Result
게시물 키워드""에 대한 9444개의 검색결과를 찾았습니다.
화학무기의 독성을 제거하는 신개념 코팅기술 개발, 화학전 및 테러 대응기술 실용화 눈 앞에
- 기능성 고분자 설계를 통한 제독촉매 복합화로 다양한 기재에 제독코팅 - 차세대 보호의 및 보호장비, 화학물질 누출 오염처리에 기여할 것으로 전망 고독성 유기화합물은 무색무취의 특성을 가지며 극소량으로 대량학살이 가능하여 전 세계적으로 화학무기금지협약을 통해 사용을 금지하고 있다. 그럼에도 불구하고 최근 화학무기를 사용한 사례가 발생하여 이에 대응하기 위한 방호소재 개발의 필요성이 대두되고 있다. 현재 주로 활성탄을 사용하여 독성 화학물질을 흡착하는 보호의 및 방독면으로 화학무기에 대응하고 있으나, 2차 오염 등의 문제가 있어 독성을 원천적으로 제거할 수 있는 제독촉매의 개발이 요구되고 있다. 한국과학기술연구원(KIST, 원장 윤석진)은 물질구조제어연구센터 백경열 책임연구원 연구팀이 2019년 나노기반 제독촉매를 개발한 데 이어, 가공과 코팅이 용이한 제독용 복합소재의 개발에 성공했다고 밝혔다. 기존에 개발한 금속유기골격체(Metal-Organic Framework, MOF) 제독촉매는 제독 성능은 높지만 모래와 같이 부서지는 입자 형태로 되어 있어 군복 및 군용장비 코팅에 실용화하지 못하고 있었다. 백경열 책임연구원 연구팀은 이러한 문제를 극복하기 위해 기능성 고분자를 설계하고 이를 제독촉매와 혼합함으로써 필름, 섬유 등의 형태로 가공할 수 있으면서도 성능을 유지할 수 있는 신개념 제독기술을 개발하였다. 연구팀은 기존에 개발하였던 나노미터 수준의 지르코늄(Zr) 기반 제독촉매의 높은 반응성을 유지하면서 가공성을 향상시키는 기능성 고분자형 지지체를 신규로 개발하여 이를 혼합한 복합소재를 제독촉매로 이용하였다. 군복 및 군용장비의 스프레이 공정에 복합소재를 적용하여 제독 코팅층을 형성하고, 실제 화학무기인 신경작용제 소만(GD)을 이용하여 제독성능을 테스트한 결과, 개발한 소재가 제독용 코팅소재로써 실증적용이 가능한 것으로 확인하였다. KIST 백경열 책임연구원은 “기존에 보고된 전기방사법이 아닌 단순 스프레이 공정을 통해서 넓은 면적까지 빠른 속도로 코팅이 가능하며 화학무기의 독성을 손쉽게 제거할 수 있다는 것이 이번 연구의 차별점”이며, “스프레이 코팅을 통하여 유사시 군복과 군용장비에 사전제독뿐만 아니라 오염된 부분의 사후제독도 가능하여 보다 효과적으로 화학무기 또는 고독성 화학물질로부터 군인 및 국민의 생명과 안전을 지킬 수 있을 것으로 기대한다”고 연구 의의를 밝혔다. 본 연구는 KIST 안보·재난안전기술단과의 협력으로 기관고유사업 (K-DARPA) 및 과학기술정보통신부의 지원으로 수행되었으며, 연구결과는 복합체 분야의 국제 학술저널인 ‘ACS Applied Materials & Interfaces’(IF : 10.383, JCR 상위 14.05%) 최신호에 온라인 게재되었다. * (논문명) Feasible Detoxification Coating Material for Chemical Warfare Agent using PMMA-BPEI Copolymer and Metal-Organic Framework Composites - (제 1저자) 한국과학기술연구원 서진영 박사후연구원 - (교신저자) 한국과학기술연구원 백경열 책임연구원 [그림 설명] [그림 1] 기능성 고분자 지지체와 나노제독촉매를 활용한 코팅소재 개발 전략 및 화학무기 분해에 관한 모식도 [그림 2] KIST 연구진이 개발한 제독촉매 분말(좌)과 제독촉매를 유리에 코팅한 소재(우)
화학무기의 독성을 제거하는 신개념 코팅기술 개발, 화학전 및 테러 대응기술 실용화 눈 앞에
- 기능성 고분자 설계를 통한 제독촉매 복합화로 다양한 기재에 제독코팅 - 차세대 보호의 및 보호장비, 화학물질 누출 오염처리에 기여할 것으로 전망 고독성 유기화합물은 무색무취의 특성을 가지며 극소량으로 대량학살이 가능하여 전 세계적으로 화학무기금지협약을 통해 사용을 금지하고 있다. 그럼에도 불구하고 최근 화학무기를 사용한 사례가 발생하여 이에 대응하기 위한 방호소재 개발의 필요성이 대두되고 있다. 현재 주로 활성탄을 사용하여 독성 화학물질을 흡착하는 보호의 및 방독면으로 화학무기에 대응하고 있으나, 2차 오염 등의 문제가 있어 독성을 원천적으로 제거할 수 있는 제독촉매의 개발이 요구되고 있다. 한국과학기술연구원(KIST, 원장 윤석진)은 물질구조제어연구센터 백경열 책임연구원 연구팀이 2019년 나노기반 제독촉매를 개발한 데 이어, 가공과 코팅이 용이한 제독용 복합소재의 개발에 성공했다고 밝혔다. 기존에 개발한 금속유기골격체(Metal-Organic Framework, MOF) 제독촉매는 제독 성능은 높지만 모래와 같이 부서지는 입자 형태로 되어 있어 군복 및 군용장비 코팅에 실용화하지 못하고 있었다. 백경열 책임연구원 연구팀은 이러한 문제를 극복하기 위해 기능성 고분자를 설계하고 이를 제독촉매와 혼합함으로써 필름, 섬유 등의 형태로 가공할 수 있으면서도 성능을 유지할 수 있는 신개념 제독기술을 개발하였다. 