring Resonators Incorporated into 57.8 Gigahertz Fiber Pulsed Lasers - (제 1저자) 한국과학기술연구원 이성재 학생연구원 - (교신저자) 한국과학기술연구원 송용원 책임연구원 <그림설명> [그림 1] 그래핀과 링 공진기가 융합된 소자를 이용한 고반복률 레이저 펄스 형성의 모식도. 일반적인 모드 잠금 레이저의 파장 성분을 제어하여 반복률을 극적으로 향상시킴 [그림 2] 그래핀과 링 공진기의 융합 소자를 이용한 고반복률 레이저 펄스의 형성 원리 설명과 출력 펄스의 실험적 특성 [그림 3] 그래핀의 광-온 효과(photo-thermal effect : 빛을 받으면 국소적으로 열을 내는 특성)를 이용한 펄스 반복률 튜닝 설명 모식도와 튜닝 실험 데이터
광(光) 데이터 전송 속도 10,000배 이상 높인다
- 그래핀이 포함된 공진기를 삽입하여 펄스 레이저의 반복 속도 57.8GHz 달성 - 일반 구리 전선에 그래핀을 직접 합성하여 제조 공정 한계 극복 펄스 레이저는 깜빡이듯 빛이 아주 짧은 시간 동안 반복되는 출력 형태의 레이저를 말한다. 시간에 따라 세기가 일정하게 지속되는 연속 레이저보다 에너지를 크게 집속시킬 수 있는 장점이 있는데, 여기에 디지털 신호를 실으면 개개의 펄스가 1비트(bit)의 데이터를 저장할 수 있어 펄스가 반복되는 속도가 빠를수록 더 많은 데이터를 전송할 수 있다. 그러나, 기존의 일반적인 광섬유 기반 펄스 레이저는 초당 펄스의 개수를 MHz 수준 이상으로 높이는 데 한계가 있었다. 한국과학기술연구원(KIST, 원장 윤석진)은 광전소재연구단 송용원 박사팀이 펨토초로(10-15초) 동작하는 광섬유 펄스 레이저 발진기에 그래핀이 포함된 추가의 공진기를 삽입하여, 펄스를 기존보다 10,000배 이상 빠르게 발생시킬 수 있게 만들었다고 밝혔다. 이를 데이터 통신에 적용하면 데이터의 전송 및 처리 속도가 크게 늘어날 것으로 기대된다. KIST 연구진은 레이저 빛의 파장과 세기가 시간에 따라 변화하는 특성이 상관관계(푸리에변환)로 엮인 것에 주목했다. 레이저 내에 공진기를 삽입하면 펄스 레이저의 파장을 주기적으로 필터링하고, 이를 통해 레이저 세기 변화의 양상을 바꿀 수 있다. 여기에 송용원 박사는 세기가 약한 빛은 흡수하여 사라지게 하고 강한 빛만 통과시켜 세기를 증폭시키는 특성이 있는 그래핀을 공진기에 융합하여, 레이저 세기 변화를 매우 빠른속도로 정확하게 조절되게 하여 펄스의 반복속도를 높게 만들 수 있었다. 또한 일반적으로 그래핀은 촉매금속 표면에서 합성한 후 이것을 분리하여 원하는 기판의 표면으로 옮기게 되는데, 이 과정에서 그래핀이 손상되거나 이물질이 유입되는 문제가 있었다. 이에 KIST 연구진은 구하기 쉬운 구리 전선 표면에 직접 그래핀을 형성시키고, 광섬유를 감아 공진기로 사용함으로써 제조 공정에서 발생하는 효율 저하의 문제점을 해결했다. 그 결과 기존 MHz 수준의 반복 속도를 보이던 펄스 레이저의 한계를 극복하여 57.8GHz의 반복 속도를 얻을 수 있었다. 또한, 레이저를 흡수하면 열이 국소적으로 발생하는 그래핀의 특성을 이용해 추가의 레이저를 소자에 가해주어 그래핀 공진기의 특성을 튜닝할 수 있게 만들었다. KIST 이성재 연구원은 “데이터 트래픽에 대한 수요가 계속 폭발적으로 증가하고 있는 현시점에서 초고속으로 동작하고 특성을 튜닝할 수 있는 극초단 펄스 레이저는 급변하는 데이터 처리 환경에 적응할 수 있는 새로운 방안을 제시할 수 있을 것”라고 말했다. 본 연구를 주도한 송용원 박사는 “공진기와 그래핀 기반의 초고속 펄스 레이저 개발로 나노소재 기반의 광정보 소자분야의 기술 선도와 시장 선점을 가능하게 할 것으로 기대한다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 한국연구재단 기초연구사업으로 수행되었으며, 이번 연구 결과는 나노기술 분야 국제 저널인 ‘ACS Nano’ (IF: 14.588, JCR 분야 상위 5.255%) 최신 호에 게재되었다. * (논문명) Graphene Self-Phase-Lockers Formed around a Cu Wire Hub for Ring Resonators Incorporated into 57.8 Gigahertz Fiber Pulsed Lasers - (제 1저자) 한국과학기술연구원 이성재 학생연구원 - (교신저자) 한국과학기술연구원 송용원 책임연구원 <그림설명> [그림 1] 그래핀과 링 공진기가 융합된 소자를 이용한 고반복률 레이저 펄스 형성의 모식도. 일반적인 모드 잠금 레이저의 파장 성분을 제어하여 반복률을 극적으로 향상시킴 [그림 2] 그래핀과 링 공진기의 융합 소자를 이용한 고반복률 레이저 펄스의 형성 원리 설명과 출력 펄스의 실험적 특성 [그림 3] 그래핀의 광-온 효과(photo-thermal effect : 빛을 받으면 국소적으로 열을 내는 특성)를 이용한 펄스 반복률 튜닝 설명 모식도와 튜닝 실험 데이터