연구팀은 기존에 개발하였던 나노미터 수준의 지르코늄(Zr) 기반 제독촉매의 높은 반응성을 유지하면서 가공성을 향상시키는 기능성 고분자형 지지체를 신규로 개발하여 이를 혼합한 복합소재를 제독촉매로 이용하였다. 군복 및 군용장비의 스프레이 공정에 복합소재를 적용하여 제독 코팅층을 형성하고, 실제 화학무기인 신경작용제 소만(GD)을 이용하여 제독성능을 테스트한 결과, 개발한 소재가 제독용 코팅소재로써 실증적용이 가능한 것으로 확인하였다. KIST 백경열 책임연구원은 “기존에 보고된 전기방사법이 아닌 단순 스프레이 공정을 통해서 넓은 면적까지 빠른 속도로 코팅이 가능하며 화학무기의 독성을 손쉽게 제거할 수 있다는 것이 이번 연구의 차별점”이며, “스프레이 코팅을 통하여 유사시 군복과 군용장비에 사전제독뿐만 아니라 오염된 부분의 사후제독도 가능하여 보다 효과적으로 화학무기 또는 고독성 화학물질로부터 군인 및 국민의 생명과 안전을 지킬 수 있을 것으로 기대한다”고 연구 의의를 밝혔다. 본 연구는 KIST 안보·재난안전기술단과의 협력으로 기관고유사업 (K-DARPA) 및 과학기술정보통신부의 지원으로 수행되었으며, 연구결과는 복합체 분야의 국제 학술저널인 ‘ACS Applied Materials & Interfaces’(IF : 10.383, JCR 상위 14.05%) 최신호에 온라인 게재되었다. * (논문명) Feasible Detoxification Coating Material for Chemical Warfare Agent using PMMA-BPEI Copolymer and Metal-Organic Framework Composites - (제 1저자) 한국과학기술연구원 서진영 박사후연구원 - (교신저자) 한국과학기술연구원 백경열 책임연구원 [그림 설명] [그림 1] 기능성 고분자 지지체와 나노제독촉매를 활용한 코팅소재 개발 전략 및 화학무기 분해에 관한 모식도 [그림 2] KIST 연구진이 개발한 제독촉매 분말(좌)과 제독촉매를 유리에 코팅한 소재(우)
화학무기의 독성을 제거하는 신개념 코팅기술 개발, 화학전 및 테러 대응기술 실용화 눈 앞에
- 기능성 고분자 설계를 통한 제독촉매 복합화로 다양한 기재에 제독코팅 - 차세대 보호의 및 보호장비, 화학물질 누출 오염처리에 기여할 것으로 전망 고독성 유기화합물은 무색무취의 특성을 가지며 극소량으로 대량학살이 가능하여 전 세계적으로 화학무기금지협약을 통해 사용을 금지하고 있다. 그럼에도 불구하고 최근 화학무기를 사용한 사례가 발생하여 이에 대응하기 위한 방호소재 개발의 필요성이 대두되고 있다. 현재 주로 활성탄을 사용하여 독성 화학물질을 흡착하는 보호의 및 방독면으로 화학무기에 대응하고 있으나, 2차 오염 등의 문제가 있어 독성을 원천적으로 제거할 수 있는 제독촉매의 개발이 요구되고 있다. 한국과학기술연구원(KIST, 원장 윤석진)은 물질구조제어연구센터 백경열 책임연구원 연구팀이 2019년 나노기반 제독촉매를 개발한 데 이어, 가공과 코팅이 용이한 제독용 복합소재의 개발에 성공했다고 밝혔다. 기존에 개발한 금속유기골격체(Metal-Organic Framework, MOF) 제독촉매는 제독 성능은 높지만 모래와 같이 부서지는 입자 형태로 되어 있어 군복 및 군용장비 코팅에 실용화하지 못하고 있었다. 백경열 책임연구원 연구팀은 이러한 문제를 극복하기 위해 기능성 고분자를 설계하고 이를 제독촉매와 혼합함으로써 필름, 섬유 등의 형태로 가공할 수 있으면서도 성능을 유지할 수 있는 신개념 제독기술을 개발하였다. 연구팀은 기존에 개발하였던 나노미터 수준의 지르코늄(Zr) 기반 제독촉매의 높은 반응성을 유지하면서 가공성을 향상시키는 기능성 고분자형 지지체를 신규로 개발하여 이를 혼합한 복합소재를 제독촉매로 이용하였다. 군복 및 군용장비의 스프레이 공정에 복합소재를 적용하여 제독 코팅층을 형성하고, 실제 화학무기인 신경작용제 소만(GD)을 이용하여 제독성능을 테스트한 결과, 개발한 소재가 제독용 코팅소재로써 실증적용이 가능한 것으로 확인하였다. KIST 백경열 책임연구원은 “기존에 보고된 전기방사법이 아닌 단순 스프레이 공정을 통해서 넓은 면적까지 빠른 속도로 코팅이 가능하며 화학무기의 독성을 손쉽게 제거할 수 있다는 것이 이번 연구의 차별점”이며, “스프레이 코팅을 통하여 유사시 군복과 군용장비에 사전제독뿐만 아니라 오염된 부분의 사후제독도 가능하여 보다 효과적으로 화학무기 또는 고독성 화학물질로부터 군인 및 국민의 생명과 안전을 지킬 수 있을 것으로 기대한다”고 연구 의의를 밝혔다. 본 연구는 KIST 안보·재난안전기술단과의 협력으로 기관고유사업 (K-DARPA) 및 과학기술정보통신부의 지원으로 수행되었으며, 연구결과는 복합체 분야의 국제 학술저널인 ‘ACS Applied Materials & Interfaces’(IF : 10.383, JCR 상위 14.05%) 최신호에 온라인 게재되었다. * (논문명) Feasible Detoxification Coating Material for Chemical Warfare Agent using PMMA-BPEI Copolymer and Metal-Organic Framework Composites - (제 1저자) 한국과학기술연구원 서진영 박사후연구원 - (교신저자) 한국과학기술연구원 백경열 책임연구원 [그림 설명] [그림 1] 기능성 고분자 지지체와 나노제독촉매를 활용한 코팅소재 개발 전략 및 화학무기 분해에 관한 모식도 [그림 2] KIST 연구진이 개발한 제독촉매 분말(좌)과 제독촉매를 유리에 코팅한 소재(우)