광(光) 데이터 전송 속도 10,000배 이상 높인다
- 그래핀이 포함된 공진기를 삽입하여 펄스 레이저의 반복 속도 57.8GHz 달성 - 일반 구리 전선에 그래핀을 직접 합성하여 제조 공정 한계 극복 펄스 레이저는 깜빡이듯 빛이 아주 짧은 시간 동안 반복되는 출력 형태의 레이저를 말한다. 시간에 따라 세기가 일정하게 지속되는 연속 레이저보다 에너지를 크게 집속시킬 수 있는 장점이 있는데, 여기에 디지털 신호를 실으면 개개의 펄스가 1비트(bit)의 데이터를 저장할 수 있어 펄스가 반복되는 속도가 빠를수록 더 많은 데이터를 전송할 수 있다. 그러나, 기존의 일반적인 광섬유 기반 펄스 레이저는 초당 펄스의 개수를 MHz 수준 이상으로 높이는 데 한계가 있었다. 한국과학기술연구원(KIST, 원장 윤석진)은 광전소재연구단 송용원 박사팀이 펨토초로(10-15초) 동작하는 광섬유 펄스 레이저 발진기에 그래핀이 포함된 추가의 공진기를 삽입하여, 펄스를 기존보다 10,000배 이상 빠르게 발생시킬 수 있게 만들었다고 밝혔다. 이를 데이터 통신에 적용하면 데이터의 전송 및 처리 속도가 크게 늘어날 것으로 기대된다. KIST 연구진은 레이저 빛의 파장과 세기가 시간에 따라 변화하는 특성이 상관관계(푸리에변환)로 엮인 것에 주목했다. 레이저 내에 공진기를 삽입하면 펄스 레이저의 파장을 주기적으로 필터링하고, 이를 통해 레이저 세기 변화의 양상을 바꿀 수 있다. 여기에 송용원 박사는 세기가 약한 빛은 흡수하여 사라지게 하고 강한 빛만 통과시켜 세기를 증폭시키는 특성이 있는 그래핀을 공진기에 융합하여, 레이저 세기 변화를 매우 빠른속도로 정확하게 조절되게 하여 펄스의 반복속도를 높게 만들 수 있었다. 또한 일반적으로 그래핀은 촉매금속 표면에서 합성한 후 이것을 분리하여 원하는 기판의 표면으로 옮기게 되는데, 이 과정에서 그래핀이 손상되거나 이물질이 유입되는 문제가 있었다. 이에 KIST 연구진은 구하기 쉬운 구리 전선 표면에 직접 그래핀을 형성시키고, 광섬유를 감아 공진기로 사용함으로써 제조 공정에서 발생하는 효율 저하의 문제점을 해결했다. 그 결과 기존 MHz 수준의 반복 속도를 보이던 펄스 레이저의 한계를 극복하여 57.8GHz의 반복 속도를 얻을 수 있었다. 또한, 레이저를 흡수하면 열이 국소적으로 발생하는 그래핀의 특성을 이용해 추가의 레이저를 소자에 가해주어 그래핀 공진기의 특성을 튜닝할 수 있게 만들었다. KIST 이성재 연구원은 “데이터 트래픽에 대한 수요가 계속 폭발적으로 증가하고 있는 현시점에서 초고속으로 동작하고 특성을 튜닝할 수 있는 극초단 펄스 레이저는 급변하는 데이터 처리 환경에 적응할 수 있는 새로운 방안을 제시할 수 있을 것”라고 말했다. 본 연구를 주도한 송용원 박사는 “공진기와 그래핀 기반의 초고속 펄스 레이저 개발로 나노소재 기반의 광정보 소자분야의 기술 선도와 시장 선점을 가능하게 할 것으로 기대한다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 한국연구재단 기초연구사업으로 수행되었으며, 이번 연구 결과는 나노기술 분야 국제 저널인 ‘ACS Nano’ (IF: 14.588, JCR 분야 상위 5.255%) 최신 호에 게재되었다. * (논문명) Graphene Self-Phase-Lockers Formed around a Cu Wire Hub for Ring Resonators Incorporated into 57.8 Gigahertz Fiber Pulsed Lasers - (제 1저자) 한국과학기술연구원 이성재 학생연구원 - (교신저자) 한국과학기술연구원 송용원 책임연구원 <그림설명> [그림 1] 그래핀과 링 공진기가 융합된 소자를 이용한 고반복률 레이저 펄스 형성의 모식도. 일반적인 모드 잠금 레이저의 파장 성분을 제어하여 반복률을 극적으로 향상시킴 [그림 2] 그래핀과 링 공진기의 융합 소자를 이용한 고반복률 레이저 펄스의 형성 원리 설명과 출력 펄스의 실험적 특성 [그림 3] 그래핀의 광-온 효과(photo-thermal effect : 빛을 받으면 국소적으로 열을 내는 특성)를 이용한 펄스 반복률 튜닝 설명 모식도와 튜닝 실험 데이터
광(光) 데이터 전송 속도 10,000배 이상 높인다
- 그래핀이 포함된 공진기를 삽입하여 펄스 레이저의 반복 속도 57.8GHz 달성 - 일반 구리 전선에 그래핀을 직접 합성하여 제조 공정 한계 극복 펄스 레이저는 깜빡이듯 빛이 아주 짧은 시간 동안 반복되는 출력 형태의 레이저를 말한다. 시간에 따라 세기가 일정하게 지속되는 연속 레이저보다 에너지를 크게 집속시킬 수 있는 장점이 있는데, 여기에 디지털 신호를 실으면 개개의 펄스가 1비트(bit)의 데이터를 저장할 수 있어 펄스가 반복되는 속도가 빠를수록 더 많은 데이터를 전송할 수 있다. 그러나, 기존의 일반적인 광섬유 기반 펄스 레이저는 초당 펄스의 개수를 MHz 수준 이상으로 높이는 데 한계가 있었다. 한국과학기술연구원(KIST, 원장 윤석진)은 광전소재연구단 송용원 박사팀이 펨토초로(10-15초) 동작하는 광섬유 펄스 레이저 발진기에 그래핀이 포함된 추가의 공진기를 삽입하여, 펄스를 기존보다 10,000배 이상 빠르게 발생시킬 수 있게 만들었다고 밝혔다. 이를 데이터 통신에 적용하면 데이터의 전송 및 처리 속도가 크게 늘어날 것으로 기대된다. KIST 연구진은 레이저 빛의 파장과 세기가 시간에 따라 변화하는 특성이 상관관계(푸리에변환)로 엮인 것에 주목했다. 레이저 내에 공진기를 삽입하면 펄스 레이저의 파장을 주기적으로 필터링하고, 이를 통해 레이저 세기 변화의 양상을 바꿀 수 있다. 여기에 송용원 박사는 세기가 약한 빛은 흡수하여 사라지게 하고 강한 빛만 통과시켜 세기를 증폭시키는 특성이 있는 그래핀을 공진기에 융합하여, 레이저 세기 변화를 매우 빠른속도로 정확하게 조절되게 하여 펄스의 반복속도를 높게 만들 수 있었다. 또한 일반적으로 그래핀은 촉매금속 표면에서 합성한 후 이것을 분리하여 원하는 기판의 표면으로 옮기게 되는데, 이 과정에서 그래핀이 손상되거나 이물질이 유입되는 문제가 있었다. 이에 KIST 연구진은 구하기 쉬운 구리 전선 표면에 직접 그래핀을 형성시키고, 광섬유를 감아 공진기로 사용함으로써 제조 공정에서 발생하는 효율 저하의 문제점을 해결했다. 그 결과 기존 MHz 수준의 반복 속도를 보이던 펄스 레이저의 한계를 극복하여 57.8GHz의 반복 속도를 얻을 수 있었다. 또한, 레이저를 흡수하면 열이 국소적으로 발생하는 그래핀의 특성을 이용해 추가의 레이저를 소자에 가해주어 그래핀 공진기의 특성을 튜닝할 수 있게 만들었다. KIST 이성재 연구원은 “데이터 트래픽에 대한 수요가 계속 폭발적으로 증가하고 있는 현시점에서 초고속으로 동작하고 특성을 튜닝할 수 있는 극초단 펄스 레이저는 급변하는 데이터 처리 환경에 적응할 수 있는 새로운 방안을 제시할 수 있을 것”라고 말했다. 본 연구를 주도한 송용원 박사는 “공진기와 그래핀 기반의 초고속 펄스 레이저 개발로 나노소재 기반의 광정보 소자분야의 기술 선도와 시장 선점을 가능하게 할 것으로 기대한다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 한국연구재단 기초연구사업으로 수행되었으며, 이번 연구 결과는 나노기술 분야 국제 저널인 ‘ACS Nano’ (IF: 14.588, JCR 분야 상위 5.255%) 최신 호에 게재되었다. * (논문명) Graphene Self-Phase-Lockers Formed around a Cu Wire Hub for Ring Resonators Incorporated into 57.8 Gigahertz Fiber Pulsed Lasers - (제 1저자) 한국과학기술연구원 이성재 학생연구원 - (교신저자) 한국과학기술연구원 송용원 책임연구원 <그림설명> [그림 1] 그래핀과 링 공진기가 융합된 소자를 이용한 고반복률 레이저 펄스 형성의 모식도. 일반적인 모드 잠금 레이저의 파장 성분을 제어하여 반복률을 극적으로 향상시킴 [그림 2] 그래핀과 링 공진기의 융합 소자를 이용한 고반복률 레이저 펄스의 형성 원리 설명과 출력 펄스의 실험적 특성 [그림 3] 그래핀의 광-온 효과(photo-thermal effect : 빛을 받으면 국소적으로 열을 내는 특성)를 이용한 펄스 반복률 튜닝 설명 모식도와 튜닝 실험 데이터