화학무기의 독성을 제거하는 신개념 코팅기술 개발, 화학전 및 테러 대응기술 실용화 눈 앞에
- 기능성 고분자 설계를 통한 제독촉매 복합화로 다양한 기재에 제독코팅 - 차세대 보호의 및 보호장비, 화학물질 누출 오염처리에 기여할 것으로 전망 고독성 유기화합물은 무색무취의 특성을 가지며 극소량으로 대량학살이 가능하여 전 세계적으로 화학무기금지협약을 통해 사용을 금지하고 있다. 그럼에도 불구하고 최근 화학무기를 사용한 사례가 발생하여 이에 대응하기 위한 방호소재 개발의 필요성이 대두되고 있다. 현재 주로 활성탄을 사용하여 독성 화학물질을 흡착하는 보호의 및 방독면으로 화학무기에 대응하고 있으나, 2차 오염 등의 문제가 있어 독성을 원천적으로 제거할 수 있는 제독촉매의 개발이 요구되고 있다. 한국과학기술연구원(KIST, 원장 윤석진)은 물질구조제어연구센터 백경열 책임연구원 연구팀이 2019년 나노기반 제독촉매를 개발한 데 이어, 가공과 코팅이 용이한 제독용 복합소재의 개발에 성공했다고 밝혔다. 기존에 개발한 금속유기골격체(Metal-Organic Framework, MOF) 제독촉매는 제독 성능은 높지만 모래와 같이 부서지는 입자 형태로 되어 있어 군복 및 군용장비 코팅에 실용화하지 못하고 있었다. 백경열 책임연구원 연구팀은 이러한 문제를 극복하기 위해 기능성 고분자를 설계하고 이를 제독촉매와 혼합함으로써 필름, 섬유 등의 형태로 가공할 수 있으면서도 성능을 유지할 수 있는 신개념 제독기술을 개발하였다. 연구팀은 기존에 개발하였던 나노미터 수준의 지르코늄(Zr) 기반 제독촉매의 높은 반응성을 유지하면서 가공성을 향상시키는 기능성 고분자형 지지체를 신규로 개발하여 이를 혼합한 복합소재를 제독촉매로 이용하였다. 군복 및 군용장비의 스프레이 공정에 복합소재를 적용하여 제독 코팅층을 형성하고, 실제 화학무기인 신경작용제 소만(GD)을 이용하여 제독성능을 테스트한 결과, 개발한 소재가 제독용 코팅소재로써 실증적용이 가능한 것으로 확인하였다. KIST 백경열 책임연구원은 “기존에 보고된 전기방사법이 아닌 단순 스프레이 공정을 통해서 넓은 면적까지 빠른 속도로 코팅이 가능하며 화학무기의 독성을 손쉽게 제거할 수 있다는 것이 이번 연구의 차별점”이며, “스프레이 코팅을 통하여 유사시 군복과 군용장비에 사전제독뿐만 아니라 오염된 부분의 사후제독도 가능하여 보다 효과적으로 화학무기 또는 고독성 화학물질로부터 군인 및 국민의 생명과 안전을 지킬 수 있을 것으로 기대한다”고 연구 의의를 밝혔다. 본 연구는 KIST 안보·재난안전기술단과의 협력으로 기관고유사업 (K-DARPA) 및 과학기술정보통신부의 지원으로 수행되었으며, 연구결과는 복합체 분야의 국제 학술저널인 ‘ACS Applied Materials & Interfaces’(IF : 10.383, JCR 상위 14.05%) 최신호에 온라인 게재되었다. * (논문명) Feasible Detoxification Coating Material for Chemical Warfare Agent using PMMA-BPEI Copolymer and Metal-Organic Framework Composites - (제 1저자) 한국과학기술연구원 서진영 박사후연구원 - (교신저자) 한국과학기술연구원 백경열 책임연구원 [그림 설명] [그림 1] 기능성 고분자 지지체와 나노제독촉매를 활용한 코팅소재 개발 전략 및 화학무기 분해에 관한 모식도 [그림 2] KIST 연구진이 개발한 제독촉매 분말(좌)과 제독촉매를 유리에 코팅한 소재(우)
화학무기의 독성을 제거하는 신개념 코팅기술 개발, 화학전 및 테러 대응기술 실용화 눈 앞에
- 기능성 고분자 설계를 통한 제독촉매 복합화로 다양한 기재에 제독코팅 - 차세대 보호의 및 보호장비, 화학물질 누출 오염처리에 기여할 것으로 전망 고독성 유기화합물은 무색무취의 특성을 가지며 극소량으로 대량학살이 가능하여 전 세계적으로 화학무기금지협약을 통해 사용을 금지하고 있다. 그럼에도 불구하고 최근 화학무기를 사용한 사례가 발생하여 이에 대응하기 위한 방호소재 개발의 필요성이 대두되고 있다. 현재 주로 활성탄을 사용하여 독성 화학물질을 흡착하는 보호의 및 방독면으로 화학무기에 대응하고 있으나, 2차 오염 등의 문제가 있어 독성을 원천적으로 제거할 수 있는 제독촉매의 개발이 요구되고 있다. 한국과학기술연구원(KIST, 원장 윤석진)은 물질구조제어연구센터 백경열 책임연구원 연구팀이 2019년 나노기반 제독촉매를 개발한 데 이어, 가공과 코팅이 용이한 제독용 복합소재의 개발에 성공했다고 밝혔다. 기존에 개발한 금속유기골격체(Metal-Organic Framework, MOF) 제독촉매는 제독 성능은 높지만 모래와 같이 부서지는 입자 형태로 되어 있어 군복 및 군용장비 코팅에 실용화하지 못하고 있었다. 백경열 책임연구원 연구팀은 이러한 문제를 극복하기 위해 기능성 고분자를 설계하고 이를 제독촉매와 혼합함으로써 필름, 섬유 등의 형태로 가공할 수 있으면서도 성능을 유지할 수 있는 신개념 제독기술을 개발하였다. 연구팀은 기존에 개발하였던 나노미터 수준의 지르코늄(Zr) 기반 제독촉매의 높은 반응성을 유지하면서 가공성을 향상시키는 기능성 고분자형 지지체를 신규로 개발하여 이를 혼합한 복합소재를 제독촉매로 이용하였다. 군복 및 군용장비의 스프레이 공정에 복합소재를 적용하여 제독 코팅층을 형성하고, 실제 화학무기인 신경작용제 소만(GD)을 이용하여 제독성능을 테스트한 결과, 개발한 소재가 제독용 코팅소재로써 실증적용이 가능한 것으로 확인하였다. KIST 백경열 책임연구원은 “기존에 보고된 전기방사법이 아닌 단순 스프레이 공정을 통해서 넓은 면적까지 빠른 속도로 코팅이 가능하며 화학무기의 독성을 손쉽게 제거할 수 있다는 것이 이번 연구의 차별점”이며, “스프레이 코팅을 통하여 유사시 군복과 군용장비에 사전제독뿐만 아니라 오염된 부분의 사후제독도 가능하여 보다 효과적으로 화학무기 또는 고독성 화학물질로부터 군인 및 국민의 생명과 안전을 지킬 수 있을 것으로 기대한다”고 연구 의의를 밝혔다. 본 연구는 KIST 안보·재난안전기술단과의 협력으로 기관고유사업 (K-DARPA) 및 과학기술정보통신부의 지원으로 수행되었으며, 연구결과는 복합체 분야의 국제 학술저널인 ‘ACS Applied Materials & Interfaces’(IF : 10.383, JCR 상위 14.05%) 최신호에 온라인 게재되었다. * (논문명) Feasible Detoxification Coating Material for Chemical Warfare Agent using PMMA-BPEI Copolymer and Metal-Organic Framework Composites - (제 1저자) 한국과학기술연구원 서진영 박사후연구원 - (교신저자) 한국과학기술연구원 백경열 책임연구원 [그림 설명] [그림 1] 기능성 고분자 지지체와 나노제독촉매를 활용한 코팅소재 개발 전략 및 화학무기 분해에 관한 모식도 [그림 2] KIST 연구진이 개발한 제독촉매 분말(좌)과 제독촉매를 유리에 코팅한 소재(우)
화학물 수출 중소기업을 위한 EU 환경규제 대응 세미나 열린다
유럽연합(EU)의 수입품에 대한 환경 규제에 대응하기 위한 세미나가 개최된다. 우리 원의 독일현지법인 우리 원 유럽연구소(소장 이호성)와 한국산업기술진흥협회(KOITA, 회장 박용현)는 공동으로 중소기업을 대상으로 EU 수입품 환경규제에 대한 세미나를 9월 23일 양재동 산업기술진흥협회 대강당에서 개최한다고 밝혔다. 본 세미나에서는 최근 유럽의 환경 규제 동향과 글로벌 환경규제에 대한 한국 중소기업의 대응전략이 논의 될 예정이다. EU는 2015년 6월 1일부터 유럽에서 생산되거나 유럽으로 수입되는 모든 화학물, 혼합물 및 관련 제품에 ‘분류, 표지 및 포장 규제’(이하, CLP 규제*)를 적용한다. 이에 따라 관련 물품을 유럽으로 수출하는 한국기업은 이 규제에 대응할 대책이 필요하다. 이러한, 유럽의 신화학물질 규제(이하, REACH**)는 강력한 글로벌 환경규제로서 현재 전 세계적으로 확대되고 있다. 이 제도는 국내에도 도입되어 2015년부터 시행되는 화학물질평가관리법의 모델이 되었다. * CLP : Classification, Labelling and Package * REACH : Registration Evaluation Authorisation and Restriction of Chemicals EU의 CLP 규제는 지금까지 단일 화학물질에만 적용되었으나 2015년부터는 혼합물 및 완제품에까지 확대 적용된다. 이에 따라 관련 제품을 유럽에 수출하는 기업들은 이에 따른 대응 전략 마련이 시급하다. 한국이 화학물질 및 관련 제품 (플라스틱, 고무제품 등)을 유럽에 수출하는 물량은 2013년 기준으로 연간 약 5조 9천억 원으로, 이는 한국의 유럽 수출 전체물량의 10분의 1가량에 해당되는 양이다. 더욱이, 화학물질규제에 미대응시 전체 약 60조원에 달하는 유럽 수출물량에까지 악영향을 끼칠 수 있어 대응전략 마련의 중요성이 더욱 부각되고 있다. 본 세미나에서는 우리나라에서 EU에 화학물을 수출하는 중소기업을 대상으로 최근 유럽의 화학물 규제 동향과 함께, 글로벌 환경규제에 대한 대응전략이 논의 될 예정이다. 한편, 우리 원 유럽연구소는 한국의 중소기업을 위한 EU 규제대응 솔루션을 제공하기 위해 IT 기반 통합 플랫폼을 개발하고 있다. 우리 원 유럽은 본 세미나 기간 중에 대응 솔루션을 공개하여 기업의 의견을 수집한 후 플랫폼 개발에 반영할 예정이다.