광(光) 데이터 전송 속도 10,000배 이상 높인다
- 그래핀이 포함된 공진기를 삽입하여 펄스 레이저의 반복 속도 57.8GHz 달성 - 일반 구리 전선에 그래핀을 직접 합성하여 제조 공정 한계 극복 펄스 레이저는 깜빡이듯 빛이 아주 짧은 시간 동안 반복되는 출력 형태의 레이저를 말한다. 시간에 따라 세기가 일정하게 지속되는 연속 레이저보다 에너지를 크게 집속시킬 수 있는 장점이 있는데, 여기에 디지털 신호를 실으면 개개의 펄스가 1비트(bit)의 데이터를 저장할 수 있어 펄스가 반복되는 속도가 빠를수록 더 많은 데이터를 전송할 수 있다. 그러나, 기존의 일반적인 광섬유 기반 펄스 레이저는 초당 펄스의 개수를 MHz 수준 이상으로 높이는 데 한계가 있었다. 한국과학기술연구원(KIST, 원장 윤석진)은 광전소재연구단 송용원 박사팀이 펨토초로(10-15초) 동작하는 광섬유 펄스 레이저 발진기에 그래핀이 포함된 추가의 공진기를 삽입하여, 펄스를 기존보다 10,000배 이상 빠르게 발생시킬 수 있게 만들었다고 밝혔다. 이를 데이터 통신에 적용하면 데이터의 전송 및 처리 속도가 크게 늘어날 것으로 기대된다. KIST 연구진은 레이저 빛의 파장과 세기가 시간에 따라 변화하는 특성이 상관관계(푸리에변환)로 엮인 것에 주목했다. 레이저 내에 공진기를 삽입하면 펄스 레이저의 파장을 주기적으로 필터링하고, 이를 통해 레이저 세기 변화의 양상을 바꿀 수 있다. 여기에 송용원 박사는 세기가 약한 빛은 흡수하여 사라지게 하고 강한 빛만 통과시켜 세기를 증폭시키는 특성이 있는 그래핀을 공진기에 융합하여, 레이저 세기 변화를 매우 빠른속도로 정확하게 조절되게 하여 펄스의 반복속도를 높게 만들 수 있었다. 또한 일반적으로 그래핀은 촉매금속 표면에서 합성한 후 이것을 분리하여 원하는 기판의 표면으로 옮기게 되는데, 이 과정에서 그래핀이 손상되거나 이물질이 유입되는 문제가 있었다. 이에 KIST 연구진은 구하기 쉬운 구리 전선 표면에 직접 그래핀을 형성시키고, 광섬유를 감아 공진기로 사용함으로써 제조 공정에서 발생하는 효율 저하의 문제점을 해결했다. 그 결과 기존 MHz 수준의 반복 속도를 보이던 펄스 레이저의 한계를 극복하여 57.8GHz의 반복 속도를 얻을 수 있었다. 또한, 레이저를 흡수하면 열이 국소적으로 발생하는 그래핀의 특성을 이용해 추가의 레이저를 소자에 가해주어 그래핀 공진기의 특성을 튜닝할 수 있게 만들었다. KIST 이성재 연구원은 “데이터 트래픽에 대한 수요가 계속 폭발적으로 증가하고 있는 현시점에서 초고속으로 동작하고 특성을 튜닝할 수 있는 극초단 펄스 레이저는 급변하는 데이터 처리 환경에 적응할 수 있는 새로운 방안을 제시할 수 있을 것”라고 말했다. 본 연구를 주도한 송용원 박사는 “공진기와 그래핀 기반의 초고속 펄스 레이저 개발로 나노소재 기반의 광정보 소자분야의 기술 선도와 시장 선점을 가능하게 할 것으로 기대한다.”라고 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 한국연구재단 기초연구사업으로 수행되었으며, 이번 연구 결과는 나노기술 분야 국제 저널인 ‘ACS Nano’ (IF: 14.588, JCR 분야 상위 5.255%) 최신 호에 게재되었다. * (논문명) Graphene Self-Phase-Lockers Formed around a Cu Wire Hub for Ring Resonators Incorporated into 57.8 Gigahertz Fiber Pulsed Lasers - (제 1저자) 한국과학기술연구원 이성재 학생연구원 - (교신저자) 한국과학기술연구원 송용원 책임연구원 <그림설명> [그림 1] 그래핀과 링 공진기가 융합된 소자를 이용한 고반복률 레이저 펄스 형성의 모식도. 일반적인 모드 잠금 레이저의 파장 성분을 제어하여 반복률을 극적으로 향상시킴 [그림 2] 그래핀과 링 공진기의 융합 소자를 이용한 고반복률 레이저 펄스의 형성 원리 설명과 출력 펄스의 실험적 특성 [그림 3] 그래핀의 광-온 효과(photo-thermal effect : 빛을 받으면 국소적으로 열을 내는 특성)를 이용한 펄스 반복률 튜닝 설명 모식도와 튜닝 실험 데이터
[답변] 2020 하반기 행정직 공개채용
안녕하세요, 말씀해주신 내용과 관련하여 채용 문의는 행정 채용공고에 명시되어있는 해당 이메일로 접수 부탁드립니다. 채용 : recruit@kist.re.kr 감사합니다.