화합물 반도체소자 3차원 적층 기술로 초저전력 반도체 나온다
화합물 반도체소자 3차원 적층 기술로 초저전력 반도체 나온다 - III-V족 화합물 반도체*를 실리콘(Si) 기판위에 적층하는 저비용 공정으로 소자 발열 해결 - 최고 수준의 전하이동도 특성, 초저전력 고성능 III-V족 화합물 반도체 소자 상용화 기대 *III-V족 화합물 반도체 : 주기율표 III족 원소와 V족 원소가 화합물을 이루고 있는 반도체 물질. 가전제품이나 휴대폰 등 기기의 소형화가 진행됨에 따라, 반도체의 크기도 지속적으로 감소해 왔다. 현재 주로 사용되고 있는 실리콘 반도체의 경우, 작은 면적에 더 많은 소자를 넣기 위해 물리적 한계로 여겨지는 10nm 크기 수준으로 작아졌고, 구조도 2차원 평면형에서 3차원 입체형으로 전환되고 있다. 하지만 소자 집적도가 높아짐에 따라 소자간 간섭현상과 발열 문제가 해결해야 할 과제로 남아있다. 한국과학기술연구원(KIST, 원장 이병권) 차세대반도체연구소 김상현, 김형준 박사팀은 국민대학교 김동명 교수연구팀과의 공동연구로 기존의 실리콘 위에 III-V족 화합물 반도체를 3차원으로 적층하는 기술을 개발하여 기존 반도체보다 훨씬 빠르고, 전력 소비가 현저히 적어 발열문제를 해결한 고성능 반도체 소자를 개발했다. KIST 김상현 박사팀은 기존 소자의 발열문제를 해결하기 위해서 전력소비를 낮추는 것에 집중했다. 전자의 이동속도가 빠를수록 전력소비가 낮아지고 전력소비가 낮아질수록 발열량이 낮아지는데, 차세대 반도체로 각광받고 있는 III-V족 화합물 반도체*는 기존의 실리콘 반도체보다 높은 전자 이동도를 보이며, 소비전력도 적어 고성능 핵심소재로 인식되고 있다. 하지만 제조공정이 비싼 단점이 있어 군사, 통신 등 특수분야에 한정적으로 이용되고 있는 실정이었다. 미국, 일본 등 선진연구수준과는 달리 우리나라의 경우 실리콘 반도체에 집중하여 상대적으로 III-V족 화합물 반도체에 대한 연구가 취약한 실정이었다. 연구진이 개발한 기술은 실리콘 기판 위 전자가 이동하는 반도체 채널 부분에 III-V족 화합물 반도체인 인듐갈륨비소(InGaAs)를 얇고 균일하게 형성하여 효과적이고 저비용의 III-V족 화합물 반도체 소자를 제작할 수 있는 공정으로, 산업계에서 응용가능성이 매우 높을 것으로 기대되고 있다. 우선 비용적인 측면에서는 웨이퍼 본딩(Wafer Bonding)*이라는 공정을 통해서 필요한 부분에만 인듐갈륨비소(InGaAs)를 실리콘 위에 접착하여 사용하고 비교적 간단한 공정인 ELO(Epitaxial Lift Off)*공정을 통해 떼어낸 III-V족 화합물 모재 기판(InP)을 재사용함으로서 획기적으로 원가를 절감할 수 있게 되었다. 시간적 측면에서도 기존의 ELO(Epitaxial Lift Off)공정 시 발생하는 수소 거품과 소수성 표면 문제를 웨이퍼 접착(Bonding)시 소자의 패터닝과 모재 기판(InP)의 친수성 표면을 이용하여 해결함으로써 공정시간을 기존대비 수십 배 이상 단축시키는데 성공하였다. *웨이퍼 본딩(Wafer Bonding) : 접착제등을 사용하지 않고 서로 다른 기판을 접합하는 기술 *ELO(Epitaxial Lift Off) : 가운데 희생층을 두고, 목적하는 재료를 성장 후에 재료를 박리하는 방법 이 기술은 재료 및 공정 원가가 상용화의 걸림돌이었던 III-V족 화합물 반도체의 제조 공정을 쉬운 공정방법으로 변경함으로써 원가 절감 및 공정 고속화를 가능하게 하였을 뿐만 아니라 세계 최고 수준의 전자 이동도 특성까지 보여주어 초저전력으로 발열문제를 해결한 고성능 화합물 반도체 소자 상용화를 앞당겼다고 볼 수 있다. 김상현 박사는 “본 연구를 통하여 단순히 실리콘상에서 III-V족 화합물 반도체를 형성하는 데에 그치는 것이 아니라 3차원으로 여러 층을 적층하여 집적도가 향상된 다기능 소자를 실현하는 것이 기대된다.”고 밝혔다. 본 연구는 한국과학기술연구원 플래그쉽 연구사업, 산업통상자원부 미래반도체소자 원천기술개발사업, 미래창조과학부 중견연구자 지원사업으로 수행되었으며, 연구결과는 국제학회인 ‘IEEE International Electron Devices Meeting (IEDM)*’에서 12월 7일에 발표되었다. * IEDM 학회는 세계 3대 반도체 학회로 전자소자 분야 최고 권위 학회로 인정받고 있다. 특히 반도체 분야의 올림픽이라는 별칭을 가지고 있으며 각국의 산업계, 연구소, 대학 등에서 관련된 최신 기술을 발표하고 있다. <그림설명> 그림 1. 실리콘 상 III-V족 화합물 반도체 층 제조 공정 모식도 (공정 고속화 및 모재 기판 재사용) 그림 2. 실리콘 상 III-V족 화합물 반도체 (InGaAs)의 단면 전자현미경사진 및 이로 제작된 소자의 이동도 결과