피부 위에서 체온만으로 에너지 하베스팅,어디든 밀착해 높은 전력 생산하는 열전소자 개발
- 유연성을 극대화하면서도 고효율을 내는 신축성 열전소자 개발 - 공정자동화를 통해 고수율로 대량생산 가능, 자가발전 웨어러블 기기 상용화↑ 열전소자는 소재 양단의 온도 차이로 인해 생성되는 전압을 활용하는 에너지 변환 소자로 산업현장의 폐열 등 버려지는 열에너지를 실생활에서 활용 가능한 전기에너지로 변환시킨다. 기존 열전소자의 경우 단단한 금속 기반 전극과 반도체를 사용하여 유연하지 못하기 때문에 평평하지 못한 표면에서의 열원을 온전히 흡수하기 어려웠지만, 최근에는 신축성이 있어 사람의 피부나 산업현장의 온수 파이프 등 다양한 형태의 열원에 밀착하여 에너지를 생산할 수 있는 유연한 열전소자를 개발하려는 연구가 활발히 진행되고 있다. 한국과학기술연구원(KIST, 원장 윤석진)은 소프트융합소재연구센터 정승준 박사 팀이 서울대학교(서울대, 총장 오세정) 전기정보공학부 홍용택 교수와의 공동연구를 통해 유연성과 열전달 효율을 극대화하여 높은 발전 성능을 가지는 신축성 열전소자를 개발했다고 밝혔다. 뿐만 아니라 연구팀은 인쇄 공정을 포함한 자동화 공정을 통해 대량생산 방안도 함께 제시했다. 기존의 유연 열전소자 연구에 주로 사용되는 기판의 경우 열전도율이 매우 낮아 열에너지 전달 효율이 낮았고, 유연성이 부족하여 열원과 접촉 시 공기와 같은 열 차단층이 생겨 열 흡수 효율 또한 낮았다. 이를 해결하기 위해 높은 유연성을 가지는 유기물 기반 열전소재의 개발 또한 진행되고 있지만, 기존 무기물 기반 단단한 열전소재와 비교해 현저히 낮은 성능 때문에 실제 웨어러블 기기에 응용하기 어려웠다. 연구팀은 무기물기반 고성능 열전재료를 은 나노와이어가 삽입된 신축성 기판으로 연결하여 열전소자의 저항은 낮추면서 유연성을 높였다. 제작된 열전소자는 유연성이 뛰어나 휘어지거나 늘어나도 안정적인 동작이 가능했다. 또한, 신축성 기판 내부에 열전도율이 높은 금속 입자를 넣어 신축성 기판의 열전달 능력을 기존보다 800%가량 향상시키고, 전력 생산량은 3배 이상 높였다. 연구진은 이와 동시에 소프트 플랫폼 공정부터 열전소자의 형성까지 복잡한 전체공정을 자동화하여 개발한 소자의 대량생산까지도 가능하게 만들었다. 개발한 소자는 산업현장의 고온 감지 센서로 활용하거나 자동차의 내/외부의 온도 차를 이용하여 배터리 없는 자율주행용 거리 감지 센서를 만들 수 있어 고온 환경에서 폭발의 위험성이 있는 배터리 기반 센서 시스템의 전원 문제를 해결할 수 있을 것으로 기대된다. KIST 정승준 박사는 “본 연구를 통해 외부의 열을 이용하여 고온 감지 센서 장갑 등 실제 웨어러블 기기를 동작시키는 것이 가능하다는 것을 보여주었고, 향후에는 체온만으로도 웨어러블 디바이스를 구동시킬 수 있는 유연 열전 플랫폼을 개발할 예정이다.”라며 “본 연구에서 개발된 기능성 복합재료, 열전소자 플랫폼, 고수율 자동화 공정은 향후 배터리 없는 웨어러블 기기 상용화에 기여할 수 있을 것.”이라고 연구 의의를 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 한국연구재단 미래소재디스커버리사업, 창의형 융합연구사업, 글로벌프런티어사업으로 수행되었으며, 이번 연구 결과는 국제학술지 「Nature Communications」 (IF : 12.121) 최신 호에 게재되었다. * (논문명) High-performance compliant thermoelectric generators with magnetically self-assembled soft heat conductors for self-powered wearable electronics - (제 1저자) 한국과학기술연구원 이병문 박사 - (제 1저자) 한국과학기술연구원 조현 박사과정(現, 서울대학교) - (교신저자) 한국과학기술연구원 김희숙 책임연구원 - (교신저자) 서울대학교 전기·정보공학부 홍용택 교수 - (교신저자) 한국과학기술연구원 정승준 선임연구원 <그림설명> [그림 1] (a) 자유로운 변형이 가능한 고유연성 열전 소자의 모습 (b) 유연성 열전소자를 발광소자와 연결해 뜨거운 물체를 알려주는 자가 발전 장갑을 구현한 모습 [그림 2] (a) 고유연성 고성능 열전 소자의 모식도. (b) 열전달이 뛰어난 소프트 전극 플랫폼의 모식도 (c) 소프트 플랫폼 내에서 정렬된 금속 입자가 열전달 경로를 형성한 모습