화합물 반도체소자 3차원 적층 기술로 초저전력 반도체 나온다
화합물 반도체소자 3차원 적층 기술로 초저전력 반도체 나온다 - III-V족 화합물 반도체*를 실리콘(Si) 기판위에 적층하는 저비용 공정으로 소자 발열 해결 - 최고 수준의 전하이동도 특성, 초저전력 고성능 III-V족 화합물 반도체 소자 상용화 기대 *III-V족 화합물 반도체 : 주기율표 III족 원소와 V족 원소가 화합물을 이루고 있는 반도체 물질. 가전제품이나 휴대폰 등 기기의 소형화가 진행됨에 따라, 반도체의 크기도 지속적으로 감소해 왔다. 현재 주로 사용되고 있는 실리콘 반도체의 경우, 작은 면적에 더 많은 소자를 넣기 위해 물리적 한계로 여겨지는 10nm 크기 수준으로 작아졌고, 구조도 2차원 평면형에서 3차원 입체형으로 전환되고 있다. 하지만 소자 집적도가 높아짐에 따라 소자간 간섭현상과 발열 문제가 해결해야 할 과제로 남아있다. 한국과학기술연구원(KIST, 원장 이병권) 차세대반도체연구소 김상현, 김형준 박사팀은 국민대학교 김동명 교수연구팀과의 공동연구로 기존의 실리콘 위에 III-V족 화합물 반도체를 3차원으로 적층하는 기술을 개발하여 기존 반도체보다 훨씬 빠르고, 전력 소비가 현저히 적어 발열문제를 해결한 고성능 반도체 소자를 개발했다. KIST 김상현 박사팀은 기존 소자의 발열문제를 해결하기 위해서 전력소비를 낮추는 것에 집중했다. 전자의 이동속도가 빠를수록 전력소비가 낮아지고 전력소비가 낮아질수록 발열량이 낮아지는데, 차세대 반도체로 각광받고 있는 III-V족 화합물 반도체*는 기존의 실리콘 반도체보다 높은 전자 이동도를 보이며, 소비전력도 적어 고성능 핵심소재로 인식되고 있다. 하지만 제조공정이 비싼 단점이 있어 군사, 통신 등 특수분야에 한정적으로 이용되고 있는 실정이었다. 미국, 일본 등 선진연구수준과는 달리 우리나라의 경우 실리콘 반도체에 집중하여 상대적으로 III-V족 화합물 반도체에 대한 연구가 취약한 실정이었다. 연구진이 개발한 기술은 실리콘 기판 위 전자가 이동하는 반도체 채널 부분에 III-V족 화합물 반도체인 인듐갈륨비소(InGaAs)를 얇고 균일하게 형성하여 효과적이고 저비용의 III-V족 화합물 반도체 소자를 제작할 수 있는 공정으로, 산업계에서 응용가능성이 매우 높을 것으로 기대되고 있다. 우선 비용적인 측면에서는 웨이퍼 본딩(Wafer Bonding)*이라는 공정을 통해서 필요한 부분에만 인듐갈륨비소(InGaAs)를 실리콘 위에 접착하여 사용하고 비교적 간단한 공정인 ELO(Epitaxial Lift Off)*공정을 통해 떼어낸 III-V족 화합물 모재 기판(InP)을 재사용함으로서 획기적으로 원가를 절감할 수 있게 되었다. 시간적 측면에서도 기존의 ELO(Epitaxial Lift Off)공정 시 발생하는 수소 거품과 소수성 표면 문제를 웨이퍼 접착(Bonding)시 소자의 패터닝과 모재 기판(InP)의 친수성 표면을 이용하여 해결함으로써 공정시간을 기존대비 수십 배 이상 단축시키는데 성공하였다. *웨이퍼 본딩(Wafer Bonding) : 접착제등을 사용하지 않고 서로 다른 기판을 접합하는 기술 *ELO(Epitaxial Lift Off) : 가운데 희생층을 두고, 목적하는 재료를 성장 후에 재료를 박리하는 방법 이 기술은 재료 및 공정 원가가 상용화의 걸림돌이었던 III-V족 화합물 반도체의 제조 공정을 쉬운 공정방법으로 변경함으로써 원가 절감 및 공정 고속화를 가능하게 하였을 뿐만 아니라 세계 최고 수준의 전자 이동도 특성까지 보여주어 초저전력으로 발열문제를 해결한 고성능 화합물 반도체 소자 상용화를 앞당겼다고 볼 수 있다. 김상현 박사는 “본 연구를 통하여 단순히 실리콘상에서 III-V족 화합물 반도체를 형성하는 데에 그치는 것이 아니라 3차원으로 여러 층을 적층하여 집적도가 향상된 다기능 소자를 실현하는 것이 기대된다.”고 밝혔다. 본 연구는 한국과학기술연구원 플래그쉽 연구사업, 산업통상자원부 미래반도체소자 원천기술개발사업, 미래창조과학부 중견연구자 지원사업으로 수행되었으며, 연구결과는 국제학회인 ‘IEEE International Electron Devices Meeting (IEDM)*’에서 12월 7일에 발표되었다. * IEDM 학회는 세계 3대 반도체 학회로 전자소자 분야 최고 권위 학회로 인정받고 있다. 특히 반도체 분야의 올림픽이라는 별칭을 가지고 있으며 각국의 산업계, 연구소, 대학 등에서 관련된 최신 기술을 발표하고 있다. <그림설명> 그림 1. 실리콘 상 III-V족 화합물 반도체 층 제조 공정 모식도 (공정 고속화 및 모재 기판 재사용) 그림 2. 실리콘 상 III-V족 화합물 반도체 (InGaAs)의 단면 전자현미경사진 및 이로 제작된 소자의 이동도 결과
화합물 반도체소자 3차원 적층 기술로 초저전력 반도체 나온다
화합물 반도체소자 3차원 적층 기술로 초저전력 반도체 나온다 - III-V족 화합물 반도체*를 실리콘(Si) 기판위에 적층하는 저비용 공정으로 소자 발열 해결 - 최고 수준의 전하이동도 특성, 초저전력 고성능 III-V족 화합물 반도체 소자 상용화 기대 *III-V족 화합물 반도체 : 주기율표 III족 원소와 V족 원소가 화합물을 이루고 있는 반도체 물질. 가전제품이나 휴대폰 등 기기의 소형화가 진행됨에 따라, 반도체의 크기도 지속적으로 감소해 왔다. 현재 주로 사용되고 있는 실리콘 반도체의 경우, 작은 면적에 더 많은 소자를 넣기 위해 물리적 한계로 여겨지는 10nm 크기 수준으로 작아졌고, 구조도 2차원 평면형에서 3차원 입체형으로 전환되고 있다. 하지만 소자 집적도가 높아짐에 따라 소자간 간섭현상과 발열 문제가 해결해야 할 과제로 남아있다. 한국과학기술연구원(KIST, 원장 이병권) 차세대반도체연구소 김상현, 김형준 박사팀은 국민대학교 김동명 교수연구팀과의 공동연구로 기존의 실리콘 위에 III-V족 화합물 반도체를 3차원으로 적층하는 기술을 개발하여 기존 반도체보다 훨씬 빠르고, 전력 소비가 현저히 적어 발열문제를 해결한 고성능 반도체 소자를 개발했다. KIST 김상현 박사팀은 기존 소자의 발열문제를 해결하기 위해서 전력소비를 낮추는 것에 집중했다. 전자의 이동속도가 빠를수록 전력소비가 낮아지고 전력소비가 낮아질수록 발열량이 낮아지는데, 차세대 반도체로 각광받고 있는 III-V족 화합물 반도체*는 기존의 실리콘 반도체보다 높은 전자 이동도를 보이며, 소비전력도 적어 고성능 핵심소재로 인식되고 있다. 하지만 제조공정이 비싼 단점이 있어 군사, 통신 등 특수분야에 한정적으로 이용되고 있는 실정이었다. 미국, 일본 등 선진연구수준과는 달리 우리나라의 경우 실리콘 반도체에 집중하여 상대적으로 III-V족 화합물 반도체에 대한 연구가 취약한 실정이었다. 연구진이 개발한 기술은 실리콘 기판 위 전자가 이동하는 반도체 채널 부분에 III-V족 화합물 반도체인 인듐갈륨비소(InGaAs)를 얇고 균일하게 형성하여 효과적이고 저비용의 III-V족 화합물 반도체 소자를 제작할 수 있는 공정으로, 산업계에서 응용가능성이 매우 높을 것으로 기대되고 있다. 우선 비용적인 측면에서는 웨이퍼 본딩(Wafer Bonding)*이라는 공정을 통해서 필요한 부분에만 인듐갈륨비소(InGaAs)를 실리콘 위에 접착하여 사용하고 비교적 간단한 공정인 ELO(Epitaxial Lift Off)*공정을 통해 떼어낸 III-V족 화합물 모재 기판(InP)을 재사용함으로서 획기적으로 원가를 절감할 수 있게 되었다. 시간적 측면에서도 기존의 ELO(Epitaxial Lift Off)공정 시 발생하는 수소 거품과 소수성 표면 문제를 웨이퍼 접착(Bonding)시 소자의 패터닝과 모재 기판(InP)의 친수성 표면을 이용하여 해결함으로써 공정시간을 기존대비 수십 배 이상 단축시키는데 성공하였다. *웨이퍼 본딩(Wafer Bonding) : 접착제등을 사용하지 않고 서로 다른 기판을 접합하는 기술 *ELO(Epitaxial Lift Off) : 가운데 희생층을 두고, 목적하는 재료를 성장 후에 재료를 박리하는 방법 이 기술은 재료 및 공정 원가가 상용화의 걸림돌이었던 III-V족 화합물 반도체의 제조 공정을 쉬운 공정방법으로 변경함으로써 원가 절감 및 공정 고속화를 가능하게 하였을 뿐만 아니라 세계 최고 수준의 전자 이동도 특성까지 보여주어 초저전력으로 발열문제를 해결한 고성능 화합물 반도체 소자 상용화를 앞당겼다고 볼 수 있다. 김상현 박사는 “본 연구를 통하여 단순히 실리콘상에서 III-V족 화합물 반도체를 형성하는 데에 그치는 것이 아니라 3차원으로 여러 층을 적층하여 집적도가 향상된 다기능 소자를 실현하는 것이 기대된다.”고 밝혔다. 본 연구는 한국과학기술연구원 플래그쉽 연구사업, 산업통상자원부 미래반도체소자 원천기술개발사업, 미래창조과학부 중견연구자 지원사업으로 수행되었으며, 연구결과는 국제학회인 ‘IEEE International Electron Devices Meeting (IEDM)*’에서 12월 7일에 발표되었다. * IEDM 학회는 세계 3대 반도체 학회로 전자소자 분야 최고 권위 학회로 인정받고 있다. 특히 반도체 분야의 올림픽이라는 별칭을 가지고 있으며 각국의 산업계, 연구소, 대학 등에서 관련된 최신 기술을 발표하고 있다. <그림설명> 그림 1. 실리콘 상 III-V족 화합물 반도체 층 제조 공정 모식도 (공정 고속화 및 모재 기판 재사용) 그림 2. 실리콘 상 III-V족 화합물 반도체 (InGaAs)의 단면 전자현미경사진 및 이로 제작된 소자의 이동도 결과