피부 위에서 체온만으로 에너지 하베스팅,어디든 밀착해 높은 전력 생산하는 열전소자 개발
- 유연성을 극대화하면서도 고효율을 내는 신축성 열전소자 개발 - 공정자동화를 통해 고수율로 대량생산 가능, 자가발전 웨어러블 기기 상용화↑ 열전소자는 소재 양단의 온도 차이로 인해 생성되는 전압을 활용하는 에너지 변환 소자로 산업현장의 폐열 등 버려지는 열에너지를 실생활에서 활용 가능한 전기에너지로 변환시킨다. 기존 열전소자의 경우 단단한 금속 기반 전극과 반도체를 사용하여 유연하지 못하기 때문에 평평하지 못한 표면에서의 열원을 온전히 흡수하기 어려웠지만, 최근에는 신축성이 있어 사람의 피부나 산업현장의 온수 파이프 등 다양한 형태의 열원에 밀착하여 에너지를 생산할 수 있는 유연한 열전소자를 개발하려는 연구가 활발히 진행되고 있다. 한국과학기술연구원(KIST, 원장 윤석진)은 소프트융합소재연구센터 정승준 박사 팀이 서울대학교(서울대, 총장 오세정) 전기정보공학부 홍용택 교수와의 공동연구를 통해 유연성과 열전달 효율을 극대화하여 높은 발전 성능을 가지는 신축성 열전소자를 개발했다고 밝혔다. 뿐만 아니라 연구팀은 인쇄 공정을 포함한 자동화 공정을 통해 대량생산 방안도 함께 제시했다. 기존의 유연 열전소자 연구에 주로 사용되는 기판의 경우 열전도율이 매우 낮아 열에너지 전달 효율이 낮았고, 유연성이 부족하여 열원과 접촉 시 공기와 같은 열 차단층이 생겨 열 흡수 효율 또한 낮았다. 이를 해결하기 위해 높은 유연성을 가지는 유기물 기반 열전소재의 개발 또한 진행되고 있지만, 기존 무기물 기반 단단한 열전소재와 비교해 현저히 낮은 성능 때문에 실제 웨어러블 기기에 응용하기 어려웠다. 연구팀은 무기물기반 고성능 열전재료를 은 나노와이어가 삽입된 신축성 기판으로 연결하여 열전소자의 저항은 낮추면서 유연성을 높였다. 제작된 열전소자는 유연성이 뛰어나 휘어지거나 늘어나도 안정적인 동작이 가능했다. 또한, 신축성 기판 내부에 열전도율이 높은 금속 입자를 넣어 신축성 기판의 열전달 능력을 기존보다 800%가량 향상시키고, 전력 생산량은 3배 이상 높였다. 연구진은 이와 동시에 소프트 플랫폼 공정부터 열전소자의 형성까지 복잡한 전체공정을 자동화하여 개발한 소자의 대량생산까지도 가능하게 만들었다. 개발한 소자는 산업현장의 고온 감지 센서로 활용하거나 자동차의 내/외부의 온도 차를 이용하여 배터리 없는 자율주행용 거리 감지 센서를 만들 수 있어 고온 환경에서 폭발의 위험성이 있는 배터리 기반 센서 시스템의 전원 문제를 해결할 수 있을 것으로 기대된다. KIST 정승준 박사는 “본 연구를 통해 외부의 열을 이용하여 고온 감지 센서 장갑 등 실제 웨어러블 기기를 동작시키는 것이 가능하다는 것을 보여주었고, 향후에는 체온만으로도 웨어러블 디바이스를 구동시킬 수 있는 유연 열전 플랫폼을 개발할 예정이다.”라며 “본 연구에서 개발된 기능성 복합재료, 열전소자 플랫폼, 고수율 자동화 공정은 향후 배터리 없는 웨어러블 기기 상용화에 기여할 수 있을 것.”이라고 연구 의의를 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 한국연구재단 미래소재디스커버리사업, 창의형 융합연구사업, 글로벌프런티어사업으로 수행되었으며, 이번 연구 결과는 국제학술지 「Nature Communications」 (IF : 12.121) 최신 호에 게재되었다. * (논문명) High-performance compliant thermoelectric generators with magnetically self-assembled soft heat conductors for self-powered wearable electronics - (제 1저자) 한국과학기술연구원 이병문 박사 - (제 1저자) 한국과학기술연구원 조현 박사과정(現, 서울대학교) - (교신저자) 한국과학기술연구원 김희숙 책임연구원 - (교신저자) 서울대학교 전기·정보공학부 홍용택 교수 - (교신저자) 한국과학기술연구원 정승준 선임연구원 <그림설명> [그림 1] (a) 자유로운 변형이 가능한 고유연성 열전 소자의 모습 (b) 유연성 열전소자를 발광소자와 연결해 뜨거운 물체를 알려주는 자가 발전 장갑을 구현한 모습 [그림 2] (a) 고유연성 고성능 열전 소자의 모식도. (b) 열전달이 뛰어난 소프트 전극 플랫폼의 모식도 (c) 소프트 플랫폼 내에서 정렬된 금속 입자가 열전달 경로를 형성한 모습