화합물 반도체소자 3차원 적층 기술로 초저전력 반도체 나온다
화합물 반도체소자 3차원 적층 기술로 초저전력 반도체 나온다 - III-V족 화합물 반도체*를 실리콘(Si) 기판위에 적층하는 저비용 공정으로 소자 발열 해결 - 최고 수준의 전하이동도 특성, 초저전력 고성능 III-V족 화합물 반도체 소자 상용화 기대 *III-V족 화합물 반도체 : 주기율표 III족 원소와 V족 원소가 화합물을 이루고 있는 반도체 물질. 가전제품이나 휴대폰 등 기기의 소형화가 진행됨에 따라, 반도체의 크기도 지속적으로 감소해 왔다. 현재 주로 사용되고 있는 실리콘 반도체의 경우, 작은 면적에 더 많은 소자를 넣기 위해 물리적 한계로 여겨지는 10nm 크기 수준으로 작아졌고, 구조도 2차원 평면형에서 3차원 입체형으로 전환되고 있다. 하지만 소자 집적도가 높아짐에 따라 소자간 간섭현상과 발열 문제가 해결해야 할 과제로 남아있다. 한국과학기술연구원(KIST, 원장 이병권) 차세대반도체연구소 김상현, 김형준 박사팀은 국민대학교 김동명 교수연구팀과의 공동연구로 기존의 실리콘 위에 III-V족 화합물 반도체를 3차원으로 적층하는 기술을 개발하여 기존 반도체보다 훨씬 빠르고, 전력 소비가 현저히 적어 발열문제를 해결한 고성능 반도체 소자를 개발했다. KIST 김상현 박사팀은 기존 소자의 발열문제를 해결하기 위해서 전력소비를 낮추는 것에 집중했다. 전자의 이동속도가 빠를수록 전력소비가 낮아지고 전력소비가 낮아질수록 발열량이 낮아지는데, 차세대 반도체로 각광받고 있는 III-V족 화합물 반도체*는 기존의 실리콘 반도체보다 높은 전자 이동도를 보이며, 소비전력도 적어 고성능 핵심소재로 인식되고 있다. 하지만 제조공정이 비싼 단점이 있어 군사, 통신 등 특수분야에 한정적으로 이용되고 있는 실정이었다. 미국, 일본 등 선진연구수준과는 달리 우리나라의 경우 실리콘 반도체에 집중하여 상대적으로 III-V족 화합물 반도체에 대한 연구가 취약한 실정이었다. 연구진이 개발한 기술은 실리콘 기판 위 전자가 이동하는 반도체 채널 부분에 III-V족 화합물 반도체인 인듐갈륨비소(InGaAs)를 얇고 균일하게 형성하여 효과적이고 저비용의 III-V족 화합물 반도체 소자를 제작할 수 있는 공정으로, 산업계에서 응용가능성이 매우 높을 것으로 기대되고 있다. 우선 비용적인 측면에서는 웨이퍼 본딩(Wafer Bonding)*이라는 공정을 통해서 필요한 부분에만 인듐갈륨비소(InGaAs)를 실리콘 위에 접착하여 사용하고 비교적 간단한 공정인 ELO(Epitaxial Lift Off)*공정을 통해 떼어낸 III-V족 화합물 모재 기판(InP)을 재사용함으로서 획기적으로 원가를 절감할 수 있게 되었다. 시간적 측면에서도 기존의 ELO(Epitaxial Lift Off)공정 시 발생하는 수소 거품과 소수성 표면 문제를 웨이퍼 접착(Bonding)시 소자의 패터닝과 모재 기판(InP)의 친수성 표면을 이용하여 해결함으로써 공정시간을 기존대비 수십 배 이상 단축시키는데 성공하였다. *웨이퍼 본딩(Wafer Bonding) : 접착제등을 사용하지 않고 서로 다른 기판을 접합하는 기술 *ELO(Epitaxial Lift Off) : 가운데 희생층을 두고, 목적하는 재료를 성장 후에 재료를 박리하는 방법 이 기술은 재료 및 공정 원가가 상용화의 걸림돌이었던 III-V족 화합물 반도체의 제조 공정을 쉬운 공정방법으로 변경함으로써 원가 절감 및 공정 고속화를 가능하게 하였을 뿐만 아니라 세계 최고 수준의 전자 이동도 특성까지 보여주어 초저전력으로 발열문제를 해결한 고성능 화합물 반도체 소자 상용화를 앞당겼다고 볼 수 있다. 김상현 박사는 “본 연구를 통하여 단순히 실리콘상에서 III-V족 화합물 반도체를 형성하는 데에 그치는 것이 아니라 3차원으로 여러 층을 적층하여 집적도가 향상된 다기능 소자를 실현하는 것이 기대된다.”고 밝혔다. 본 연구는 한국과학기술연구원 플래그쉽 연구사업, 산업통상자원부 미래반도체소자 원천기술개발사업, 미래창조과학부 중견연구자 지원사업으로 수행되었으며, 연구결과는 국제학회인 ‘IEEE International Electron Devices Meeting (IEDM)*’에서 12월 7일에 발표되었다. * IEDM 학회는 세계 3대 반도체 학회로 전자소자 분야 최고 권위 학회로 인정받고 있다. 특히 반도체 분야의 올림픽이라는 별칭을 가지고 있으며 각국의 산업계, 연구소, 대학 등에서 관련된 최신 기술을 발표하고 있다. <그림설명> 그림 1. 실리콘 상 III-V족 화합물 반도체 층 제조 공정 모식도 (공정 고속화 및 모재 기판 재사용) 그림 2. 실리콘 상 III-V족 화합물 반도체 (InGaAs)의 단면 전자현미경사진 및 이로 제작된 소자의 이동도 결과