피부 위에서 체온만으로 에너지 하베스팅,어디든 밀착해 높은 전력 생산하는 열전소자 개발
- 유연성을 극대화하면서도 고효율을 내는 신축성 열전소자 개발 - 공정자동화를 통해 고수율로 대량생산 가능, 자가발전 웨어러블 기기 상용화↑ 열전소자는 소재 양단의 온도 차이로 인해 생성되는 전압을 활용하는 에너지 변환 소자로 산업현장의 폐열 등 버려지는 열에너지를 실생활에서 활용 가능한 전기에너지로 변환시킨다. 기존 열전소자의 경우 단단한 금속 기반 전극과 반도체를 사용하여 유연하지 못하기 때문에 평평하지 못한 표면에서의 열원을 온전히 흡수하기 어려웠지만, 최근에는 신축성이 있어 사람의 피부나 산업현장의 온수 파이프 등 다양한 형태의 열원에 밀착하여 에너지를 생산할 수 있는 유연한 열전소자를 개발하려는 연구가 활발히 진행되고 있다. 한국과학기술연구원(KIST, 원장 윤석진)은 소프트융합소재연구센터 정승준 박사 팀이 서울대학교(서울대, 총장 오세정) 전기정보공학부 홍용택 교수와의 공동연구를 통해 유연성과 열전달 효율을 극대화하여 높은 발전 성능을 가지는 신축성 열전소자를 개발했다고 밝혔다. 뿐만 아니라 연구팀은 인쇄 공정을 포함한 자동화 공정을 통해 대량생산 방안도 함께 제시했다. 기존의 유연 열전소자 연구에 주로 사용되는 기판의 경우 열전도율이 매우 낮아 열에너지 전달 효율이 낮았고, 유연성이 부족하여 열원과 접촉 시 공기와 같은 열 차단층이 생겨 열 흡수 효율 또한 낮았다. 이를 해결하기 위해 높은 유연성을 가지는 유기물 기반 열전소재의 개발 또한 진행되고 있지만, 기존 무기물 기반 단단한 열전소재와 비교해 현저히 낮은 성능 때문에 실제 웨어러블 기기에 응용하기 어려웠다. 연구팀은 무기물기반 고성능 열전재료를 은 나노와이어가 삽입된 신축성 기판으로 연결하여 열전소자의 저항은 낮추면서 유연성을 높였다. 제작된 열전소자는 유연성이 뛰어나 휘어지거나 늘어나도 안정적인 동작이 가능했다. 또한, 신축성 기판 내부에 열전도율이 높은 금속 입자를 넣어 신축성 기판의 열전달 능력을 기존보다 800%가량 향상시키고, 전력 생산량은 3배 이상 높였다. 연구진은 이와 동시에 소프트 플랫폼 공정부터 열전소자의 형성까지 복잡한 전체공정을 자동화하여 개발한 소자의 대량생산까지도 가능하게 만들었다. 개발한 소자는 산업현장의 고온 감지 센서로 활용하거나 자동차의 내/외부의 온도 차를 이용하여 배터리 없는 자율주행용 거리 감지 센서를 만들 수 있어 고온 환경에서 폭발의 위험성이 있는 배터리 기반 센서 시스템의 전원 문제를 해결할 수 있을 것으로 기대된다. KIST 정승준 박사는 “본 연구를 통해 외부의 열을 이용하여 고온 감지 센서 장갑 등 실제 웨어러블 기기를 동작시키는 것이 가능하다는 것을 보여주었고, 향후에는 체온만으로도 웨어러블 디바이스를 구동시킬 수 있는 유연 열전 플랫폼을 개발할 예정이다.”라며 “본 연구에서 개발된 기능성 복합재료, 열전소자 플랫폼, 고수율 자동화 공정은 향후 배터리 없는 웨어러블 기기 상용화에 기여할 수 있을 것.”이라고 연구 의의를 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 한국연구재단 미래소재디스커버리사업, 창의형 융합연구사업, 글로벌프런티어사업으로 수행되었으며, 이번 연구 결과는 국제학술지 「Nature Communications」 (IF : 12.121) 최신 호에 게재되었다. * (논문명) High-performance compliant thermoelectric generators with magnetically self-assembled soft heat conductors for self-powered wearable electronics - (제 1저자) 한국과학기술연구원 이병문 박사 - (제 1저자) 한국과학기술연구원 조현 박사과정(現, 서울대학교) - (교신저자) 한국과학기술연구원 김희숙 책임연구원 - (교신저자) 서울대학교 전기·정보공학부 홍용택 교수 - (교신저자) 한국과학기술연구원 정승준 선임연구원 <그림설명> [그림 1] (a) 자유로운 변형이 가능한 고유연성 열전 소자의 모습 (b) 유연성 열전소자를 발광소자와 연결해 뜨거운 물체를 알려주는 자가 발전 장갑을 구현한 모습 [그림 2] (a) 고유연성 고성능 열전 소자의 모식도. (b) 열전달이 뛰어난 소프트 전극 플랫폼의 모식도 (c) 소프트 플랫폼 내에서 정렬된 금속 입자가 열전달 경로를 형성한 모습
피부 위에서 체온만으로 에너지 하베스팅,어디든 밀착해 높은 전력 생산하는 열전소자 개발
- 유연성을 극대화하면서도 고효율을 내는 신축성 열전소자 개발 - 공정자동화를 통해 고수율로 대량생산 가능, 자가발전 웨어러블 기기 상용화↑ 열전소자는 소재 양단의 온도 차이로 인해 생성되는 전압을 활용하는 에너지 변환 소자로 산업현장의 폐열 등 버려지는 열에너지를 실생활에서 활용 가능한 전기에너지로 변환시킨다. 기존 열전소자의 경우 단단한 금속 기반 전극과 반도체를 사용하여 유연하지 못하기 때문에 평평하지 못한 표면에서의 열원을 온전히 흡수하기 어려웠지만, 최근에는 신축성이 있어 사람의 피부나 산업현장의 온수 파이프 등 다양한 형태의 열원에 밀착하여 에너지를 생산할 수 있는 유연한 열전소자를 개발하려는 연구가 활발히 진행되고 있다. 한국과학기술연구원(KIST, 원장 윤석진)은 소프트융합소재연구센터 정승준 박사 팀이 서울대학교(서울대, 총장 오세정) 전기정보공학부 홍용택 교수와의 공동연구를 통해 유연성과 열전달 효율을 극대화하여 높은 발전 성능을 가지는 신축성 열전소자를 개발했다고 밝혔다. 뿐만 아니라 연구팀은 인쇄 공정을 포함한 자동화 공정을 통해 대량생산 방안도 함께 제시했다. 기존의 유연 열전소자 연구에 주로 사용되는 기판의 경우 열전도율이 매우 낮아 열에너지 전달 효율이 낮았고, 유연성이 부족하여 열원과 접촉 시 공기와 같은 열 차단층이 생겨 열 흡수 효율 또한 낮았다. 이를 해결하기 위해 높은 유연성을 가지는 유기물 기반 열전소재의 개발 또한 진행되고 있지만, 기존 무기물 기반 단단한 열전소재와 비교해 현저히 낮은 성능 때문에 실제 웨어러블 기기에 응용하기 어려웠다. 연구팀은 무기물기반 고성능 열전재료를 은 나노와이어가 삽입된 신축성 기판으로 연결하여 열전소자의 저항은 낮추면서 유연성을 높였다. 제작된 열전소자는 유연성이 뛰어나 휘어지거나 늘어나도 안정적인 동작이 가능했다. 또한, 신축성 기판 내부에 열전도율이 높은 금속 입자를 넣어 신축성 기판의 열전달 능력을 기존보다 800%가량 향상시키고, 전력 생산량은 3배 이상 높였다. 연구진은 이와 동시에 소프트 플랫폼 공정부터 열전소자의 형성까지 복잡한 전체공정을 자동화하여 개발한 소자의 대량생산까지도 가능하게 만들었다. 개발한 소자는 산업현장의 고온 감지 센서로 활용하거나 자동차의 내/외부의 온도 차를 이용하여 배터리 없는 자율주행용 거리 감지 센서를 만들 수 있어 고온 환경에서 폭발의 위험성이 있는 배터리 기반 센서 시스템의 전원 문제를 해결할 수 있을 것으로 기대된다. KIST 정승준 박사는 “본 연구를 통해 외부의 열을 이용하여 고온 감지 센서 장갑 등 실제 웨어러블 기기를 동작시키는 것이 가능하다는 것을 보여주었고, 향후에는 체온만으로도 웨어러블 디바이스를 구동시킬 수 있는 유연 열전 플랫폼을 개발할 예정이다.”라며 “본 연구에서 개발된 기능성 복합재료, 열전소자 플랫폼, 고수율 자동화 공정은 향후 배터리 없는 웨어러블 기기 상용화에 기여할 수 있을 것.”이라고 연구 의의를 밝혔다. 본 연구는 과학기술정보통신부(장관 최기영) 지원으로 KIST 주요사업과 한국연구재단 미래소재디스커버리사업, 창의형 융합연구사업, 글로벌프런티어사업으로 수행되었으며, 이번 연구 결과는 국제학술지 「Nature Communications」 (IF : 12.121) 최신 호에 게재되었다. * (논문명) High-performance compliant thermoelectric generators with magnetically self-assembled soft heat conductors for self-powered wearable electronics - (제 1저자) 한국과학기술연구원 이병문 박사 - (제 1저자) 한국과학기술연구원 조현 박사과정(現, 서울대학교) - (교신저자) 한국과학기술연구원 김희숙 책임연구원 - (교신저자) 서울대학교 전기·정보공학부 홍용택 교수 - (교신저자) 한국과학기술연구원 정승준 선임연구원 <그림설명> [그림 1] (a) 자유로운 변형이 가능한 고유연성 열전 소자의 모습 (b) 유연성 열전소자를 발광소자와 연결해 뜨거운 물체를 알려주는 자가 발전 장갑을 구현한 모습 [그림 2] (a) 고유연성 고성능 열전 소자의 모식도. (b) 열전달이 뛰어난 소프트 전극 플랫폼의 모식도 (c) 소프트 플랫폼 내에서 정렬된 금속 입자가 열전달 경로를 형성한 모습